Tight Cocone : A Water-tight Surface Reconstructor

Tamal K. Dey
Dept. of CIS
The Ohio State University
Columbus, OH 43210, USA
tamaldey@cis.ohio-state.edu

Samrat Goswami
Dept. of CIS
The Ohio State University
Columbus, OH 43210, USA
goswami@cis.ohio-state.edu

ABSTRACT

Surface reconstruction from unorganized sample points is an important problem in computer graphics, computer aided design, medical imaging and solid modeling. Recently few algorithms have been developed that have theoretical guarantee of computing a topologically correct and geometrically close surface under certain condition on sampling density. Unfortunately, this sampling condition is not always met in practice due to noise, non-smoothness or simply due to inadequate sampling. This leads to undesired holes and other artifacts in the output surface. Certain CAD applications such as creating a prototype from a model boundary require a water-tight surface, i.e., no hole should be allowed in the surface. In this paper we describe a simple algorithm called Tight Cocone that works on an initial mesh generated by a popular surface reconstruction algorithm and fills up all holes to reconstruct a water-tight surface. In doing so, it does not introduce any extra point and produces a triangulated surface interpolating the input sample points. In support of our method we present experimental results with a number of difficult data sets.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; I.4 [Image Processing and Computer Vision]: Reconstruction, Image Representation

General Terms
Algorithms, Experimentation, Theory, Design

Keywords
Point cloud, Surface reconstruction, Voronoi diagram, Delaunay triangulation

1. INTRODUCTION

The problem of approximating a surface in three dimensions from its point samples appears in many applications of science and engineering. Various formulations of the problem are possible with different requirements on the input and output. Here we focus on the problem of computing a piecewise linear surface that approximates the original surface from which only a set of discrete sample points are given as input.

Because of its widespread application, this problem has been studied intensely in recent years. A very early paper on the problem was by Boissonnat [6] who proposed a sculpting of the Delaunay triangulation for reconstruction. A more refined sculpting strategy was designed by Edelsbrunner and Mücke [14] in their α-shape algorithm. Bajaj, Bernardini and Xu [4] used α-shapes for reconstructing scalar fields and three dimensional CAD models. The α-shapes require a uniform sampling and an appropriate choice of α according to the sampling density. Hoppe et al [18] reconstructed the surface by using the zero level set of a distance function defined by the input point sample. Curless and Levoy [11] extended this distance function approach to multiple range scans. The reconstruction quality was further improved by Turk and Levoy [20]. This approach produces nice results though the reconstructed surface may not interpolate the input data points and it requires the normal information at the sample points in the input. Bernardini et al [5] designed the ball-pivoting algorithm that also requires the normals in the input. Gopi, Krishnan and Silva [17] proposed to project the sample points with their neighbors on a plane and then lift the local two dimensional Delaunay triangulations to reconstruct the surface. Projections were also used by Kobelt and Botsch [19] where they took the advantage of the hardware.

The first algorithm that has been proposed with theoretical guarantees in reconstruction is due to Amenta, Bern and Kamvysselis [1]. This algorithm called CRUST exploits the structures of the Voronoi diagram of the input point set to reconstruct the surface. Amenta, Choi, Dey and Leekha [2] introduced the COCOON algorithm which improved CRUST both in theory and practice. Boissonnat and Caillaux [7] designed another algorithm based on natural neighbors following the development of CRUST. Funke and Ramos improved the theoretical complexity of the COCOON algorithm [15]. Recently Cohen-Steiner and Da have designed another Delaunay based surface reconstruction algorithm [10]. All these algorithms work nicely on dense data sets, but they face difficulty if the data contains undersampling. In most
cases these algorithms produces holes or other artifacts in the vicinity of the undersampling. Many applications such as CAD need water-tight surfaces so that the surface bounds a solid. Amenta, Choi and Kolluri [3] devised POWER CRUST to meet this goal. However, this algorithm introduces many extra points in the output and also does not produce a triangulated surface. Edelsbrunner [13] proposed a Morse theoretic approach to reconstruct surfaces which also produces water-tight surfaces. However, the algorithm may not recover some small features of the surface even if it is densely sampled. Along the same line Giesen and John [16] designed another algorithm based on the flow complex. This algorithm may not interpolate the sample points and introduces extra points in the output.

The purpose of this paper is to announce a simple algorithm called Tight Cocone that can reconstruct surfaces that are water-tight. The algorithm first computes a preliminary surface using Cocone which almost completes the reconstruction except at the vicinity of the undersamplings. A subsequent marking and peeling phase completes the reconstruction by filling all holes. This phase computes the output surface as the boundary of a union of Delaunay tetrahedra. This guarantees that the surface cannot have any hole though it may contain nonmanifold properties where undersampling is extreme. In achieving water-tightness Tight Cocone does not introduce any extra point and finds triangles from the Delaunay triangulation to fill up the gaps produced by Cocone.

2. PRELIMINARY RECONSTRUCTION

The input to our algorithm is a point set in three dimensions. We assume that this point set has been sampled from a compact surface \(S \subset \mathbb{R}^3 \) that has no boundary. We use a Voronoi based approach to obtain an initial approximation to \(S \) from its point sample. Amenta and Bern [1] showed that the Voronoi cells are long and thin along the direction of the normals at each sample point if the sample is sufficiently dense. Based on this important observation they pioneered the surface reconstruction algorithm called CRUST. In a subsequent work, Amenta, Choi, Dey and Leekha proposed the Cocone algorithm that improved CRUST both in theory and practice. Further improvements were carried out by Dey and Giesen [12] which include a detection of undersampling in the input data. We implemented this modified Cocone algorithm which we use to obtain a preliminary surface out of the input sample. We review this algorithm briefly below; a complete description can be found in [12].

2.1 Definitions

Voronoi diagram and its dual Delaunay triangulation constitute the main data structure in our algorithm. Let \(P \) be a finite set of points in \(\mathbb{R}^3 \). The **Voronoi cell** of \(p \in P \) is given as \(V_p = \{ x \in \mathbb{R}^3 : \forall q \in P - \{ p \}, \| x - p \| \leq \| x - q \| \} \). The sets \(V_p \) are convex polyhedra. Closed faces shared by two and three Voronoi cells are called **Voronoi facets** and **Voronoi edges** respectively. The points shared by four or more Voronoi cells are called **Voronoi vertices**. The **Voronoi diagram** \(V_P \) of \(P \) is the collection of all Voronoi cells, faces, edges and vertices. It defines a cell decomposition of \(\mathbb{R}^3 \).

The **Delaunay triangulation** \(D_P \) of a set of points \(P \) is dual to the Voronoi diagram of \(P \). The convex hull of four or more points in \(P \) defines a **Delaunay cell** if the intersection of the corresponding Voronoi cells is not empty and there exists no superset of points in \(P \) with the same property. Analogously, the convex hull of \(k \leq 3 \) points defines a \((k-1) \)-dimensional Delaunay face if the intersection of their corresponding Voronoi cells is not empty. Every point in \(P \) is called a **Delaunay vertex**. The collection of Delaunay cells and their faces defines a decomposition of the convex hull of all points in \(P \). This decomposition is a triangulation where the Delaunay cells are tetrahedra if the points are in general position.

In our case \(P \) is the input point sample of a surface \(S \subset \mathbb{R}^3 \). It turns out that the Voronoi cells are elongated along the normals to the surface \(S \) if \(P \) is sufficiently dense for \(S \). This fact is used by Amenta, Bern and Kanyvessels to estimate the normals at the sample points with poles [1].

Poles: The farthest Voronoi vertex \(p^+ \) in \(V_p \) is called the positive pole of \(p \). The negative pole of \(p \) is the farthest point \(p^- \in V_p \) from \(p \) such that the two vectors from \(p \) to \(p^+ \) and \(p^- \) make an angle more than \(\frac{\pi}{2} \). We call \(\nu_p = p^+ - p^- \), the pole vector for \(p \). If \(V_p \) is unbounded, \(p^+ \) is taken at infinity, and the direction of \(\nu_p \) is taken as the average of all directions given by unbounded Voronoi edges.

The pole vector \(\nu_p \) estimates \(n_p \), the normal to \(S \) at \(p \). Therefore, the plane passing through \(p \) with the normal as \(\nu_p \) approximates the tangent plane at \(p \). A conservative estimate of this plane is given by thickening it around \(p \). This motivates the following definition of cocone which turns out to be useful for the surface reconstruction [2, 12].

Cocone: The set \(C_p = \{ y \in V_p : \angle(y-p, \nu_p) \geq \frac{\pi}{2} \} \) is called the cocone of \(p \) where \(\angle(y-p, \nu_p) \) denotes the acute angle between the supporting lines of the vectors \(y-p \) and \(\nu_p \). In words, \(C_p \) is the complement of a double cone (clipped within \(V_p \)) centered at \(p \) with an opening angle \(\frac{\pi}{2} \) around the axis aligned with \(\nu_p \). See Figure 1 for an example of a cocone.

![Figure 1: A Voronoi cell \(V_p \) is elongated along the normal \(n_p \). The pole vector \(p^+ - p \) approximates \(n_p \). The cocone \(C_p \) is the region in \(V_p \) between the two cones at \(p \) (right).](image)

2.2 Cocone algorithm

The Cocone algorithm proceeds as follows. Each sample chooses a set of triangles from the Delaunay triangulation of the sample \(P \) whose dual Voronoi edges are intersected by the cocones defined at the sample. All such chosen triangles
over all samples are called the candidate triangles. If the sampling density is sufficiently high, these candidate triangles lie close to the original surface \(S \). Further they have normals oriented nearly in the same direction as those at its three sample vertices [2]. A subsequent manifold extraction step extracts a manifold surface out of this set of candidate triangles. This manifold is homeomorphic and geometrically close to \(S \). All these claims are theoretically proved [2].

This algorithm works nicely when the input point set \(P \) samples \(S \) densely. However, in practice the input often undersamples the surface. This undersampling may be caused by non-smoothness, inadequate sampling or noise. It is our experience that the algorithm computes many undesirable triangles near undersampled regions. The appearance of the undesirable triangles can be attributed to the fact that the samples in the undersampled regions do not have the normals reliably estimated and as a result they choose 'garbage' triangles as candidate.

In a subsequent work Dey and Giesen [12] proposed a method to detect the undersampled regions from the input point set. The algorithm which is called Boundary detects the sample points that lie in the undersampled regions. The Voronoi cells of these sample points are not long and thin along the normals to the surface. This is detected by two conditions called ratio and normal conditions respectively. The ratio condition tests the 'skininess' of the Voronoi cells while the normal condition tests if its elongation matches with those of its cocone neighbors. We refer to [12] for details.

The Cocone algorithm is modified to take advantage of the detection of sample points in the undersampled regions. It calls Boundary and then lets only those sample points to choose their candidate triangles which are not marked by Boundary. This modification removes most of the unwanted triangles near the undersampled regions creating holes in the surface. In Figure 2 we show reconstructions with this Cocone algorithm.

3. WATER-TIGHT RECONSTRUCTION

The modified Cocone algorithm detects undersampled regions and leaves holes in the surface near the vicinity of undersampling. Although this may be desirable for reconstructing surfaces with boundaries, many applications such as CAD designs require that the output surface be water-tight, i.e. a surface that bounds a solid. Formally, we define water-tight surface as a 2-complex embedded in \(\mathbb{R}^3 \) whose underlying space is same as the boundary of the closure of a 3-manifold in \(\mathbb{R}^3 \). Towards this goal we design a very simple but elegant algorithm Tight Cocone to compute water-tight surfaces from an input point sample.

The overall idea of Tight Cocone is to designate the Delaunay tetrahedra computed from the input sample as in or out according to an initial approximation of the surface and then peeling off all out tetrahedra. This leaves the in tetrahedra, the boundary of whose union is output as the water-tight surface. The output of Cocone is taken as the initial approximated surface possibly with holes and other artifacts.

Figure 2: Preliminary surface with Cocone may have holes. The triangles bordering the holes are shaded darker.
By being the boundary of the union of a set of tetrahedra, the output surface has to be water-tight. However, it is not only the water-tightness, but also the geometric proximity to the original surface that are desired for the output. For this we make some decisions in the algorithm based on the following principle.

Principle of locality: The undersampling is mostly local.

This means that Cocone computes most of the intended surface except with holes that are locally repairable. Of course, if this principle is not obeyed, we will still get a water-tight surface but it may not be close to the original one.

3.1 Marking

The Cocone algorithm as described in the previous section computes a preliminary surface possibly with holes and other artifacts at the undersampled regions. The sample points in the rest of the surface have their neighborhoods well approximated. Specifically, the set of triangles incident to these points form a topological disk. We call the points whose incident triangles form a topological disk good. The rest of the points whose incident triangles do not form a topological disc are called poor.

Definition 1. The union of triangles incident to a good point is called its Umbrella denoted as U_p.

The marking of tetrahedra walks through the Delaunay triangulation in a depth first manner using the vertex and triangle adjacencies. It maintains a stack of pairs (p, σ) where p is a good point and σ is a tetrahedron incident to p marked out. Suppose the pair (p, σ) is currently popped out from the stack. The umbrella U_p locally separates the tetrahedra incident to p into two clusters, one on each side; see Figure 3. The cluster that contains σ is marked out since σ is already marked out. The other cluster gets the marking in. This is done by initiating a local walk from σ that traverses all tetrahedra through triangle adjacency without ever crossing a triangle in U_p and marking each tetrahedron as out. The rest of the tetrahedra that are not encountered in this walk get the marking in. During this local walk in the out cluster, when a vertex q of U_p is reached through a tetrahedron σ', the pair (q, σ') is put into the stack if q is good and is not explored yet, see Figure 3.

Now we face the question of initiating the stack. For this we assume that D_p is augmented with ‘infinite’ tetrahedra that are incident to a triangle on the convex hull of P and a point at infinity. The stack is initiated with a good point on the convex hull paired with an incident infinite tetrahedron.

For most of the data in practice the surface computed by Cocone is well connected, i.e., all triangles incident to good points can be reached from any other good point via a series of triangle adjacencies. Assuming this connectivity of the preliminary surface computed by Cocone, the above procedure marks all tetrahedra that are incident to at least one good sample point. However, the tetrahedra all of whose vertices are poor points are not marked by this step. We call them poor tetrahedra.

The poor tetrahedra whose vertices lie in a single undersampled region tend to be small due to the principle of locality. We can choose to mark them either way and the peeling process later takes out or keeps them in according to their marking. In any case, the surface gets repaired in the undersampled region. For example, see Figure 4.

![Figure 3: The umbrella of p has three triangles pqr, prs and pqs. This umbrella separates the tetrahedra incident to p into two clusters, the upper cluster \{absp, asp, abpq, bqp, bsp\} and the lower cluster \{cqpr, crp, cqsp\}. Suppose the walk entered p with the pair (p, bpr). While marking all tetrahedra in the upper cluster as out, the pair (q, bqr) is entered into the stack since q is a good and unexplored point (right).](image)

![Figure 4: The four vertices marked with dark circles border a hole. The poor tetrahedron with this four vertices is marked m. The sharp tip p of the long tetrahedron is a good point which marks it out. When this tetrahedron is peeled, the triangle opposite to p fills the hole partially. The other triangle of the hole also gets into the output by a similar peeling.](image)
the marking step.

3.2 Peeling

After the marking step, a walk is initiated to peel off tetrahedra that are marked out and some others. The boundary of the union of the remaining tetrahedra form the water tight surface. This is also the surface of the union of the peeled tetrahedra, see Figure 5.

The walk maintains a stack of surface triangles that form the boundary of the union of the tetrahedra peeled so far. It is initiated with all convex hull triangles. At any generic step, a triangle, say \(t \), is popped out from the stack. One of the tetrahedra incident to \(t \) is already peeled. If the other incident tetrahedron, say \(\sigma \) is marked in, we put \(t \) in the output list. Otherwise, there are two possibilities depending on whether \(\sigma \) has been already peeled or not. If \(\sigma \) is already peeled, the triangle \(t \) separates two out tetrahedra and thus should not be part of the output. In case \(\sigma \) has not been peeled, the walk should move past \(t \) into \(\sigma \) if \(\sigma \) is not a poor tetrahedron. In this case we replace \(t \) with the other three triangles of \(\sigma \) into the stack. In case \(\sigma \) is a poor tetrahedron, the walk is allowed to move past \(t \) only if \(t \) is not the smallest triangle in \(\sigma \). This is done to protect peeling of the inner poor tetrahedra as we discussed before. Notice that if \(\sigma \) is a poor tetrahedron outside the intended surface, it will be eventually reached by the peeling process at triangles other than the smallest one. But, if \(\sigma \) is a poor tetrahedron inside, it can only be reached from outside through its smallest triangle due to the principle of locality.

The walk terminates with the surface triangles in the output list when there is no more triangle to process from the stack.

4. EXPERIMENTAL RESULTS

4.1 Examples

In Figure 7 we show the results of our implementation of Tight Cocone on some difficult data sets. In Mannequin there are undersamplings in eyes, lips and ears which produce holes. Tight Cocone closes all these holes. In particular, in the ear there is a relatively large hole since points cannot be sampled for occlusion. This hole is nicely filled. The Pig data has severe undersampling in the hoofs, ears and nose. They are mostly due to the fact that those thin and highly curved regions should have more sample points to capture the features properly. Tight Cocone fills all holes and produces a water-tight surface for this difficult data set. The machine part Connector has undersampling mainly due to non-smoothness. Sharp edges and corners cause undersampling which cannot be avoided by any finite sampling. All anomalies caused by this non-smooth regions are repaired to produce a water-tight surface. The undersampling in the highly curved regions such as the neck in Dinosaur is also gracefully handled by Tight Cocone.

The code for Tight Cocone has been released for public use. It can be downloaded from [9].

4.2 Timings

The time and space complexities of Tight Cocone are dominated by those of the three dimensional Voronoi diagram computation. Thus, for an input sample of \(n \) points, the algorithm runs in \(O(n^2) \) time and space in the worst case. However, in practice we do not observe this quadratic behavior. In Table 6 we show the breakdown of the timings of Tight Cocone for a number of data sets on a PC with 733 Mhz Pentium III CPU and 512 MB memory. The code was compiled with g++ compiler and at the 01 level of optimization. CGAL 2.3 is used for all computations. The time is broken into the three major steps of Tight Cocone; the Delaunay triangulation, the Cocone surface generation and the final postprocessing to make the surface water-tight. It is clear from the table that the Delaunay triangulation is the most time consuming step. All computations are done with filtered floating point arithmetic for numerical robustness. If we are willing to compromise the robustness, floating point arithmetic can be used which usually provides a gain of a factor of two in computing time.

<table>
<thead>
<tr>
<th>object</th>
<th># points</th>
<th>Delaunay time (sec.)</th>
<th>Cocone time (sec.)</th>
<th>Mark/peel time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cactus</td>
<td>3337</td>
<td>6.56</td>
<td>2.72</td>
<td>1.38</td>
</tr>
<tr>
<td>Pig</td>
<td>3511</td>
<td>2.82</td>
<td>2.7</td>
<td>1.47</td>
</tr>
<tr>
<td>Mechpart</td>
<td>4102</td>
<td>3.68</td>
<td>3.27</td>
<td>1.73</td>
</tr>
<tr>
<td>Earcanal</td>
<td>8459</td>
<td>16.54</td>
<td>7.16</td>
<td>3.22</td>
</tr>
<tr>
<td>Cat</td>
<td>10000</td>
<td>8.51</td>
<td>8.22</td>
<td>4</td>
</tr>
<tr>
<td>Knot</td>
<td>10000</td>
<td>10.01</td>
<td>11.18</td>
<td>5.29</td>
</tr>
<tr>
<td>Mannequin</td>
<td>12772</td>
<td>9.31</td>
<td>10.08</td>
<td>4.89</td>
</tr>
<tr>
<td>Dinosaur</td>
<td>14650</td>
<td>12.63</td>
<td>12.16</td>
<td>5.91</td>
</tr>
<tr>
<td>Fandisk</td>
<td>16475</td>
<td>16.16</td>
<td>12.44</td>
<td>6.3</td>
</tr>
<tr>
<td>Club</td>
<td>16864</td>
<td>23.12</td>
<td>13.47</td>
<td>6.34</td>
</tr>
<tr>
<td>Connector</td>
<td>26793</td>
<td>41.58</td>
<td>18.5</td>
<td>9.68</td>
</tr>
<tr>
<td>Female</td>
<td>30432</td>
<td>38.56</td>
<td>27.61</td>
<td>13.28</td>
</tr>
<tr>
<td>Oilpump</td>
<td>30936</td>
<td>28.68</td>
<td>23.92</td>
<td>11.88</td>
</tr>
<tr>
<td>Heart</td>
<td>37912</td>
<td>39.99</td>
<td>30.36</td>
<td>14.5</td>
</tr>
<tr>
<td>Horse</td>
<td>48485</td>
<td>90.24</td>
<td>42.07</td>
<td>19.45</td>
</tr>
<tr>
<td>Brevi</td>
<td>56152</td>
<td>54.39</td>
<td>41.82</td>
<td>20.28</td>
</tr>
<tr>
<td>Hand</td>
<td>74315</td>
<td>123</td>
<td>64.21</td>
<td>29.83</td>
</tr>
</tbody>
</table>

Figure 6: Time data.
Figure 7: Results of Tight Cocone. Second column shows the holes in the preliminary surface while the third column shows how they are filled.
5. CONCLUSION

We designed a simple and elegant algorithm to produce water-tight surfaces out of point samples. The algorithm guarantees water-tightness. It does not introduce any extra point to do so. The output is always a subcomplex of the Delaunay triangulation. Thus, one can use the Delaunay tetrahedra inside the water-tight surface to produce a three-dimensional triangulation of the model. Our experiments show the effectiveness and the efficiency of the algorithm on many example data sets.

In some applications the output surface needs to produce certain intended boundaries. The COCOME algorithm is designed for that purpose. Although it detects the intended boundaries, it also produces holes where undersampling happens unintentionally. Is it possible to recognize the intended boundaries while filling up other holes? The problem is ill-posed, but is there a proper formulation of the problem which may lead to an algorithm with certain reasonable assumptions on input? We plan to pursue this line of research.

6. REFERENCES