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ABSTRACT

We evaluate the feasibility of action recognition from in-
dividual poses. Our approach is formulated in a probabilis-
tic reliable-inference framework usinga posterioriclass ra-
tios to verify the saliency of a pose before committing to
any action classification. The framework is evaluated in the
context of walking, running, and standing poses at multi-
ple views and compared to ML and MAP approaches. Re-
sults indicate that these actions can be reliably discriminated
from a single image.

1. INTRODUCTION

Advanced video surveillance systems will require the capa-
bilities of detectingthe presence of people,tracking their
movements, andrecognizingtheir behaviors and actions.
With respect to action recognition, how long of a video se-
quence is needed for reliable computer detection of basic
human actions such as walking and running? Typically,
analysis over several frames is employed to construct rep-
resentations for recognition (e.g., matching trajectories or
detecting characteristic motion patterns [1]). But how re-
liable could a system perform when limited to analysis of
only onevideo frame? In other words, how reliable could
individual poses be toward computer recognition of actions?

Clearly, recognition of basic activities from only a single
frame (or few frames) of video would be advantageous to
automatic video-based surveillance systems, especially for
systems with limited computational processing time sched-
uled per camera. Also consider small unmanned aerial vehi-
cles (UAVs) equipped with cameras. The UAV’s view area
is constantly changing, and therefore immediate decisions
about the activity in the scene are desirable. Even when
longer duration video is available, rapid action detection
may be particularly helpful in bootstrapping more sophis-
ticated action-specific tracking or recognition approaches.

We present an approach to pose-based recognition of ac-
tions that is formulated in a probabilistic inference frame-
work that first verifies the reliability of a pose using ana

posterioricomparison of the target classes before commit-
ting to any particular action classification. If the pose is
deemed unreliable (too confusing), then no action classifica-
tion takes place. Other probabilistic methods such asmax-
imum likelihood(ML) and maximum a posteriori(MAP)
instead perform a forced-choice classification regardless of
the saliency of the input.

The advantage of the proposed method is that the sys-
tem only makes classifications when it believes the pose is
“good enough” for discrimination between the possible ac-
tions. This is particularly favorable when there is a high cost
for making errors and low (or no) cost for passively waiting
for another pose image to arrive (advantageous with real-
time video).

We evaluate the reliable-inference framework using the
task of discriminating walking, running, and standing poses
from multiple viewpoints. We present results examining the
framework and make comparisons to alternative ML and
MAP approaches. We also examine the discrimination abil-
ity as a function of viewpoint to determine the best cam-
era locations. We show that low Bayes error rates can be
achieved for recognizing walking, running, and standing
from single poses. To further illustrate the detection and
elimination of confusing poses, we present results discrimi-
nating walking pace (slow, medium, fast).

We begin with a review of related pose-based detection
and recognition methods (Sect. 2). Next we present the
reliable-inference framework (Sect. 3), including methods
for probabilistic modeling of the classes and for recognition.
We then describe how the action database was collected and
what features were chosen to represent the poses (Sect. 4).
The experimental evaluations are presented (Sect. 5), fol-
lowed by a summary and conclusion (Sect. 6).

2. RELATED WORK

In [2], wavelets were used to learn a characteristic pedes-
trian template for detecting people in cluttered scenes. The
training set consisted of front- and rear-view color images
of people in natural scenes (images were clipped and scaled



to a fixed size). The system was trained with additional neg-
ative examples using bootstrapping, and support vector ma-
chines were employed for classification using the wavelet
coefficients as features.

A hierarchical coarse-to-fine template approach with ra-
dial basis function (RBF) classification was used in [3] to
also detect pedestrians. The template hierarchy was con-
structed automatically from examples using refinement clus-
tering of images into prototypes (using the Chamfer dis-
tance). During matching, a distance threshold between pro-
totype candidates and the new image were used to prune the
search through the hierarchy. Candidate matches were then
verified using the RBF classifier.

For discriminating humans and vehicles, two simple prop-
erties (dispersedness, area) were used by [4] to classify re-
gions selected from image differencing. To aid in temporal
consistency of the labeling, a classification histogram was
computed to accumulate over time the class labels assigned
to a particular region. If the target region persisted for a
given duration, the peak in the classification histogram was
used to label the object.

A point distribution model was used in [5] to model the
changing silhouette contour shape of a walking person (at
different views) with cubic B-splines. Principal components
analysis (PCA) was used to capture the significant modes
of variation in the feature vectors for the various contour
shapes. The direction of walking for each pose was ap-
pended to the feature vector to enable the estimation of the
walking direction for new silhouette poses after reconstruc-
tion from the PCA space.

In [6], 2-D pose estimation from image silhouettes was
cast in a general unsupervised learning framework using
EM-based clustering to build a mapping between low-level
moment features and 2-D joint positions. The model was
trained using synthetic silhouettes rendered from multiple
viewpoints and was demonstrated with pose recovery on
both artificial and real images.

Our approach similarly employs an EM-based cluster-
ing of silhouette poses using moment features as in [6],
but unlike the above approaches, we formulate the classi-
fication task as a probabilistic decision employing reliable-
inference to classify only the most discriminating poses.
Our method is designed to ignore unreliable poses during
immediate decision-making, rather than requiring temporal
consistency before classification (as in [4]). We also exam-
ine multiple viewpoints for each action (unlike [2]) and do
not require any strong thresholds in the framework.

3. RELIABLE-INFERENCE

We formulate our reliable-inference (RI) framework using
the “key feature” approach proposed by [7]. The success of
inferring world propertyP from image featuref in con-

text C can be formulated as thea posteriori probability
p(P|f, C). The contextC refers to a particular closed-
world domain of properties that can occur in some situation.
A reliable inference ofP from f makesp(P|f, C) ≈ 1 and
the probability of an errorp(¬P|f, C) ≈ 0. To determine
the reliability off for inferring propertyP, we form a ratio
of these two probabilities

Rpost =
p(P|f, C)

p(¬P|f, C)
(1)

WhenRpost � 1, the featuref is said to be a highly reliable
indicator of propertyP.

Using Bayes’ rule,Rpost can be separated into the like-
lihood ratio and the ratio of the priors

Rpost =
p(P|f, C)

p(¬P|f, C)
=

p(f |P, C)
p(f |¬P, C)

· p(P|C)
p(¬P|C)

(2)

A large likelihood ratio indicates that the feature arises con-
sistently with the existence of the world property, but not in
its absence. This requirement alone however does not en-
sure a reliable inference. For if the ratio of priors becomes
too small, thenRpost can become small even in the pres-
ence of a large likelihood ratio. Hence a significant context-
dependant prior ratio is also required.

3.1. Reliable Action Inference

We are interested in reliable-inference of the action class
(world property) given an image pose (feature) of the per-
son. A “key pose” therefore has a feature representationf
(multi-dimensional vector) that can be used to reliably in-
fer a particular actionAi occurring in contextC. We can
rewrite Eqn. 1 for the target actionAi as

Rpost =
p(Ai|f , C)

p(¬Ai|f , C)
=

p(f |Ai, C)p(Ai|C)∑
j 6=i p(f |Aj , C)p(Aj |C)

(3)

The termp(f |A, C) is referred to as the image model,
andp(A|C) is referred to as the action model. The context-
dependent reasoning provides a limited domainC of actions
for consideration during recognition. For example, if we
know the person is traversing the scene, we could possi-
bly limit the context to only locomotory behaviors such as
walking and running and greatly reduce the search space of
solutions.

To evaluate theRpost for f , we model the class like-
lihoods from training data and select appropriate context-
dependent priors.

3.2. Likelihood Modeling

We model the likelihood of feature vectorf appearing from
a particular action classAi (in a given context) as a Gaus-



sian mixture model

p(f |Ai) = p(f |θAi) =
K∑

k=1

wk · gk(f |µk,Σk) (4)

wheregk(f |µk,Σk) is the likelihood off appearing from
the k-th Gaussian distribution parameterized by the mean
µk and covarianceΣk, with mixture weightwk. For es-
timating the parametersθAi

, we employ the Expectation
Maximization (EM) algorithm [8] that maximizes the class
log-likelihood

L(θAi |f1, · · · , fN ) =
N∑

n=1

log(p(fn|θAi)) (5)

for all N training examples in classAi.
Initial values for the means, covariances, and mixture

weights in Eqn. 4 can be estimated using K-means clus-
tering of the training samples. To give equal emphasis to
each dimension off , we first whiten [9] the class training
data. As the clustering result can vary depending on the
seed values (initial means), we repeat the entire EM algo-
rithm multiple times, each time using a K-means clustering
result from a different random seed initialization. Finally,
we choose the EM mixture model that produces the maxi-
mum class log-likelihood (Eqn. 5).

3.2.1. Number of Components

One issue regarding mixture models is the number of clus-
ters/distributionsK needed to model the data. Rather than
manually selecting an arbitraryK, we automatically select
from models of differentK, the model that maximizes the
Bayesian Information Criterion (BIC) [10].

The BIC for a given model parameterizationθAi
is com-

puted as

BIC(θAi) = 2L(θAi |f1, · · · , fN )−M log(N) (6)

whereM is the number of independent model parameters
to be estimated. In our formulation, we have

M = K × (m +
m2 + m

2
) + (K − 1) (7)

with K distributions,(m+ m2+m
2 ) independent parameters

for each mean and covariance (m = dim(f)), and(K − 1)
independent mixture weights (

∑
wk = 1).

Since the class log-likelihood of the mixture model (Eqn.
5) improves when more parameters are added to the model
(i.e., largerK), the termM log(N) is subtracted from (twice)
the class log-likelihood in Eqn. 6 to penalize models of in-
creasing complexity. The BIC is maximized in an informa-
tion theoretic manner for more parsimonious parameteriza-
tions.

An iterative split-sample training and validation method
is also employed where 50% of the training examples are
randomly selected and used by K-means/EM to estimate the
model parameters, and the remaining 50% of the samples
are used to compute the BIC for that model.

3.3. Reliability Decision

As previously stated, whenRpost � 1, f is a reliable indi-
cator ofAi. But how large doesRpost need to be for this
to happen? In other words, what is the value of the decision
thresholdλAi

such that we reliably classifyf as indicating
the presence of actionAi? We classifyf as an instance of
Ai when

p(f |Ai, C)p(Ai|C)∑
j 6=i p(f |Aj , C)p(Aj |C)

> λAi (8)

otherwise we make no strong commitment (i.e., choose¬Ai).
To determine the value of the decision threshold for class

Ai, we compute the classification errors for all of the train-
ing examples inC using multiple decision thresholds (sim-
ilar to constructing an ROC curve) and select the threshold
λAi

that produces the lowest two-classRpost Bayesian error

pλ(Error|C) = p(class(f) = ¬Ai|Ai)p(Ai|C) (9)

+ p(class(f) = Ai|¬Ai)p(¬Ai|C)
= p(class(f) = ¬Ai|Ai)p(Ai|C) (10)

+
∑
j 6=i

p(class(f) = Ai|Aj)p(Aj |C)

Alternatively, the error forAi could be manually bound and
the decision threshold automatically determined to give the
lowest error rate possible for the remaining classesAj 6=i.

3.4. Recognition

To perform recognition and determine the action label (if
any) for f , we compute theRpost of f for all Ai ∈ C and
compare each ratio with its decision thresholdλAi . Any
class meeting its decision threshold forf is placed into a
clique of potential classifications.

If the clique is empty after examining all classes, then
we make no commitment to an action classification (i.e.,
class(f) = ∅). If the resulting clique contains a single class,
then we reliably classifyf to that action. In the event that
the clique contains more than one action class (due to in-
dependentλ thresholds for each class), we choose the class
within the clique having the highestRpost (the most reliable
inference).

As opposed to ML or MAP approaches that always make
a forced-choice classification, RI only makes a class com-
mitment when it is confident enough that the feature vector
f can be reliably used to discriminate the actions.
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Fig. 1. Example silhouettes for action classes walk, run, and stand. Each class has multiple efforts/styles (top row), and each
pose is rendered at 21 different views (bottom image).

4. WALKING, RUNNING, AND STANDING

We selected a context of walking (W), running (R), and
standing (S) to evaluate the RI framework for pose-based
action recognition. Each action class contains silhouette
images of poses at various times, efforts/styles, and views.
The walking and running actions were performed at slow,
medium, and fast paces to include the natural variations pro-
duced at different locomotion speeds [11]. Two common
standing poses of hands-on-hips and hands-at-side were also
performed, with small movement variations within each style.
Example silhouette images are shown in Fig. 1.

4.1. Silhouette Generation

Unless a large number of synchronized cameras at different
locations are employed to collect the images, each pose can-
not be simultaneously imaged at each viewpoint to conduct
consistent view-based evaluations. To address this problem,
we used a Vicon-8 motion-capture system and Maya ani-
mation software to create a 3-D person model that can be
consistently rendered at any desired viewpoint.

We first motion-captured a person performing walking,
running, and standing at different efforts/styles. For walk-
ing and running, one cycle at each pace was extracted. The
motion-capture data was then mapped to a 3-D body model
(see Fig. 2), and rendered (orthographic) as a silhouette
from multiple viewpoints using OpenGL. Each pose was
rendered at 21 different viewpoints separated by30◦ hor-
izontal and vertical intervals (see bottom image of Fig. 1).

The silhouettes were rendered small in proportion to the

Fig. 2. 3-D body model used to render silhouettes.

image size (<10% of a 100×100 image) and dilated to pro-
duce lower-resolution silhouettes comparable to the output
of traditional image-based segmentation methods with a re-
mote color or thermal camera (see Fig. 1). The total number
of images for classesW, R, andS were 2184, 1512, and
1974, respectively.

4.2. Silhouette Features

We represent each silhouette image with a feature vector
of 7 similitude moments [12]. These moments produce ex-
cellent global shape descriptors for binary (and grayscale)
images in a translation- and scale-invariant manner.

For silhouette imageI, its first 7 similitude moments are



given by

ηij =
νij

(ν00)
i+j
2 +1

(11)

for orders2 ≤ (i + j) ≤ 3, with the central momentsνij

computed as

νij =
∑

x

∑
y

(x− x̄)i(y − ȳ)jI(x, y) (12)

The resulting7×1 feature vectorf compactly represents
the shape of the silhouette image as

f = [η02, η03, η11, η12, η20, η21, η30]T (13)

If rotation invariance is also desired, absolute moment in-
variants [12] could be employed.

5. EXPERIMENTAL EVALUATIONS

We evaluated the RI framework with the action classesW,
R, andS to determine the feasibility of using individual
poses for recognition. First we examined the individual
Rpost discrimination results of the actions. Next we com-
pared the RI recognition results to ML and MAP, and also
examined the recognition as a function of view-angle. We
further analyzed the walking motions using the RI frame-
work to classify the walking pace.

We initially constructed the likelihood mixture model
for each class using the approach outlined in Sect. 3.2.
For eachK under consideration (2–24, in steps of 2), the
Kmeans/EM algorithm was repeated 15 times (EM itself
was limited to 30 iterations) and the model producing the
maximum class log-likelihood was selected as the best model
for that K. The best models (one for eachK) were then
compared using the BIC, and the one having the largest BIC
was selected as the optimal model. This entire process was
repeated for 3 different split-sample partitions of the class
data and the model having the overall largest BIC was se-
lected as the final likelihood model.

In Fig. 3.a, we show the BIC values as a function of
K for the running data using three different split-sample
iterations. The resulting mixture model corresponding to
the maximum BIC (atK=4) is shown in Fig. 3.b.

5.1. Decision Errors inRpost

Once the likelihood models were created for each class, the
Rpost decision thresholds were calculated using the method
outlined in Sect. 3.3.

We initially employed equal priors:p(W|C) = p(R|C)
= p(S|C) = 1/3. TheRpost Bayesian error (Eqn. 10) as
a function ofλ for running is shown in Fig. 4. TheRpost

errors produced using the optimal decision thresholdλ for
each class are presented in Table 1.a. We also calculated
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Fig. 3. Likelihood model for running. (a) BIC values for
differentK using three split-sample iterations. (b) Mixture
model (contour plot at4σ for whitened momentsη02, η12)
corresponding to the maximum BIC (atK = 4).

the decision thresholds using a different choice of priors:
p(W|C) = .5, p(R|C) = .2, andp(S|C) = .3. The result-
ing Rpost errors for these priors are presented in Table 1.b
for comparison.

TheRpost Bayesian errors for both sets of priors yield
approximately 5% error for walking and running, and only
1% error for standing. This result is encouraging, given only
a limited mixture model is used to generalize the features in
each class. Therefore the error statistics demonstrate the
potential for each class to be reliably distinguished from the
remaining classes.

To illustrate the non-uniformity ofRpost for different
poses, we plot in Fig. 5 the (W, ¬W) Rpost values for
a new horizontal side-view (Rx = 0◦, Ry = −90◦) three-
cycle walking sequence. This plot clearly shows that certain
frames are more reliable (having a higherRpost) than oth-
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Fig. 4. Rpost error as a function ofλ for R vs. ¬R using
equal priors. The decision thresholdλ = .2 is marked.

Rpost λ Err|W Err|R Err|S Rpost error
W, ¬W 8.9 .0847 .0443 .0122 .0471
R, ¬R 0.2 .0600 .0714 .0258 .0524
S, ¬S 0.1 .0069 .0159 .0193 .0140

(a) Equal Priors

Rpost λ Err|W Err|R Err|S Rpost error
W, ¬W 7.8 .0504 .0847 .0228 .0490
R, ¬R 0.3 .0275 .1336 .0218 .0470
S, ¬S 0.1 .0055 .0159 .0263 .0138

(b) Unequal Priors

Table 1. Rpost errors corresponding to decision thresholds
λ for walking (W), running (R), and standing (S) using (a)
equal priors and (b) unequal priors (see text).

ers during the action. We also computed for each class the
maximum and minimumRpost values for examples at each
view. The 5 most reliable and the 5 least reliable poses at
different views for each class are shown in Fig. 6.

5.2. Action Recognition

To evaluate the proposed RI recognition method (Sect. 3.4),
we compared the RI results to ML and MAP classifications.
In Table 2, we present the classification results of RI and
ML using equal priors. The overall Bayes error for each
method was calculated as

p(Error|C) = p(Error|W)p(W|C)
+ p(Error|R)p(R|C)
+ p(Error|S)p(S|C) (14)

and yielded 6.31% error for RI and 7.89% error for ML. If
we do not consider assignment to∅ as an error for RI and
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Fig. 5. Rpost values (log) for a new three-cycle walking
sequence.

Classification
Input Method W R S ∅ % Error
W RI 1999 131 14 408.47/6.76

ML 2126 53 5 – 2.66
R RI 67 1399 10 36 7.47/5.22

ML 222 1281 9 – 15.28
S RI 24 35 1915 0 2.99/2.99

ML 78 35 1861 – 5.72

Table 2. Recognition rates comparing RI and ML classifi-
cation using equal priors. Errors in bold correspond to using
only class-committed examples.

normalize the remaining RI errors by the number of poses
actually committed to an action class, the new RI error rate
is significantly lowered to 4.99%. In this case, only 1.34%
of the frames were unclassified.

The classification results for RI and MAP using the al-
ternate (unequal) priors are presented in Table 3. The Bayes
errors were 6.44% for RI and 7.22% for MAP. If the error
for RI does not consider the unclassified poses (1.87% un-
classified), the Bayes error for RI is reduced to 4.76%.

For both sets of priors, the RI framework produced lower
Bayes errors than ML and MAP. With the high FPS avail-
able from real-time video, the percentages of unclassified
(skipped) poses in each case is insignificant.

5.3. View-Based Discrimination

The previous evaluation computed the classification and er-
ror rates using poses at all 21 viewpoints. We next eval-
uated the recognition capability of RI as a function of the
viewpoint to determine which views are most informative
toward discrimination of the actions. The Bayes error for



Most Reliable Least Reliable

Fig. 6. The five most reliable poses and five least reliable poses in terms ofRpost at different views. Decreasing pose
reliability is ordered from left-to-right in each row. Top row: Walking, Middle row: Running, Bottom row: Standing.

Classification
Input Method W R S ∅ % Error
W RI 2074 60 10 40 5.04/3.26

MAP 2148 32 4 – 1.65
R RI 128 1305 15 6413.69/9.88

MAP 337 1164 11 – 23.02
S RI 45 31 1896 2 3.95/3.85

MAP 87 31 1856 – 5.98

Table 3. Recognition rates comparing RI and MAP classi-
fication using unequal priors.

Ry

0◦ −30◦ −60◦ −90◦ −120◦ −150◦ −180◦

0◦ .01 .10 .01 .01 .02 .12 .04
Rx 30◦ .06 .10 .04 .01 .00 .15 .05

60◦ .02 .02 .07 .12 .04 .12 .22

Table 4. Bayes error for walking, running, and standing at
each view.

the poses at each of the 21 views is presented in Table 4. As
expected, the best views for recognition were located near
the side (Ry = −90◦) at nearly horizontal views. Inter-
estingly, a downward looking view from behind the person
produced the largest error (22%).

5.4. Identifying Walking Pace

To further demonstrate the RI method in terms of identify-
ing confusing poses, we examined the pose differences in
the slow, medium, and fast walking paces (see Fig. 1) at

Rpost λ Rpost error
Wslow, ¬Wslow 5.3 .2589
Wmed, ¬Wmed 1.6 .3173
Wfast, ¬Wfast 4.8 .2003

Table 5. Rpost errors corresponding to decision thresholds
λ for slow, medium, and fast walking paces using equal pri-
ors.

multiple views. As these walking efforts are very similar
in appearance, we expect the RI method to identify several
poses that are too confusing to classify.

The likelihood mixture model for each walking pace
was estimated using the approach in Sect. 3.2. TheRpost

errors for the walking paces using equal priors are reported
in Table 5. As expected theRpost discrimination errors are
quite large (20–32%). The most reliable and least reliable
fronto-parallel pose for each pace are shown in Fig. 7. The
most reliable poses at this view appear to capture different
stride extensions.

In Table 6, we present a comparison of the RI and ML
classification results. For each walking pace, several poses
were deemed unreliable by RI and were therefore placed in
the ∅ category. The RI Bayes error was 59.54% and the
ML Bayes error was 41.71%. Without consideration of the
unclassified poses (42% unclassified), the error for RI was
32.00%.

Though the RI approach did not classify 42% of the
poses, the method is still applicable given that there are typ-
ically 30–40 frames during a single walk cycle with 30 FPS
video. Therefore, to reduce the classification error rate, the
RI approach is still desired over ML.



Classification
Input Method Slow Med Fast ∅ % Error
Slow RI 370 77 13 380 55.95/19.57

ML 620 129 91 – 26.19
Med RI 120 169 87 33876.33/55.05

ML 273 232 209 – 67.51
Fast RI 31 61 338 200 46.35/21.40

ML 92 106 432 – 31.43

Table 6. Recognition rates comparing RI and ML classifi-
cation of slow, medium, and fast walking using equal priors.

Slow Medium Fast

Fig. 7. The most reliable (top row) and least reliable (bot-
tom row) fronto-parallel poses for slow, medium, and fast
walking.

6. SUMMARY AND CONCLUSIONS

We presented a reliable-inference approach to evaluate the
feasibility of action recognition from single poses. The ap-
proach is formulated in a probabilistic framework that veri-
fies the reliability of inference from a pose before commit-
ting to any action classification. To determine that a pose is
a reliable indicator of actionAi, we form thea posteriori
probability ratioRpost for classesAi and¬Ai, and check
that it is above a minimum Bayesian error threshold derived
from the training data. To model the class likelihoods, we
outlined an EM-based Gaussian mixture-model technique
using the Bayesian Information Criterion to automatically
determine the optimal number of mixture components.

For recognition of a given pose, we select the class hav-
ing the largest validRpost. If no class has a validRpost

for the pose, then the system does not commit to any ac-
tion classification. The recognition results for walking, run-
ning, and standing at multiple views from individual poses
showed encouraging results with approximately 5% Bayes
error for class-committed poses (ML=8%, MAP=7%).

In future work, we plan to train and evaluate the system
with multiple actions of several people in outdoor scenes.
We are also considering the use of MHIs [13] for short-
duration action modeling. As the moment features are global

descriptors and sensitive to major occlusions, we plan to in-
vestigate local part-based feature representations. We addi-
tionally are interested in evaluating the RI results in a man-
machine comparison.
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