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Abstract

The binding problem refers to how sensory elements organize into perceived objects. The issue of
binding is hotly debated in recent years in neuroscience and related communities.  Much of the
debate, however, gives little attention to computational considerations – a rather curious status as
the problem is originally formulated from the computational perspective.  This article starts with
two problems considered by Rosenblatt to be the most challenging to the development of
perceptron theory 40 years ago, and argues that the main challenge is the figure-ground separation
problem, which is intrinsically related to the binding problem.  The central claim of the article is
that introducing the time dimension is essential for systematically attacking Rosenblatt’s challenge.
The temporal correlation theory as well as its special form - oscillatory correlation theory, is
discussed as an adequate representation theory to address the binding problem in neural
computation.  A computational mechanism for the oscillatory correlation theory - LEGION
dynamics - provides a solution to the Minsky-Papert connectedness problem, which is an
important example of the binding problem, and the mechanism is successfully applied to a variety
of scene segmentation tasks.  The plausibility and implication of the oscillatory correlation theory
are discussed at the physiological, perceptual, and cognitive levels.  A number of controversial
issues regarding oscillatory correlation are considered and clarified.  Finally, the time dimension is
argued to be necessary for versatile computation.

Keywords: binding, desynchronization, figure-ground separation, LEGION, oscillatory
correlation, segmentation, synchronization, temporal correlation,  time dimension, versatility. 
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1. Rosenblatt's challenge

In his classic book forty years ago, "Principles of neurodynamics," Frank Rosenblatt (1962)
summarized in the last chapter a list of problems facing the study of perceptron theory at the time.
Two problems among the list "represent the most baffling impediments to the advance of
perceptron theory" (p. 580). These are the problems of figure-ground separation and the
recognition of topological relations.  The development of the field of neural networks in the
ensuing forty years has largely validated the foresight of Rosenblatt.  In particular, major progress
has been made in the understanding of error-correction procedures for training multi-layer and
recurrent perceptrons (Rumelhart & McClelland 1986; McClelland & Rumelhart 1986; Bishop
1995; Arbib 2002). The field of neural networks has been firmly established, and has enjoyed
tremendous success both as a field of theoretical study for brain function and as a technology for
solving pattern recognition and related problems. On the other hand, progress has been extremely
limited in addressing Rosenblatt's two chief problems in the framework of perceptrons.

The figure-ground separation problem concerns how to separate a figure from its background
in a scene.  Since natural scenes generally contain multiple objects, a closely related problem is the
scene segmentation problem - the segmentation of a scene into its constituent objects.  Literally
speaking these two problems are not the same, but they are frequently treated as the same with
different emphases: one on extracting target object and another on parsing the entire scene.  As a
result, the two terms, figure-ground separation and scene segmentation, are often used
interchangeably; such is the case in Rosenblatt's book.  The recognition of topological relations
concerns how to compute various spatial relations between objects in a scene, e.g. whether object
A is inside object B or whether B is to the left of object C.  Solving this spatial recognition problem
would require a solution to figure-ground separation, and in this sense, the latter is a more basic
problem.  Both problems can be treated as major aspects of the scene analysis problem.  
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Figure 1. Network architecture of a perceptron.  The input layer is denoted by R.  Each
feature detector receives input from a specific area of R.  The response unit computes the
weighted sum of all the detectors and checks whether the sum exceeds a certain threshold.

The deficiency of perceptrons for figure-ground separation was later hit hard in a landmark
book by Minsky and Papert (1969). Through mathematical analysis, they pointed out that
perceptrons are fundamentally limited in analyzing topological patterns. To better understand their
mathematical results and perceptrons, let us give some details about perceptron theory.
Perceptrons, introduced by Rosenblatt (1958; 1962), may be viewed as classification networks.
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Figure 1 shows a typical perceptron that computes a predicate, which consists of a binary input
layer R (symbolizing retina), a layer of binary feature-detecting units, and a response unit that
represents the result of a binary classification.  A feature detector senses a specific area of R, and it
produces 1 if all of the pixels of the area are black and 0 otherwise.  The response unit is a logic
threshold unit whose input is a weighted sum of all the units in the detector layer and whose output
is 1 if the sum exceeds the threshold and 0 otherwise.  Minsky and Papert define the order of a
predicate as the smallest number k for which one can compute the predicate with feature detectors
that sense no more than k pixels of R.  A predicate is topologically invariant, or is a topological
predicate, if it is unchanged when the input figure undergoes distortion that does not alter the
connectedness or inside-outside relationship among the parts of the figure.

Minsky and Papert (1969) proved that all except one topological predicate are of infinite order.
That is, to compute such predicates requires feature detectors whose receptive fields are unbounded
in size.  One such predicate is connectedness: to tell whether an input pattern is connected or not.
This predicate serves as the cornerstone for their analysis.  The order of this predicate increases at
least as fast as |R|1/2.  What are the implications of this result?  For any fixed R, their theorem is
not about whether a perceptron exists to solve the problem.  Indeed, with a finite, discrete R, there
are a finite number of connected patterns, and one can trivially find a perceptron whose feature
detectors correspond to individual connected patterns and thus solve the problem.  However,
predicates that have unbounded order require large feature detectors relative to the size of R, and
too many of them to be computationally feasible (Minsky & Papert 1969).  For example, on a 2x2
R, the number of connected patterns is 13, and on a 3x3 R, it is 222.  The number of connected
patterns grows exponentially except for one-dimensional (1-D) R; see the Appendix for a proof.
Clearly, this way of computing the connectedness predicate is computationally intractable for all
but very small R's. In other words, their (negative) result is about the scalability or computational
complexity of perceptrons.1

The discovery of the backpropagation algorithm for training multilayer perceptrons (Rumelhart
et al. 1986)2 led to remarkable resurgence of interest in neural networks, and has widely been
heralded as having overcome the limitations of perceptrons uncovered by Minsky and Papert.  Its
ability to train multilayer networks demonstrates clearly that the backpropagation algorithm is more
powerful than the perceptron learning rule that is applicable to only simple perceptrons with one
layer of trainable weights (Figure 1 shows a simple perceptron since only the weights of the
response unit are subject to training).  However, although Minsky-Papert analysis is based on
simple perceptrons their conclusions reveal a general problem in the perceptron framework for
processing topological patterns, regardless of the learning rules employed.  The general problem,
according to their 1988 expanded edition (Minsky & Papert 1988), "had nothing to do with
learning at all; it had to do with the relationships between the perceptron's architecture and the
characters of the problems presented to it" (p. xii).  They further stated that it is a representation
problem, and "no machine can learn to recognize X unless it possesses, at least potentially, some
scheme for representing X" (p. xiii).

Can a multilayer perceptron with backpropagation training recognize topological patterns?  A
direct attempt to address figure-ground separation was made by Sejnowski and Hinton (1987)
based on a related learning algorithm - Boltzmann machine.  They demonstrated its effectiveness
on toy problems, and "its usefulness for large problems is still uncertain" (p. 703). A later study
using an extended version of the backpropagation algorithm to perform a segmentation task was
made by Mozer et al. (1992), but again, success on only toy problems was reported.  Of course,
analytical statements cannot be derived from these individual attempts, but as far as the
connectedness predicate is concerned Minsky and Papert (1988) explicitly claimed that multilayer
networks are no more powerful (p. 52).  We find no report contrary to this claim since their 1988
edition.  Further insight can be obtained by observing the architecture and training of a multilayer
perceptron.  The notion of an order may appear irrelevant for the multilayer perceptron given that
                                                
1 Their book is often credited for the downfall of neural networks in the late 1960s.
2 This article is the standard reference for the backpropagation algorithm though earlier versions had been discovered
(see any textbook on neural networks).
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hidden units typically receive input from all the input units.  At issue, however, are how many
hidden units are required and how long is the training process. Because of the infinite order of the
predicate and the exponential increase of the number of connected patterns, for R not too small, the
number of hidden units required to represent a solution would be prohibitively large.  Also, a
practical training process can use only a tiny fraction of all possible training samples, and it is hard
to expect example-based learning procedures, such as backpropagation, to generalize to
exponentially more unseen samples.  Hence, the Minsky and Papert claim is a reasonable
projection, and it is premature to regard that the limitations of simple perceptrons no longer exist
for their multilayer offsprings.

To solve the figure-ground separation problem in the general form, the solution must be valid
regardless of the shape, position, size, orientation, etc., of each object on the retina; that is, the
solution must be invariant to topological transformations.   In a sense, it presupposes a solution to
the connectedness problem.  As we shall see later, the ability to segment connected components of
an image plus some counting mechanism yields a solution to detect the connectedness predicate.
So, the limitations of perceptrons in dealing with topological patterns can be treated as a special
case of Rosenblatt's challenge.  In other words, besides the mathematical rigor of Minsky-Papert
analysis, the major findings of the book should have been hardly surprising to Rosenblatt.

Modern neurocomputing research has made important advances in understanding generalization
characteristics of multilayer networks and their statistical underpinnings, which in turn have led to
more effective training algorithms and better generalization capability for certain classes of
problems (Bishop 1995; Arbib 2002). However, mainstream neural networks are preoccupied with
analyzing statistical properties of individual patterns, and have all but shunned away from
Rosenblatt's challenge.  But the challenge remains a considerable cloud. For example, Hinton and
Sejnowski (1999) recently acknowledged that "a major challenge for unsupervised learning is to
get a system of this general type to learn appropriate representations for images" (p. xiv).

The purpose of this article is to argue that introducing the dimension of time is essential for a
systematic attack on Rosenblatt's challenge.  I will first argue in Section 2 that Rosenblatt's
challenge is intrinsically related to the binding problem, and a key representation to resolving the
binding problem lies in the temporal correlation theory.  In Section 3, I introduce a special form of
the temporal correlation theory: oscillatory correlation, which is primarily motivated by
computational/mathematical and biological considerations.  In the framework of oscillatory
correlation, I describe LEGION3 dynamics which converts the temporal representation into a
computational mechanism.  As a rather straightforward application, LEGION yields a solution to
the connectedness problem.  In Section 4, I review a number of recent studies that apply LEGION
networks to visual and auditory scene analysis tasks, and these results demonstrate the
computational utility of the oscillatory correlation theory.  Section 5 discusses the biological
relevance and implications of the theory; both neurobiological and psychophysical studies will be
discussed.  Section 6 is devoted to a discussion of a number of issues, including some that are
likely contentious, such as the role of attention in binding and internal time versus external time (or
oscillator time versus physical time).  Concluding remarks are given in Section 7, whose theme is
that versatile neural computation requires the time dimension.

2. Binding problem

A fundamental attribute of perception is the ability to group elements of a perceived scene into
coherent objects, which has been extensively studied in perceptual psychology under the title of
perceptual organization or perceptual grouping (Palmer 1999).  This ability is remarkable
considering the fact that the input to perceptual organization is a retinal image and the organization
takes place rapidly and effortlessly.  Despite centuries of research from multiple disciplines, how
perceptual organization is accomplished in the brain remains a mystery.  Observing that visual

                                                
3 LEGION stands for Locally Excitatory Globally Inhibitory Oscillator Networks (Wang and Terman 1995).
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features, such as color, orientation, motion, and depth, are first extracted by feature-detecting
neurons in different areas of the visual system, a related question is how these initial responses are
bound together in the brain to form perceived objects?  This is called the binding problem.  At the
heart of the problem is the fact that the sensory input contains multiple objects, which makes it
necessary to resolve the issue of which features should bind with which others.  A related
formulation is often illustrated using two objects of different shapes, say a triangle and a square,
and different locations, say top and bottom, arranged in such a way that the triangle is at the top
and the square is at the bottom (a layout discussed by Rosenblatt 1962;4 see von der Malsburg
1999).  This layout is shown in Figure 2. Given feature detectors for triangle, square, top, and
bottom, how can the perceptual system bind locations and shapes in order to correctly perceive that
the triangle is at the top (binding "top" and "triangle") and the square is at the bottom (binding
"bottom" and "square"), rather than the other way around: the square is at the top and the triangle is
at the bottom?  What makes this formulation attractive is that people can make wrong feature
conjunctions, producing "illusory conjunctions", when stimuli are presented very briefly
(Treisman & Schmidt 1982; Treisman 1999).  A potential confusion for this popular formulation
(see Roskies 1999) is that object-level attributes such as shape and size are undefined before
objects are perceived; that is, they are not defined before the more fundamental problem of figure-
ground separation is solved.5 For this reason, I will refer to the binding of local features to form
perceived objects when talking about the binding problem.

R

?

Figure 2. Binding problem in a perceptron with four detectors for triangle, square, top, and
bottom.  The response unit needs to tell whether the triangle is on top (and the square at
bottom) or the square is on top (and the triangle at bottom).

How does the brain resolve the binding problem?  Concerned with the difficulty for visual
shape recognition that is created by multiple, simultaneously present objects, Milner (1974)
suggested that different objects be separated in time, leading to synchronization of firing activity
within the cells activated by the same object.  Later, in one of most cited technical reports, von der
Malsburg (1981) also suggested that the time structure of neural signals provide the neural basis
for his correlation theory, which directly and systematically addresses the binding (integration)
problem. In a subsequent study, von der Malsburg and Schneider (1986) gave a concrete
demonstration of the temporal correlation theory for the task of segregating two auditory inputs
based on their distinct onset times - an example of the cocktail-party problem (I will come back to

                                                
4 Note that Rosenblatt himself did not formulate this as a binding problem.
5 Treisman in formulating her Feature Integration Theory (Treisman 1986) also failed to make this distinction.
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this problem in Section 4.)  This is an important paper because it, for the first time, addresses a
figure-ground separation task using neural oscillators as building blocks, and synchrony and
desynchrony among neural oscillators to represent a solution to a binding problem.  

We should note that the temporal correlation theory is a theory of representation, concerned
with how neurons triggered by different objects are represented in a neural network, not a theory
of computation.  It does not by itself address how multiple patterns lead to multiple cell assemblies
with different time structures.  This is the key issue to be taken up in Section 3.

The main alternative to the temporal correlation theory is hierarchical coding.  The central idea
is to rely on individual neurons arranged in some cortical hierarchy to integrate information so that
cells higher in the hierarchy respond to larger and more specialized parts of an object. Eventually,
this leads to the scenario that individual objects are represented by individual neurons, and for this
reason hierarchical coding is also known as the grandmother or cardinal cell representation6 -
derived from Cajal's neuron doctrine (Barlow 1972).  In the following I will limit my discussion to
computational considerations; see Gray (1999) for biological evidence for and against the
hierarchical representation.  There are several computational problems with this representation.
First, to be able to bind features that belong to the same object, object representation must already
exist in the brain and image analysis is thus limited to recognition of familiar objects in the image.
In addition to the issue of how individual representations are created in the first place, hierarchical
coding would not allow perceiving novel objects, an ability the perceptual system clearly possesses
(Treisman 1999).  Second, perceiving an object, with all its vivid details such as location, shape,
color distribution, orientation, size, and many other dimensions, is different from simply
identifying that the object is, say, a dog (Kahneman et al. 1992; Treisman 1999). This creates the
following dilemma.  If the representation explicitly encodes and prestores all such details in order
to deal with all possible scenarios, a vast majority of which never occurs to an observer in a
lifetime, it would require prohibitively many cells.  If the representation stays above these details,
the binding problem recurs when facing an image with multiple objects: how to make sure that only
a relevant subset of image elements are fed to a recognizer?  One possible way out of this dilemma
is perform top-down search starting from stored templates, one by one. This could be
computationally feasible if the number of patterns and their possible variations are limited (see
Sect. 6.5 for further discussion), but it would considerably limit the scope of image analysis.

The binding problem in the visual domain is a subject of intense debate that has captured the
interest of researchers from many disciplines.  Recently journal Neuron published a special issue
(vol. 24, No. 1, 1999) discussing the binding problem and it featured articles by leading
researchers both for and against the two binding hypotheses discussed above.

The above discussions should make it clear that, from the standpoint of the temporal correlation
theory, the figure-ground separation problem is basically the same as the binding problem and the
theory is primarily motivated by the need to address the problem. On the other hand, we note that
the hierarchical coding mechanism is not much different from the perceptron framework as
discussed by Rosenblatt (1962), where a variety of architectures, including multilayer and
recurrent ones, are studied.  The challenge facing Rosenblatt, discussed in the previous section,
should underscore limitations of hierarchical coding.  

3. Oscillatory correlation theory and LEGION dynamics

To make progress one must study concrete mechanisms.  We focus on a special form of
temporal correlation, which we call oscillatory correlation (Terman & Wang 1995), whereby
feature detectors are represented by oscillators and binding is represented by synchrony within an
assembly of oscillators and desynchrony between different assemblies.  This representation is
illustrated in Figure 3.  The oscillatory correlation proposal is motivated by three considerations.

                                                
6 The term "grandmother cell" intuitively captures the claim implied by hierarchical coding that cells must exist that
code one's grandmother.
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First, the activity of an oscillator well describes that of a neuron or a local group of neurons.
Second, oscillatory correlation is consistent with coherent oscillations in the brain. Third, the use
of oscillators facilitates a good deal the computation of synchrony and desynchrony.  Two remarks
about the oscillatory correlation theory are in order.  First, temporal correlation need not be
oscillatory correlation and there can be other ways to encode different temporal structures.  In
practice, however, few other alternatives have been seriously investigated.  Second, oscillators
need not always produce periodic activity, but they do so only when they reach steady behavior.7
Thus, if the external input to an oscillator changes with time, the oscillator activity may not exhibit
periodic behavior although it is still mathematically an oscillator.

As we noted earlier, the oscillatory correlation theory is a representation, not a mechanism.
How to compute required synchrony and desynchrony when facing an input scene is an issue
largely separate from the representation, and it is obviously a critical one in order to solve the
binding problem.  This limited scope of the correlation theory for addressing the binding problem
has been repeatedly criticized by its opponents (Shadlen & Movshon 1999; Ghose & Maunsell
1999).  What they did not realize, however, is that the theory has already motivated major progress
in addressing this very issue.

The discovery of coherent oscillations in the cat visual cortex in the late 1980s (Eckhorn et al.
1988; Gray et al. 1989) immediately triggered a lot of computational work aimed at either modeling
the biological phenomenon or attacking the binding problem in neural computation.  Most of the
early models use long-range connections to achieve synchronization in an assembly of oscillators
(for a comprehensive list of references see Terman & Wang 1995).  However, long-range
connections lead to the problem of indiscriminant segmentation: oscillators would synchronize no
matter whether they are activated by the same object or different ones (Sporns et al. 1991; Wang
1993b). This is illustrated in Figure 4, where three objects comprise an input scene.  It is
immediately clear from the figure that the three objects are separated on the basis of connectedness,
but globally connected networks cannot encode topology and thus fail to separate the different
patterns in Figure 4.  To accomplish this elementary task, one needs to use locally connected
networks.

In general, to provide a computational mechanism for the oscillatory correlation theory, three
key functions must be achieved: (1) The mechanism must be capable of synchronizing a locally
coupled assembly of oscillators; (2) it must be capable of desynchronizing different assemblies of
oscillators that are activated by different objects; (3) both synchrony and desynchrony must occur
rapidly.  These requirements became major stumbling blocks for many computational attempts
subsequent to the experimental discovery of synchronous oscillations.  A major reason is a
analytical result by Mermin and Wagner (1966) from theoretical physics, which states that
harmonic oscillators cannot synchronize with local connections (see Terman & Wang 1995, for
more discussion).  This result was not known to many in neural networks, and harmonic
oscillators, due to their simplicity plus a prevailing belief that all oscillations could be somewhere
reduced to harmonic oscillators, were widely used for achieving oscillatory correlation.  This also
explains why such models require all-to-all connectivity to achieve synchrony.  Fortunately,
different kinds of oscillators do yield qualitatively different behaviors in a network and the
generality of harmonical oscillators is bounded (Somers & Kopell 1993; Wang 1993a).  Further
investigation led to the use of relaxation oscillators, which, unlike harmonic oscillators, exhibit two
times scales.

Building on the prior work on coupled relaxation oscillators by Somers and Kopell (1993),
Terman and Wang (1995; Wang & Terman 1995) proposed the LEGION architecture that achieves
all of the three requirements.

                                                
7 This description of oscillations excludes so-called strange oscillators, which are really chaotic units.
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Figure 3. Oscillatory correlation representation.  Each object (a cup or a pair of glasses) is
represented by an assembly of feature detectors that are oscillators.  Oscillators within an
assembly synchronize their activity and different assemblies desynchronize.
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Figure 4. A visual scene with three caricature objects.

3.1 LEGION architecture

A LEGION network consists of three parts: (1) Its basic unit is a relaxation oscillator with two time
scales; (2) oscillators are coupled with local excitation, which leads to rapid synchronization within
a group corresponding to one pattern; (3) a global inhibitor desynchronizes different groups of
oscillators.

Formally, a single oscillator i in LEGION is defined as a reciprocally connected pair of
excitatory variable xi and inhibitory variable yi:

ẋi  = 3xi – xi
3 + 2 – yi + Ii + Si + ρ (1a)

ẏi = ε (α (1 + tanh(xi /β)) – yi) (1b)

Here, Ii denotes external stimulation to the oscillator, Si the overall coupling from the rest of the

network, and ρ a noise term.  The parameter ε is a small positive number.  When coupling and
noise are ignored and I is set to a constant, (1) defines a typical relaxation oscillator with two time
scale induced by ε.  The x-nullcline (i.e. ẋi  = 0) is a cubic function and the y-nullcline is a sigmoid
function.  

If I > 0, the two nullclines intersect only at a point along the middle branch of the cubic, and in
this case the oscillator produces a stable limit cycle, illustrated in Figure 5A.  The oscillator is
called enabled.  The limit cycle alternates between a phase of relatively high x values and a phase of
relatively low x values, called the active and silent phase respectively.  Within each of the two
phases the oscillator exhibits near steady-state behavior, and its trajectory in the silent phase
corresponds to the left branch (LB) of the cubic and its trajectory in the active phase corresponds to
the right branch (RB).  In contrast to the behavior within each phase, the transition between the
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Figure 5. Single relaxation oscillator. A . The oscillator is enabled. In this case it produces a
limit cycle, shown as the bold curve.  The arrows indicate the direction of motion, and double
arrows indicate jumping. B. The oscillator is excitable.  In this case, it approaches the stable
fixed point.  C. The x activity of the oscillator with respect to time.
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two phases takes place rapidly, and it is referred to as jumping.  Such alternations between rapid
change and slow change are characteristic of relaxation oscillations (van der Pol 1926). The
parameter α determines the relative durations during which the limit cycle spends in the two phases

- a larger α produces a relatively shorter active phase.  If I < 0, the two nullclines of (1) intersect at
a stable fixed point on LB of the cubic (see Figure 5B).  In this case no oscillation occurs, and the
oscillator is called excitable.   Obviously, whether an oscillator is enabled or excitable depends on
external stimulation.  Hence, oscillations in (1) are stimulus-dependent.  

The oscillator defined in (1) may be interpreted either as a model of action potential generation,
where x represents the membrane potential of a neuron and y represents the level of activation of
ion channels, or oscillating bursts of neuronal spikes where x represents the envelope of the
bursts.  Figure 5C shows a typical trace of x activity, akin to a spike train.  In fact, Equation (1) is
dynamically very similar to standard neuronal models, including the FitzHugh-Nagumo equations
(FitzHugh 1961; Nagumo et al. 1962) and Morris-Lecar model (Morris & Lecar 1981).  All of
these models can be viewed as simplifications of the classic Hodgkin-Huxley equations (Hodgkin
& Huxley 1952).

For the simplest form of a 2-D LEGION network, an oscillator is excitatorily coupled with its
four nearest-neighbors, and Fig. 6 shows the network architecture.  The coupling term Si in (1) is
then given by

Si = 
k N i∈

∑
( )

Wik H(xk – θx) – Wz H(z – θz)     (2)

where H stands for the Heaviside step function, Wik is the connection weight from oscillator k to i ,

and N(i) is the set of four immediate neighbors of i.  Both θx and θz are thresholds, and θx is
chosen between LB and RB in the x dimension.  Following Wang (1995), dynamic normalization
is typically used to ensure that each oscillator has equal overall weights of dynamic connections,
WT, from its neighborhood.

......

.
..

.
.
.

......
......

......
......

......

Global Inhibitor

Figure 6. LEGION architecture. An oscillator is indicated by an open circle on the 2-D
network which has four nearest-neighbor coupling. The global inhibitor receives input from
and inhibits all the oscillators.
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Finally, Wz in (2) is the weight of inhibition from the global inhibitor z, defined as

ż  = φ (σ∞ – z)                       (3)

Here, φ is a parameter, and σ∞ = 1 if xi ≥ θz for at least one oscillator i and σ∞ = 0 otherwise.  If

σ∞ equals 1, z → 1.
The system (1)-(3) has been extensively analyzed by Terman and Wang (1995).  Let a pattern

be a connected region.  With ε sufficiently small, a LEGION network exhibits the mechanism of
selective gating, whereby an enabled oscillator jumping up to the active phase rapidly recruits the
oscillators stimulated by the same pattern, while preventing others from jumping up.  They proved
that, due to selective gating, the network rapidly achieves both synchronization within each
oscillator assembly and desynchronization between different assemblies. Desynchronization
between two assemblies means that they are never active (on RB) simultaneously.  This dynamics
will be illustrated in Section 3.3 when we discuss a solution to the connectedness problem.  In
addition, the overall time the system takes to achieve both synchronization and desynchronization
is no greater than m cycles of oscillations, where m is the number of patterns in the input image.
See Wang (1999b) for a tutorial exposition of the selective gating mechanism and other related
properties of the relaxation oscillators and their networks.  In short, LEGION dynamics has met
the three requirements for a computational mechanism of the oscillatory correlation theory.

3.2 Oscillation period and segmentation capacity

After a network of relaxation oscillators reaches stable limit cycles, it has the property that the
oscillation period τ depends only on the parameters of a single oscillator.  In the singular limit ε →
0, τ has been calculated by Linsay and Wang (1998),

τ τ τ α
α

= + = + + −
− +LB RB

T

T

I

I

I

I
ln( ) ln( )

4 2
2 4

(4)

where τLB denotes the time spent on LB, and τRB on RB. IT denotes the total input to an oscillator,

and it equals I + WT – Wz, where I is the level of external input to an enabled oscillator.

For a fixed set of parameters, both τLB and τRB are fixed; in particular, they do not vary as the
number of objects on an input image increases.  Given that each assembly stays in the active phase
for the period of τRB, this property naturally leads to the fact that LEGION can segment only a
limited number of patterns.  This number is called the segmentation capacity (Wang & Terman
1997), and it corresponds to the ratio of τ to τRB.  For typical parameter values, the capacity is
about 5 to 7.  Due to nonlinearity and intrinsic noise it becomes increasingly difficult to find
parameter values that can robustly support a much larger capacity.  

What happens if the number of patterns in an input image exceeds the segmentation capacity?
The system then separates the entire image into as many segments as the capacity.  In this case,
each segment may either correspond to a single pattern or multiple ones.

3.3 A solution to the connectedness problem

As a concrete application of the LEGION dynamics described above, we now describe a
solution to the connectedness problem (Wang 2000).  Before explaining how to compute the
predicate, we show the response of a two-dimensional LEGION network to two binary images:
one connected and one disconnected.  The size of the network is 30x30.  The connected image is a
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Figure 7. A. A connected cup image is presented to a 30x30 LEGION network.  B. A
snapshot at the beginning of system evolution.  C. A subsequent snapshot taken shortly
afterwards.  D. A disconnected image with three patterns forming the word "CUP," is
presented to the same network.  E. A snapshot at the beginning of system evolution.  F.-H .
Subsequent snapshots taken shortly after the system starts.   The parameter values are: ε =
0.02, α  = 6.0, β = 0.1, ρ = 0.02, θx = -0.5, θz = 0.1, φ = 3.0, Wz = 1.0, and WT = 8.0 (weights
are identical before dynamic normalization).  I = 0.2 for an enabled oscillator and I  = -0.02
otherwise.
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cup figure shown in Fig. 7A, while the disconnected one is the word "CUP" shown in Fig. 7D.
The differential equations in (1)-(3) are solved using the fourth-order Runge-Kutta method.  To
indicate that the network has no binding preference at the beginning, we randomize the phase of
each oscillator, as illustrated in Fig. 7B. In the figure, the diameter of a circle corresponds to the x
activity of the respective oscillator. Fig 7C shows a snapshot of network activity shortly after the
beginning.  All the oscillators corresponding to the cup are synchronized, while the remaining ones
are excitable.  Figs. 7E-H shows the network response to "CUP", where Fig. 7E indicates the
random initial conditions, and Figs. 7F-H show subsequent snapshots taken shortly afterwards.
The effects of synchrony and desynchrony are clearly shown in the display, and the successive
"popout" of the three segments continues until the input image is withdrawn.

To show the entire process of synchronization and desynchronization, Fig. 8A depicts the
temporal activity of all the stimulated oscillators for the connected cup image, where unstimulated
oscillators are omitted since they do not oscillate or are excitable.  The oscillator activity
corresponding to each connected pattern is combined in the display.  Therefore it appears like a
single oscillator when the assembly of oscillators representing the pattern are in synchrony.  The
upper panel shows the activity of the assembly representing the cup, and the middle one shows that
of the global inhibitor.  Synchrony occurs in the first oscillation period.  The situation for the
disconnected "CUP" is shown in Fig. 8B, where the upper three traces show the assembly
activities corresponding to the three patterns.  Fig. 8B shows that synchrony within each assembly
and desynchrony between different ones are both achieved in the first two periods.  

As illustrated in the above simulations, after a few oscillation cycles all the oscillators in one
assembly, i.e. corresponding to one connected pattern, are synchronized whereas different
assemblies are desynchronized.  Furthermore, when an assembly jumps to the active phase the
global inhibitor is triggered, and this happens as many times within an oscillation period as is the
number of patterns in the input image.  Thus, how many patterns are in the input image can be
revealed by comparing the oscillation frequency of any enabled oscillator and the frequency of the
global inhibitor. If they are the same this indicates that the input image contains one pattern, and
thus the figure is connected.  Otherwise, the input image contains more than one pattern and
therefore the figure is disconnected.  The accumulated activity of the global inhibitor over an

oscillation period τ is zdtT
T

−∫ τ , where T denotes the current time.  The corresponding average

accumulated activity of all the enabled oscillators is given H x dt H Ii xT
T

i
i

i
( ) ( )−−∫∑ ∑θτ , where

the denominator indicates the number of the enabled oscillators.  The connectedness predicate is
then given by (Wang 2000)

zdtT −τ
T∫

H(xi − θx )dtT −τ
T∫

i
∑

H(Ii )
i
∑
















 < θ (5)

The LHS (left-hand-side) of (5) gives the number of the patterns in the input image. Thus, 2 >
θ > 1.  In reality, with ε > 0 and system noise, synchrony within each pattern is not perfect (see
Fig. 8); the active phase of an assembly, which directly triggers the global inhibitor, is slightly
longer than that of a single oscillator within the assembly.  Thus, θ should be chosen somewhat
greater than 1, but certainly less than 2.  

The LHS value of (5) for the two cases in Figure 8 is given in the two bottom traces of Fig. 8A
and Fig. 8B, respectively.  According to (4), τ ≈ 5.27 for the parameter values used in the

simulations.  A threshold θ = 1.6 is used in Fig. 8.  The figure shows that, beyond a short
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Figure 8. Temporal activity of every enabled oscillator (from Wang 2000). A.  Result for the
connected cup image.  B. Result for the disconnected "CUP" image.  In both A  and B, the
upper traces show the combined x activities of the oscillator assemblies indicated by their
respective labels, the next-to-bottom trace the activity of the global inhibitor, and the bottom
one the temporal activity of the RHS of (5) together with θ.
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beginning duration that corresponds to the synchronization and desynchronization process, (5)
correctly computes the connectedness predicate.

The situation where the number of patterns on an image is greater than the segmentation
capacity presents no difficulty.  For any LEGION network with a capacity greater than 1, the
predicate in (5) is not affected when numerous patterns appear in the input, because it is an
assertion of whether the figure contains just one pattern or not. As discussed in Sect. 3.2, the
LEGION network separates the image into as many segments as the capacity when it is exceeded
by the number of patterns.  This analysis, together with the result on the speed of LEGION
segmentation (see Sect. 3.1) implies that the system takes at most as many cycles as the capacity to
correctly detect connectedness, no matter how numerous input patterns are on an image.

The above solution to the connectedness problem is given in the most general form, regardless
of the shape, size, orientation, position, etc., of each pattern, or the arrangement of various
patterns in a picture; it works for objects with (see Fig. 7A) or without holes.  The solution is
analytically established, and the two key aspects contributing to the solution are recurrent LEGION
architecture and the oscillatory correlation representation.  

4. Towards a solution to the scene analysis problem

The oscillatory correlation theory and the LEGION mechanism together provide a general
framework for addressing the scene analysis problem, which remains one of the most challenging
problems in machine perception (Duda et al. 2001, p. 10).  To deal with real-world scenes that are
considerably more complex than binary images, connection weights between oscillators need to
encode some measure of similarity between the corresponding scene elements.  What determines
the similarity between local sensory elements?  In the visual domain, this has been systematically
studied in Gestalt psychology (or Gestalt grouping, see Wertheimer 1923; Koffka 1935).  The
following is a list of major grouping principles that include both classical and new ones (Palmer
1999):

• Proximity. Elements that lie close in space tend to group.
• Similarity. Elements that have similar attributes, such as luminance, color, depth, or texture,

tend to group.
• Common fate. Elements that move coherently (common motion) tend to group.  We note that

this may be regarded as an instance of similarity, and it is listed separately to emphasize visual
dynamics.

• Good continuity. A set of elements that form smooth continuations of each other tend to
group.

• Connectedness and common region. Connected elements tend to group. Similarly, elements
that lie inside the same connected region tend to group.

• Familiarity.  A set of elements that belong to the same familiar pattern tend to group.
Many of the principles are directly related to the emphasis of LEGION on local connectivity.

In the case of real images, to apply grouping principles generally requires a separate process that
extracts local features, which may simply be pixel values for intensity images or statistical features
that characterize a textural pattern.  In this section, we show that, in conjunction with feature
extraction, LEGION networks can effectively perform challenging scene analysis tasks.

Before describing individual tasks, let us summarize the basic approach to scene segmentation.
After a scene is presented, feature extraction first takes place, and extracted features form the basis
for determining connection weights between oscillators.  The oscillator network then evolves on its
own.  After a few oscillation cycles required for the synchronization and desynchronization
process, assemblies that alternately jump to the active phase represent resulting segments.
Different segments emerge from the network at different times, and it is segmentation in time that
distinguishes the LEGION approach from others. In a broader context, this way of addressing the
scene segmentation problem represents a concrete investigation of the dynamical approach to
cognition (van Gelder & Port 1995; van Gelder 1998).
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4.1 Image segmentation

Two issues immediately arise when handling real images: noise on an image and computing
time required for integrating a large oscillator network. Noise can lead to many fragments which,
in the presence of a limited segmentation capacity, can deteriorate the result of LEGION
segmentation.  To address this problem of fragmentation, Wang and Terman (1997) introduced a
lateral potential for each oscillator, which allows the network to distinguish between major blocks
and noisy fragments. The basic idea is that a major block must contain at least one oscillator,
denoted as a leader, which lies at the center of a large homogeneous region. Such an oscillator
receives large lateral excitation from its neighborhood, and thus its lateral potential is high. A noisy
fragment does not contain a leader.  The collection of all fragments is called the background.  To
alleviate the computational burden of integrating a large oscillator network, they abstracted an
algorithm that follows major steps in the numerical simulation of LEGION dynamics, such as two
time scales, jumping, and spread of activation.   The resulting algorithm also removes the
segmentation capacity.  In their system for segmenting real images, each oscillator is connected to
its 8-nearest neighbors, and the connection weight between two neighboring oscillators i and j is

set proportional to 1 1/( )+ +I Ii j , where Ii and Ij indicate the corresponding pixel values.  The key

parameter for segmentation is the level of global inhibition: Wz (see (2)).  Larger values of Wz
produce more and smaller segments.  Figure 9B shows a typical result for an aerial image in Fig.
9A.  The entire image is segmented into 23 regions, each of which corresponds to a different gray
level in the figure, which indicates the phases of oscillators. In the simulation, different segments
rapidly pop out from the image in time, as similarly shown in Figure 8. As can be seen from
Figure 9B, most of the major regions are correctly segmented. The black scattered regions in the
figure represent the background that remains inactive. Due to the use of lateral potentials, all these
tiny regions are put to the background.

A B

Figure 9. Intensity image segmentation (from Wang & Terman 1997).  A . An intensity
image with 160x160 pixels.  B. Result of LEGION segmentation.  Each segment corresponds
to a distinct gray level, and the background corresponds to the black areas.

To further reduce sensitivity to noise on an image while preserving important features, Chen et
al. (2000) proposed the idea of adapting dynamic weights to perform feature-preserving smoothing
before LEGION segmentation. Their weight adaptation method is insensitive to termination times -
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a common problem in various smoothing techniques in image processing.  Moreover, they
proposed to employ a logarithmic coupling term, which can be written as (cf. (2))

S

W H x

H x
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− +
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1
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For a variety of large-scale aerial images from the United States Geological Survey (USGS), the
resulting algorithm achieves very good segmentation results and performs better than other recent
image processing algorithms, including nonlinear smoothing and multi-scale segmentation  (Chen
et al. 2000; Liu et al. 2001).  Figure 10 gives two examples of extracting hydrographic objects
from USGS satellite images.  The original images containing water bodies are shown in the top
row of Figure 10.  The middle row shows the corresponding extraction results, where the water
bodies are marked as white and superimposed on the original images.  The bottom row provides
the corresponding USGS 1:24,000 maps.  A careful comparison between the extracted
waterbodies and the maps indicate that the former portray the images even better, because
stationary maps do not reflect well the changing nature of geography.

Common motion, or common fate, is another major grouping cue as we discussed earlier.
Cesmeli and Wang (2000) applied LEGION to motion-based segmentation that considers motion
as well as intensity for analyzing image sequences. In their system, two pathways perform an
initial optic flow estimation and intensity-based segmentation in parallel.  A subsequent network
combines the two to refine local motion estimates.  Motion analysis and intensity analysis
complement each other since the former tends to be reliable in inhomogeneous, textured regions
while the latter is most effective in homogeneous regions.  The use of LEGION for segmentation
allows for multiple motions at the same location, as in the case of motion transparency.  The
resulting system significantly reduces erroneous motion estimates and improves boundary
localization.  A typical example is given in Figure 11. A frame of a motion sequence is shown in
Fig. 11A, where a motorcycle rider jumps to a dry canal with his motorcycle while the camera is
tracking him. Due to the camera motion, the rider and his motorcycle have a downward motion
with a small rightward component and the image background has an upright diagonal motion.
Figure 11B shows the estimated optic flow after integrating motion and brightness analyses, and it
is largely correct.  The rider with his motorcycle is then segmented from the image background as
depicted in Figure 11C.  Their oscillator model has been favorably compared with a number of
algorithms including the one by Black and Anandan (1996) based on robust statistics.

Other efforts include segmentation of range and texture images (Liu & Wang 1999; Cesmeli &
Wang 2001), and contour extraction (Yen & Finkel 1998; Horn & Opher 1999).  A recent study
performs data clustering via synchrony and desynchrony in a network of integrate-and-fire
oscillators (Rhouma & Frigui 2001).

4.2 Object selection

A classic topic in neural networks is neural competition.  Winner-take-all (WTA) networks
have been extensively studied (Didday 1970; Grossberg 1976; Amari & Arbib 1977; Rumelhart &
Zipser 1986; Ermentrout 1992). WTA dynamics is based on global inhibition, either in the form of
a global inhibitor or mutual inhibitory connections, and produces a winner that has the highest
input. Such competitive dynamics has been applied to many tasks, and has played a major role in
modeling selective visual attention (Koch & Ullman 1985; Niebur & Koch 1998).  In WTA,
individual neurons compete with each other, which corresponds to local representations.  For
perceptual processing, however, experimental data suggest that objects act as wholes in
competition (Desimone & Duncan 1995; Nakayama et al. 1995; Driver & Baylis 1998; Wang et al.
2001).  But, in order to capture object-level competition, one must address the binding issue.   
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Figure 10. Extraction of hydrographic objects (from Chen et al. 2000).  The top row shows
two satellite images.  The size of the left image is 670x606 and that of the right one is
640x606.  The middle row shows the corresponding extraction results, where extracted
objects are marked as white.  The bottom row shows the corresponding topographic maps.
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A    B        C

          

Figure 11. Motion segmentation (from Cesmeli & Wang 2000).  A . A frame of a motion
sequence. B. Estimated optic flow.  C. Result of segmentation.

Exploiting the LEGION mechanism for binding and slow inhibition, we have proposed an
architecture for object selection (Wang 1999a).  The selection network realizes a concrete form of
object-level competition: size-based competition.  In other words, in an input scene with many
objects (patterns), the network attempts to select the largest one.  The basic idea is that after
oscillating assemblies are formed, competition between assemblies takes place in time.  When an
assembly jumps to the active phase, it leaves an inhibitory trace via a slow inhibitor, which can be
overcome only by larger assemblies. An analysis on the model shows that after a number of
oscillation cycles, the largest assembly will be the only one that oscillates, while all the others are
suppressed.  The system can be adjusted to select several largest objects, which then alternate in
time.  Figure 12 shows the result of selecting the most salient object in an intensity image.  The
original image (Fig. 12A) is first processed by a LEGION network, which yields a number of
major segments (Fig. 12B). The selection network then extracts the largest segment – the cortex
(Fig. 12C).

We stress that the saliency in our selection model is an object-level property, whereas it is a
local, location-specific property when used in a saliency map (Koch & Ullman 1985; Niebur &
Koch 1998). Our model is compatible with object-based theories of visual attention, while WTA
models are compatible with location-based theories; see Pashler (1998) and Parasuraman (1998)
for detailed description of these two contrasting theories of visual attention. We will come back to
the issue of attention in Sect. 6.

4.3 Speech segregation

Similar to the visual domain, a listener in an auditory environment is exposed to acoustic energy
from different sources. To understand the auditory environment, the listener must first disentangle
the acoustic wave reaching the ears. This process is referred to as auditory scene analysis
(Bregman 1990).  According to Bregman (1990), auditory scene analysis takes place in two
stages. In the first stage, the acoustic mixture reaching the ears is decomposed into a collection of
sensory elements. Second, elements that are likely to have arisen from the same source are grouped
to form a stream that is a perceptual representation of an auditory event. Important cues for
auditory grouping include proximity in frequency and time, smooth temporal transition, onset and
offset coincidence, and common location.
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A B

   

C

   

Figure 12. Object selection (from Wang 1999a). A . An MRI image with 257x257 pixels. B.
Result of LEGION segmentation.  C. Result of the selection network, which extracts the
largest object.
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Wang and Brown (1999) studied the speech segregation problem: separating target speech
from its acoustic interference.  Echoing Bregman’s two-stage notion, their model consists of a
stage of computing segments from an input scene, which is followed by a stage that groups
segments into a target speech stream and a background.  Segment formation is based on temporal
continuity and cross-channel correlation between filter responses of adjacent auditory channels.
Grouping is based the global pitch computed in each 20-ms time frame.  Segment formation is
performed by a LEGION network, and grouping is carried out by a laterally connected network of
relaxation oscillators.  A systematic evaluation shows that the system produces an improvement in
signal-to-noise ratio (SNR) for every mixture.  An example is given in Fig. 13, where the input
scene is a mixture of male utterance and telephone ringing (see Fig. 13A).  The segregated target is
shown in Fig. 13B and the background in Figure 13C.

4.4 Integrated analysis

As discussed at the beginning of Sect. 4, the majority of the grouping principles do not involve
either specific memory or recognition, and may be viewed as primitive or bottom-up.  The
familiarity principle, however, requires a memory recall and may be viewed as a top-down
process.  Memory-based segmentation has been previously studied (Wang et al. 1990; Horn &
Usher 1991; Sompolinsky & Tsodyks 1994; Lourenco et al. 2000).  But, without a primitive
segmentation stage, the performance of these models is limited. A general solution to the scene
analysis problem requires an approach that integrates bottom-up segmentation and top-down
analysis.

Recently, we have investigated the integration of a primitive segmentation stage and associative
memory on the basis of oscillatory correlation (Wang & Liu 2002).  Our model consists of initial
primitive segmentation, multi-module associative memory, and a short-term memory (STM) layer.
Figure 14 shows the diagram of the model.  Primitive segmentation is performed by LEGION,
which separates an input scene into multiple segments.  Each segment then activates the memory
layer, and potentially multiple recalls interact in the STM layer, resulting in a common part.  The
pattern held in the STM layer projects to the LEGION network, and this top-down input performs
memory-based grouping and segmentation.  Memory-based grouping synchronizes multiple
segments that belong to the same memory pattern.  On the other hand, memory-based segmentation
further separates a segment into multiple parts, correcting under-segmentation errors caused by
primitive segmentation.  It is worth emphasizing that the system achieves scene analysis entirely in
phase space or time.  This is consistent with physiological evidence that suggests an important role
of synchronous oscillations in top-down processing (Engel et al. 2001).

The system has been evaluated on a set of 3-D line drawing objects, which are arranged in an
arbitrary fashion to compose input scenes.  Object occlusion arises due to 3-D arrangements
between objects.  One such scene is shown at the bottom of Figure 14. A systematic evaluation
demonstrates that memory-based organization is responsible for a significant improvement in scene
analysis performance (Wang & Liu 2002).

To perform scene segmentation effectively, both feature extraction and grouping are important.
Feature extraction is modality- and cue-specific, whereas a binding mechanism may be generally
applicable.  Taken together, this body of work on LEGION-based segmentation gives strong
indications that the LEGION networks provide a general and effective mechanism for scene
segmentation.  Although many other issues remain to be addressed in scene analysis, such as cue
integration and multimodal integration, we believe that the LEGION mechanism has, for the main
part, answered Rosenblatt’s challenge regarding figure-ground separation.  His challenge
regarding spatial relations will be discussed in Section 6.
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Figure 13. Speech segregation (from Wang & Brown 1999).  A . Filter responses to a mixture
of male utterance and telephone ringing.  The response pattern is generated by 128 filter
channels, whose center frequencies range from 80 Hz to 5 kHz, over 150 time frames.  B.
Segregated target speech, indicated by white pixels representing active oscillators at a time.
C. Segregated background, indicated by white pixels representing active oscillators at a
different time.  
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Figure 14. Integrated analysis network (from Wang & Liu 2002). The model consists of a
LEGION segmentation layer, a multi-module memory layer, and an STM layer. Arrows
indicate the directions of network connection.  
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5. Biological relevance and implications

5.1 Physiological considerations

There is an extensive and growing body of physiological evidence that supports the existence
of coherent oscillations in various cortical regions as well as their potential role in feature binding.
Experimental results come from different modalities and different animal species and humans, in
both anesthetized and awake conditions.  Early evidence of neural oscillations was obtained from
sensory evoked potentials in the olfactory system (Freeman 1978) and the auditory system
(Galambos et al. 1981).  The accumulation of evidence has accelerated following the discovery of
synchronous oscillations from cell recordings in the cat visual cortex (Eckhorn et al. 1988; Gray et
al. 1989).  Detailed reviews are given by Singer and Gray (1995), Usrey and Reid (1999), and
Varela et al. (2001), and are not considered here.  Two points are worth noting.  First, theoretical
investigation (Milner 1974; von der Malsburg 1981) on the binding problem predates and directly
influences empirical work that uncovered visual coherent oscillations.  Second, neural oscillations
have been a controversial topic in neuroscience; see, for example, the Neuron issue mentioned in
Section 2.  It is fair to state that neural oscillations and synchrony are clearly present (Roskies
1999), and that the debate has largely been shifted from whether coherent oscillations exist to
whether they play a major role in binding.

The following summarizes several important aspects of the experimental data on neural
oscillations.  Oscillation frequencies from different modalities and animal species generally range
from 30 to 70 Hz, often referred to as 40 Hz oscillations.  This frequency range is compatible with
that of the EEG gamma rhythms, and hence such oscillations are also called gamma oscillations.  
Cortical oscillations depend on the presence of visual stimulation, but not on oscillating input.
They are thus referred to as stimulus-dependent, not stimulus-driven.  Synchrony in neural
oscillations, i.e. phase locking with zero phase lag, occurs across a considerable extent of the
cortex, beyond the distance of direct connections between cortical cells.  Finally, the presence or
absence of coherent oscillations correlate with perceptual organization for a broad range of
perceptual stimuli.   

In the auditory system, 40-Hz oscillations in localized brain regions have been recorded both at
the cortical level and at the thalamic level, and these oscillations are synchronized over considerable
cortical areas (Ribary et al. 1991; Llinás & Ribary 1993).  Joliot et al. (1994) found evidence that
directly ties coherent 40 Hz oscillations with perceptual grouping of clicks.  Cell recordings in the
auditory cortex show that neurons exhibit synchronous firing activity (Maldonado & Gerstein
1996; deCharms & Merzenich 1996; deCharms 1998).  The study by Barth and MacDonald (1996)
suggests that oscillations in the auditory cortex are originated within the cortex and synchrony is
produced by intracortical interactions. The suggested anatomical substrate for coherent oscillations
well agrees with that from the visual domain (Singer & Gray 1995).  The Barth and MacDonald
study further suggests that cortical oscillations can be modulated by the thalamus.  

Concerning the LEGION architecture, local excitatory connections are broadly consistent with
various lateral connections in the cortex.  In the visual cortex, for example, horizontal connections
(Gilbert & Wiesel 1989; Gilbert 1992) exist and they link pyramidal cells, which are known to be a
chief type of excitatory neurons.  With intracellular recordings and anatomic preparations, Gray
and McCormick (1996) reported that pyramidal cells in the visual cortex may be responsible for
generating synchronous cortical oscillations.  The global inhibitor (see Fig. 6) serves to segment
multiple patterns simultaneously present, thus exerting a global coordination.  Crick (1984) has
suggested that part of the thalamus, the thalamic reticular complex in particular, may be involved in
the global control of selective attention.  The thalamus is positioned at a key location in the brain: it
receives input from and sends projections to almost the entire cortex.  Thus, the global inhibitor
could correspond to a neuronal group in the thalamus (Wang & Terman 1997); in this case, the
activity of the inhibitor should be interpreted as the collective activity of the group.  

Llinas and his colleagues (Ribary et al. 1991; Llinás & Ribary 1993), on the basis of their
recordings from the auditory system, suggested that the thalamus plays the role of synchronizing
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cortical oscillations through its mutual connections with the cortex rather than desynchronizing
oscillator assemblies as suggested above.  The question of whether cortical synchrony is produced
by intracortical connections or thalamocortical connections may be answered by the following
experiment.  Let an auditory stimulus consist of two-tone interleaving sequences with high and low
frequencies, respectively, so as to induce stream segregation (Bregman 1990).  When streaming
occurs, the LEGION model predicts that the global inhibitor oscillates with a frequency double that
of cortical oscillations (Wang 1996).  In contrast, the thalamocortical model for producing
synchrony would predict the same frequency between cortical and thalamic oscillations.  Note that
the occurrence of stream segregation is a key condition, since, otherwise, the models do not yield
contrasting predictions.

In Section 3.1 we mentioned that our single oscillator model is dynamically very similar to
other neuronal models for generating membrane potentials or oscillating bursts of neuronal spikes.
From the modeling perspective, relaxation oscillations best match oscillating envelopes of bursting
activity.  Figure 15 shows such an oscillating burst recorded from a single pyramidal neuron in the
visual cortex (Gray & McCormick 1996). It is easy to see that the envelope of the burst would
naturally be described as a relaxation oscillation.8  Oscillating bursts have been argued to be more
effective for synaptic transmission, thus are better candidates for binding, than single spikes (Gray
& McCormick 1996). It is worth noting that the choice of relaxation oscillators (Terman & Wang
1995), motivated purely by computational considerations, is consistent with subsequent
experimental data.

Figure 15. Membrane potential of a single neuron recorded from the cat striate cortex (from
Gray & McCormick 1996).

5.2 Perceptual considerations

Based on a series of psychophysical experiments, Chen (1982; 1990) observed that human
perception is sensitive to topological properties of stimuli; in particular, humans are more accurate
in discriminating rapidly presented visual stimuli that have distinct topologies (number of holes).
According to him, topological perception constitutes a basic and early part of perceptual
organization.  One can view that a hole inside a connected pattern is a distinct pattern, and as a
result, a LEGION network will produce distinct responses to patterns with different numbers of
holes.  The difference in the number of segmented patterns emerging from LEGION provides an
explanation for topological perception (Wang 2000).  The fact that LEGION exhibits a fixed
segmentation capacity generates the following prediction: topology-based discrimination occurs
only up to a certain number of holes.  On the other hand, a capacity limitation is not predicted by
Chen's account based on mathematical topology (Chen 1990).

                                                
8 See Wang et al. (1990) for a model that produces oscillating bursts, not just envelopes.
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The Cesmeli and Wang model for motion analysis, described in Sect. 4.1, exhibits a number of
important properties in human motion perception; these include motion transparency and a solution
to the so-called blank wall problem - how to perceive a moving surface when no local motion
signal can be detected in the interior of the surface.  Subsequently, Cesmeli et al. (in press) showed
that the model can account for the intriguing barber pole illusion (Wallach 1935), in which the
perceived direction of motion of a grating changes merely as a result of changing the shape of an
aperture. The model can also simulate a set of quantitative data from human perception of
symmetrical and asymmetrical plaids (Stoner et al. 1990; Lindsey & Todd 1996), created by two
superimposed gratings.  Furthermore, the model is supported by a recent physiological study using
moving plaids; Castelo-Branco et al. (2000) reported that neurons in two visual cortical areas
synchronize their responses when the two gratings form a single moving surface, but the
synchrony disappears when the two gratings form separate moving surfaces.

By extending LEGION to the auditory domain, Wang (1996) proposed an oscillator network to
address stream segregation. The basic architecture is a 2-D LEGION network: one dimension
represents time and another one represents frequency.  The network demonstrates a set of
psychophysical phenomena (Bregman 1990), including dependency on spectral and temporal
proximity, sequential capturing, and competition among different perceptual organizations.  Also,
it is well known that the ability of listeners to identify two simultaneously presented vowels, or
double vowels, can be improved by introducing a difference in fundamental frequency between the
vowels.  Brown and Wang (1997) proposed an oscillatory correlation model to explain this
phenomenon, which represents the perceptual grouping of auditory frequency channels as
synchronized oscillations.  

5.3 Cognitive considerations

A basic implication of the oscillatory correlation theory in general, and the LEGION
mechanism in particular, is a capacity limitation on segmentation and binding (see Section 3.2).
The notion of a limited capacity naturally arises from relaxation oscillations, which have a non-
instantaneous active phase, and a LEGION network precisely characterizes the capacity.  This
property of relaxation oscillators is not shared by spiking neurons (Campbell et al. 1999) or chaotic
maps (Zhao & Macau 2001).  Though the existence of such a capacity is sometimes viewed as a
computational weakness (Wersing et al. 2001; Zhao & Macau 2001), we point out that capacity
limitation is a fundamental property of cognitive processing.  Capacity limits arise from a variety of
information-processing tasks, including memory retrieval, attention, mental operations (e.g.
addition), enumeration (subitizing), multi-object tracking, etc. (for reviews see Pashler 1998;
Cowan 2001).  Arguments have been made that limited capacity is a strength rather than weakness
for information processing (e.g. MacGregor 1987; Kareev 1995).

When studying memory-based segmentation in an oscillator network, Wang et al. (1990)
explicitly linked the model capacity with the magic number (7±2) of human STM capacity (Miller
1956).  Subsequently, Lisman and Idiart (Lisman & Idiart 1995) developed a more detailed,
oscillation-based STM model, where the 7±2 capacity results from the interaction between the
gamma oscillation and a slower rhythm in the theta-alpha range (5 to 12 Hz).  The magic number 7
symbolizes the existence of a limited capacity, but should not be taken literally.  A recent,
comprehensive examination concludes that the capacity is actually about 4 (Cowan 2001).

It is well documented that both STM and attention exhibit a limited capacity.  What is the
relation between them?  Though often discussed in the literature as related, few studies directly
address the question.  The clearest answer is attempted by Cowan (1995; 2001), who provides a
theoretical framework that ties a large number of studies from a variety of empirical paradigms.
According to him, the focus of attention has a capacity about 4, and this is the only source of
capacity limitations in cognitive processing; in other words, capacity limits exhibited from STM
and other tasks result from capacity-limited attention.  Attention provides a "global workplace" for
mental operations (Baars 1988; Cowan 2001).

A typical situation to demonstrate capacity limits is reaction time (RT) in enumeration.  Many
experiments have consistently shown that the time people take to count small objects, say marbles,
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increases very slowly when the number of objects goes up from 1 to 4, but rises at a much faster
pace after that (Jevons 1871; Kaufman et al. 1949; Mandler & Shebo 1982).  Increases in RT in
both conditions follow a linear trend.  Put it differently, the RT slope is small from 1 to 4 items,
and becomes much larger when the number of items is greater than 4.  From the viewpoint of the
LEGION dynamics, assuming a segmentation capacity of 4, up to 4 items can be segregated and fit
into a single oscillation period (see Fig. 8).  Beyond this capacity, some segments contain multiple
items and need to be further segregated to support correct counting.  But the oscillators
corresponding to different items within a segment are already synchronized, and, as shown by
Wang (1999a) in the context of object selection, further segmentation can produce only one new
item per oscillation period because of the way the selective gating mechanism works.  Thus, two
distinct slopes would result.   Our explanation differs from that given by Pylyshyn (1994).  He
assumes that there is a preattentive stage to select a limited number of individual items, which is a
stage intermediate between parallel processing and serial attention.  Unlike our explanation, the
capacity limit is an assumption in Pylyshyn's theory.

When studying stream segregation, Wang (1996) suggested a shifting synchronization theory
to explain the loss of temporal order when streaming occurs (Bregman 1990; see Sect. 6.2).  The
main point of the theory is that attention rapidly alternates between multiple streams.  A later study
(Wang 1999a) shows how to selectively focus on one or a small number of visual patterns.
Though closely related to attention, neither study purported to be an explicit theory of attention.
Wrigley and Brown (2001) recently proposed a two-layer oscillator model of auditory attention.  In
their model, the first layer is a LEGION array that performs stream segregation and the second
layer performs attentional selection.  Motivated by these studies and Cowan's analysis, I suggest
that oscillatory correlation, originally proposed to address the binding problem, may also be
viewed as a theory of attention with the following additional claims and qualifications.  First,
attention holds all the organizations that correspond to enabled and separated oscillator assemblies.
The term "organization" is neutral to individual modalities, and can mean a visual object, an
auditory stream, a chunk, and so on, in a specific situation.  This claim implies that attention is
paid to more than one organization simultaneously.  By "simultaneity" I refer to a psychological
time scale, or a psychological moment (Pöppel & Logothetis 1986), approximately in the range 10-
50 ms (Wang et al. 1990).  The psychological moment is the finest time scale for conscious
awareness, and it roughly corresponds to the periods of gamma oscillations.  Note that this account
differs from the Wrigley and Brown model that does not allow attention to be shared by more than
one stream.  Also, by virtue of the LEGION mechanism, our claim implies a limited capacity of
attention, which is the same as the segmentation capacity.  Second, multiple organizations within
the focus of attention oscillate on a physiological time scale (up to 10 ms), which has a finer time
resolution than the psychological moment and is thus too fine to enter conscious experience.  The
phases of oscillator assemblies give distinct identities for the organizations attended to at a time.

I realize that this is a potentially provocative suggestion, stated here without a systematic
development.  Nonetheless, the theory immediately leads to two very broad implications: (1)
Perceptual organization, or feature binding, is the same process as attending; (2) attention is
capacity-limited but can be directed to more than one object (see Cowan 2001, for an extensive
argument).  That perceptual organization requires attention sharply contrasts with the popular view
that there is a preattentive process that operates on the sensory input in parallel without the
involvement of attention.  Pashler (1998) examined this view in detail and concluded "only a very
small amount of evidence even bears on it, and these data are somewhat equivocal" (p. 235).
Indeed, data from several experiments specifically designed to address this issue suggest that
attention is needed for typical "preattentive" tasks.  These include a feature-based visual search task
(Joseph et al. 1997) and an auditory streaming task (Carlyon et al. 2001).  Perceptual organization
would require a form of divided attention (Pashler 1998). Then, how to reconcile between a
capacity limit of 4 (Cowan 2001) and a phenomenological observation that one can focus on only
one thing at a time?   A capacity limit represents an upper bound on the number of items held by
attention, and it does not necessarily mean that the attention span is constantly full.  It may be
possible, for instance, for a subject to selectively attend to one thing or two in order to extract more
detailed information from the attended items.  Even in the case of selective attention, unselected
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items still receive some analysis.  In the classic experiment of Cherry (1953), for example,
listeners can detect the change of the speaker gender (and a tone) from the "unattended" ear.  
Furthermore, when a subject is asked to perform a demanding task, such as repeating spoken
phrases in Cherry's experiment, it may be that the task itself occupies several "slots" in the
attention span, making it difficult to attend to other items at the same time.

6. Discussion issues

6.1 External time vs. internal time

In the oscillatory correlation theory, time plays the role of binding: different segments unfold in
time.  Let us refer to this putative role of time as internal time.  Time is also a dimension in the
physical world, and indeed a defining dimension for auditory and other temporal patterns.  To
complicate the matter further, time, in the form of common onsets and offsets, is also a grouping
principle (Bregman 1990; Leonards et al. 1996; Lee & Blake 1999).  Let us refer to this as external
time: time that is external to the organism.  A potential difficulty for the double use of time has been
raised (Brown 2002), and used as an argument against the temporal correlation theory (Shadlen &
Movshon 1999).

Onset/offset detectors are identified in the auditory system (Popper & Fay 1992), and have
been used in auditory models.  With such detectors, grouping based common onsets/offsets is not
unlike that based on other cues.  A similar idea can be extended to the visual domain.  How to
distinguish internal time from external time as used in temporal patterns depends on how time is
represented in temporal patterns.  In neural network modeling of temporal patterns, time is usually
coded by delay lines, decay traces, or exponential kernels (Wang 2002).  Delay lines convert time
to space, and hold the most recent patterns for a certain period of time.  This way of representing
time has also been used in the context of auditory segregation (Wang 1996; Wang & Brown 1999),
and as demonstrated in this case the potential conflict of the double use is not present.  Decay traces
encode time implicitly and compactly, but have limited discriminative power; for instance, it is
unclear how they could underlie a variety of auditory functions, such as pitch and rhythm
perception. The use of exponential kernels strikes a reasonable compromise between these two
cases, and it converts time into a logarithmic axis of space so that more recent traces are
represented with higher temporal resolutions.  The distinction between internal time and external
time can be made similarly as in the case of time delays. This way of coding time bears
resemblance to how space is coded on the retina: higher resolution for image parts nearer to the
fovea.  Both delay lines and exponential kernels form a shifting representation (Wang 1996).
Given the high resolution of temporal processing in the auditory system (Moore 1997), it is likely
that internal time needs to be preserved during the shifting process.  This raises the interesting
issue of how internal time can be maintained during neural transmission.  Though one can imagine
ways of dealing with this issue, it has not been systematically addressed.

6.2 Spatial relations

In terms of addressing Rosenblatt's challenge, our discussion so far is exclusively on the
figure-ground separation problem.  The other problem is how to compute topological or spatial
relations among objects.  We asserted earlier that one needs to first solve the separation problem in
order to compute geometrical relations.  Given the challenge of solving the figure-ground
separation, very little research has been conducted to address the relation problem.  

Building on the LEGION ability to perform figure-ground separation, Chen and Wang (2001)
recently addressed one particular question: how to tell whether a dot belongs area A or area B, as
illustrated in Figure 16.  This can be phrased as how to compute the inside/outside relation (Ullman
1984).  The solution by Chen and Wang is to first separate the two areas apart using a LEGION
network, and then decide whether the oscillator corresponding to the dot is in the assembly
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representing A or that representing B.  It is interesting to contrast this solution with that offered by
Ullman (1984; 1996) in his framework of visual routines.  His suggested solution to the
inside/outside problem is a visual routine called coloring, which spreads activity from the dot
location until the boundary of an area is reached.  Although LEGION dynamics for
synchronization has some resemblance to a coloring process, there are several differences between
the two solutions.  First, the coloring routine is described as a serial algorithm, while for LEGION
synchronization emerges from a network of interacting oscillators.  Second, the time course of
synchronization enables Chen and Wang to explicitly distinguish between effortless perception
with simple boundaries (see the upper frame of Fig. 16) and effortful perception with convoluted
boundaries (see the lower frame of Fig. 16).  It is not clear how a qualitative distinction can be
made in the coloring process.

Figure 16. Inside/outside relation (From Chen & Wang 2001).  The top frame shows an
example where the boundary between area A and area B is not very convoluted, whereas the
bottom frame shows another example with a very convoluted boundary.

We believe, for the following reasons, that the oscillatory correlation theory lays a general
foundation to compute a spatial relation between multiple objects.  Arbitrary objects can be
segmented by a LEGION network, and relevant ones for computing a specific relation can be
further selected (see Sect. 4.2).  The relevant objects are all activated and yet separated in phase;
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this provides a workspace (Baars 1988; Cowan 2001) to calculate attributes from each object and
compare them across different ones.  Representing each object as an oscillator assembly gives a
broad base to derive object-level properties, such as its center, size, spatial extent, etc., which are
important for computing geometrical relations (e.g. left-of).  How geometrical relations can be
systematically computed is an important topic for future research.

6.3 Compositionality

The issue of compositionality has received much attention in the debate between connectionism
and symbolism (e.g. Fodor & Pylyshyn 1988; Smolensky 1988).  The question is whether neural
networks possess the representational power to deal with combinatorial structure that is manifested
in our ability to process relational and syntactical information.  A trivial yes answer can be derived
from the fact that neural networks are general-purpose computing devices that can simulate
universal Turing machines (Arbib 1995), but such a recourse does not address the critical
assessment that neural networks are only an implementation theory and cannot account for
cognitive functions.  The key issue is whether a fixed network can encode and process hierarchical
relations in a flexible way.

We think that the introduction of the time dimension opens an entirely new avenue to address
the issue of compositionality.  With network architecture fixed, the time dimension provides the
critical flexibility: hierarchy could be encoded in time.  In the context of range image segmentation,
Liu and Wang (1999) showed how a range-defined object can be hierarchically decomposed into
its parts (or surfaces) by gradually decreasing the level of global inhibition in a fixed LEGION
network; related parts may synchronize at one level of global inhibition and become
desynchronized at an increased level.  With the ability to select a segment for further analysis as
explained in Sect. 4.2, arbitrary hierarchies could be embodied.  For example, an embedded tree
structure ((A B) (C D)) could be coded by first forming two assemblies corresponding to (A B)
and (C D), respectively, and then each assembly is selected and further decomposed into two
assemblies corresponding to two terminal symbols. This way of representing syntactical structure
converts structural complexity into temporal complexity, and time being an infinitely extensible
dimension allows the system to have in principle unbounded capacity to deal with the
compositionality of data structures.  This latter property has been argued to be a defining property
of symbolic architecture, not shared by connectionist architecture (Fodor & Pylyshyn 1988).
Furthermore, embedding combinatorial structure in time makes processing time a relevant quantity
- problem solving is viewed as a temporal process and one naturally takes more or less time to
solve a particular problem, depending on the difficulty of the problem.

To describe spatial relations between objects in a scene, discussed in Sect. 6.2, would require
that the system have the capability to deal with syntactical structure.  So how to compute spatial
relations should have significant bearing on the compositionality issue.  In a related study on
natural language representation, Shastri and Ajjanagadde (1993) described the use of oscillatory
correlation to dynamically bind arguments and constants in order to perform reasoning with
predicates and rules.  This is a form of instantiation that binds an abstract slot (say "recipient") and
a specific filler (say "John"); see von der Malsburg (1999) for a general discussion on instantiation
as an application that can benefit from a solution to the binding problem.

6.4 Binding and attention

It has been frequently suggested that selective attention plays the role of binding.  In particular,
according to the dominant feature integration theory of Treisman and Gelade (1980), the visual
system first analyzes a scene in parallel by separate retinotopic feature maps and focal attention
integrates the analyses of different feature maps to produce a coherent perceptual object.  In other
words, attention provides a "spotlight" on the location map to select an object (Treisman 1986).
Arguing from the neurobiological perspective, Reynolds and Desimone (1999) also suggested that
attention provides a solution to the binding problem.  Our theoretical analysis on neural competition
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and object selection (Sect. 4.2) suggests instead that selective attention operates on the results of
binding.  So the key question is whether attention precedes or succeeds binding.  

A visual object can have an arbitrary shape and size.  This situation creates the following
inconsistency in the feature integration theory.  On the one hand, it is a location-based theory of
attention that binds at the same location individual analyses from different feature maps.  On the
other hand, to select an object attention spotlight must also have arbitrary shape and size, adapting
to a specific object and thus object-based.  Without a binding process, what produces such an
adaptive spotlight?  This is an intrinsic difficulty if focal attention, rather than perceptual
organization, is to bind features across different locations.  The difficulty is illustrated by the
finding of Field et al. (1993) that a group of curvilinear (snake-like) elements stands out from a
scene of randomly oriented elements and can be detected by observers, whereas other groups
cannot be detected.  An analogous effect was found in the monkey cortex (Kapadia et al. 1995).
Note that there is virtually an infinite number of "snakes" that can be constructed from orientation
elements, and grouping is required to yield a snake pattern to be illuminated by attention spotlight.

The above difficulty does not occur if one adopts the view that focal attention occurs after
binding, which provides multiple segments for focal attention to perform sequential analysis.  This
is fully consistent with the object-based view of visual attention, as mentioned in Sect. 4.2.
Though sometimes difficult to tear object-based attention apart from location-based attention, since
the former implicitly provides the information for the latter, recent psychophysical and
neuropsychological studies support the object-based view (Nakayama et al. 1995; Mattingley et al.
1997; Driver & Baylis 1998).  Pertinent to the Field et al. study, the relevant data have been
successfully simulated by the oscillation model of Yen and Finkel (1998) discussed earlier.

6.5 Binding and recognition

An issue related to the discussion of Sect. 6.4 is whether binding should be a process separate
from recognition or it is simply part of recognition.  According to the latter view, binding occurs as
a byproduct of recognition, which is typically coupled with some selection mechanism that brings
the pattern of interest into focus, and there is really no binding problem so to speak (Riesenhuber
& Poggio 1999).  For example, Fukushima and Imagawa (1993) proposed a model that performs
recognition and segmentation simultaneously by employing a search controller that selects a small
area of the input image for processing.  Their model is based on Fukushima’s neocognitron model
for pattern recognition, which is a hierarchical multilayer network, and this model exemplifies the
hierarchical coding approach to the binding problem.  The model contains a cascade of many layers
with both forward and backward connections. The forward path performs pattern recognition that
is robust to a range of variations in position and size, and the last layer stores learned patterns.
When a scene of multiple patterns is presented, a rough area selection is performed based on
feature density of the input, and further competition in the last layer would lead to a winner.  The
winning unit of the last layer, through backward connections, reinforces the pattern of the input
image that is consistent with the stored template.  This, in a sense, segments that part of the input
image from its background.  After a while, the network switches to another area of high feature
density and continues the analysis process.  Their model has been evaluated on binary images of
connected characters. Olshausen et al. (1993) proposed a model that also combines pattern
recognition and a model of selective attention. Their attention model is implemented by a shifting
circuit that routes information in a hierarchical network while preserving spatial relations between
visual features, and recognition is based on a Hopfield model of associative memory. The location
and size of an attention blob are determined by competition in a feature saliency map, producing
potential regions of interest on an image.  This model is viewed by Shadlen and Movshon (1999)
as an alternative to the temporal correlation theory. The model is evaluated on binary images with
well-separated patterns.  A recent model along a similar line was proposed by Riesenhuber and
Poggio (1999), and it uses a hierarchical architecture similar to the neocognitron.  Their model has
been tested on two-object scenes: one is a stored pattern and another is a distractor.

Besides the conceptual difficulties with the hierarchical coding discussed in Section 2, it is
unclear how these models can be extended to computationally analyze scenes where complex
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objects are arranged in arbitrary ways. Again, snake-like patterns studied by Field et al. (1993)
illustrate computational problems of binding as recognition.  The prohibitively large number of
snake shapes makes it infeasible to search for all possible snake patterns.  Even with a prespecified
pattern, Field et al. (1993) demonstrate that observers cannot identify the pattern when its elements
are not arranged in a curvilinear fashion.

6.6 Read out

An issue often cited as a problem to the oscillatory correlation representation concerns how a
synchronized code is decoded by a later processing stage (see Ghose & Maunsell 1999). The
readout problem is not really unique to temporal coding and, as stated by Roskies (1999), it is "one
of the most puzzling and fundamental problems for systems neuroscience in general".  If later
processing, say recognition, requires information across a large part of the visual field, whether
that information is encoded via temporal correlation or any other means, it must somehow be
decoded in a corresponding way.

While the readout issue in temporal coding is an open question in neuroscience, some
computational considerations may be helpful.  As illustrated in Fig. 8, the basic claim of oscillatory
correlation is that each segment pops out at a distinct time from the network and different segments
alternate in time.  In the case of LEGION dynamics, a segment is in the active phase when it pops
out.  As a result, all of the features of the segment, but none of the features from competing
segments, are simultaneously available for later processing tasks such as selective attention and
recognition.  This way of encoding a pattern, i.e. activating all of its features, is most commonly
used in neural models for pattern recognition, e.g. perceptrons.  The model of Wang and Liu
(2002), discussed in Sect. 4.4, shows a concrete way in which LEGION-based segmentation is
coupled with an associative memory model for recognition.  Their model performs scene analysis
in a closed loop.

7. Conclusion: Versatile computing requires the time dimension

The substrate for diverse mental functions in perception, reasoning, and action is a gigantic
network of neurons whose common language is a neuronal signal.  The fundamental claim of the
temporal (and oscillatory) correlation theory is that binding is manifested in the time structure of
such a signal.  

If there is one difference that stands out between natural intelligence and artificial intelligence, it
is the versatility of the former.  Furthermore, natural intelligence emerges from a concrete neural
network - an individual brain - whose architecture is more or less fixed after development.  As
pointed out by von der Malsburg (1999), a typical practice in neural computation, and artificial
intelligence in general, is that "give me a concrete problem and I will devise a network that solves
it." This is the principle of universality, in the sense of universal Turing machines or multilayer
perceptrons.  The problem that faces the brain is a rather different one: "given the concrete network
learn to cope with situations and problems as they arise." Let me call this the principle of versatility
(see also Singer 1999). In other words, the difference between universality and versatility comes
down to "first the problem then the network" versus "first the network then the problem".

How can such a network give rise to versatility as wide-ranging as from sensory response,
perceptual organization, to language processing and long-term planning?  I believe that time
provides a necessary dimension for the network to fulfill its various functional requirements.  The
time dimension is flexible and infinitely extensible - a characteristic not shared by spatial
organization of the network, no matter how complex it is.  
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Appendix: On the number of connected patterns

For a 1-D image R with n binary pixels, it is easy to see that the number of connected patterns
is n(n+1)/2.  For a 2-D R, the number of connected patterns has been stated to be an exponential
relation with respect to |R| (p. xiv, Hinton & Sejnowski 1999; p. 132, Wang 2000).  However, I
cannot find a proof to this conclusion in the literature, and it is not straightforward to give a precise
number of connected patterns on an image of the size mxn, where m > 1.  Thus, I furnish in this
appendix a proof on a 2xn figure, and from it to an nxn image.

Theorem 1. The number of connected patterns on a 2xn binary image, R, increases
exponentially with |R|.

Proof. Let us arrange R in a 2-row n-column layout, as shown in Figure 17A. Denote the
number of connected patterns on such R as N(n).  Thus, we have N(1) = 3, N(2) = 13.  For n > 2,
consider R as formed by appending a 2x(n–1) image with an additional column at the right of the
image (see Figure 17A). One can divide all connected figures into two sets, those containing no
black pixel in column n–1 and the remainder.  The size of the first set is simply N(n–2) + N(1),
counting those to the left of column n–1 and those to the right.  The second set must have at least
one black pixel in column n–1, and is determined by possible ways of appending column n. There
are four different ways of expanding to column n, as illustrated in Figure 17B. First, it involves no
black pixel in column n and the number of such patterns is just N(n–1) – N(n–2). Second, it
involves expanding when the upper pixel in column n–1 is black and the lower one is white, and
this leads to two distinct subsets of connected patterns depending on whether column n has one or
two black pixels; see Figure 17B.  The third way is a symmetrical case when the upper pixel in
column n is white but the lower one is black.  The fourth way involves expanding when both
pixels in column n–1 are black, and this leads to three distinct sets of connected patterns, as shown
in Figure 17B.  Even counting only two such subsets, the total number of connected patterns that
involve black pixels in both column n–1 and column n is 2[N(n–1) – N(n–2)].  Thus we have the
inequality

        N(n) > [N(n–2) + N(1)] + [N(n–1) – N(n–2)] + 2[N(n–1) – N(n–2)]
= 2N(n–1) + [N(n–1) – 2N(n–2)] + 3
> 2N(n–1) + [N(n–1) – 2N(n–2)]

Because N(2) – 2N(1) > 0, we have the following recurrence inequality,

N(n) > 2N(n–1) (A1)

Thus, we have N(n) > 2n.  This completes the proof.

Given that all connected patterns on a 2xn image are also connected patterns on an nxn image
for n ≥ 2, we have the following corollary:

Corollary 1 . The number of connected patterns on an nxn image, R, increases exponentially
with |R|.
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Figure 17. Counting the number of connected patterns on a 2xn image.  A . A 2xn grid.  B.
Four different ways of expanding from a 2x(n–1) image to include column n.
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