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ABSTRACT

At a cocktail party, we can selectively attend to a single voice and filter out all the other
acoustical interferences. How to simulate this perceptual abili ty remains a great challenge. This
paper describes a novel machine learning approach to speech segregation, in which a target
speech signal is separated from interfering sounds using spatial location cues: interaural time
differences (ITD) and interaural intensity differences (IID). The auditory masking effect
motivates the notion of an “ ideal” time-frequency binary mask, which selects the target if it is
stronger than the interference in a local time-frequency (T-F) unit. We observe that within a
narrow frequency band, modifications to the relative strength of the target source with respect to
the interference trigger systematic deviations for ITD and IID. For a given spatial configuration,
this interaction produces characteristic clustering in the binaural feature space. Consequently, we
perform pattern classification in order to estimate ideal binary masks. A systematic evaluation
shows that the resulting system produces masks very close to ideal binary ones, and gives a
significant improvement in performance over an existing approach, as quantified by changes in
signal-to-noise ratio before and after segregation.

INTRODUCTION

The perceptual abili ty to detect, discriminate and recognize one utterance in a background
of acoustic interference has been studied extensively under both monaural and binaural
conditi ons (Bregman, 1990; Blauert, 1997; Bronkhorst, 2000). The human auditory system
is able to segregate a speech signal from an acoustic mixture using various cues, including
fundamental frequency (F0), onset time and location, in a process that is known as auditory
scene analysis (ASA) (Bregman, 1990). F0 is widely used in computational ASA systems
that operate upon monaural input – however, systems that employ only this cue are limit ed
to voiced speech (Brown and Cooke, 1994; Wang and Brown, 1999). On the other hand,
location (binaural) cues have the advantage of being generally independent of the signal
content and can be used to track a sequence of voiced and unvoiced components that
originate from the same location in space.

It is widely acknowledged that for human audition, interaural time differences (ITD) are the
main localization cue used at low frequencies  (<1.5 kHz), whereas in the high-frequency range
both interaural intensity differences (IID) and interaural time differences between the envelopes
of the signals (IED) are used (Blauert, 1997). The resolution of the binaural cues has
implications in both localization and recognition tasks. Experiments show that listeners can
reliably detect 10-15 µs ITDs from the median plane, which correspond to a difference in
azimuth of between 1 and 5 degrees. On the other hand, the smallest detectable change in IID by
the human auditory system is about 0.5 dB to 1 dB at all frequencies. Resolution deteriorates as
the reference azimuth gets larger, and the difference limen for ITDs can be as much as 10
degrees when the reference source is located far to the side of the head (Blauert, 1997).
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Classical models for processing binaural cues compare the acoustic signals at the two ears,
although they explain the binaural interaction through different mechanisms. These include
extensions of the Jeffress coincidence model (Jeffress, 1948; Lindemann 1986; Gaik 1993), the
equalization and cancelation (EC) theory (Durlach, 1972) and auditory nerve based models
(Colburn, 1973). The goal of this line of research is to explain experimental data for a number of
psychoacoustical phenomena including lateralization, binaural masking levels, and the
precedence effect (for a review see Stern and Trahiotis, 1995).

Increased speech intell igibili ty in binaural li stening compared to the monaural case has also
prompted research in designing cocktail -party processors based on psychoacoustic principles
(Lyon, 1983; Slatky, 1993; Bodden, 1993; Liu et al., 2001). Most cocktail -party-processor
designs utili ze the following observation: as the relative strength of the interference with respect
to the target increases, certain attributes of the auditory event including location and extent
change systematically compared to the case of the target source alone. In particular, building on
a previous cross-correlation model for sound localization, Bodden (1993) proposed a model that
estimates optimal time-varying Wiener coeff icients for all criti cal bands by comparing the neural
excitation patterns in cross-correlation with stored patterns obtained from clean speech.
Although computationally expensive, Bodden’s model has shown that psychoacoustically
motivated auditory mechanisms can produce substantial enhancement in speech intelli gibili ty
(Bodden, 1996).

In this study, we propose a sound segregation model using binaural cues extracted from the
responses of a KEMAR dummy head that realistically simulates the filtering process of the head,
torso and external ear (Burkhard and Sachs, 1975). A typical approach for signal reconstruction
uses a time-frequency (T-F) mask: T-F units are weighted selectively in order to enhance the
target signal. We employ an apriori ideal binary mask that is motivated by the human auditory
masking phenomenon, in which a stronger signal masks a weaker one in the same criti cal band
(Moore, 1997). If the original unmixed signals are available, one can construct this ideal mask in
the following way: retain the T-F units for which target energy exceeds interference energy and
discard the other units. Ideal masks generate high quali ty reconstruction for a variety of signals,
and similar binary masks have been shown to provide a very effective front-end to robust speech
recognition (Cooke et al., 2001). Hence, our model aims to estimate an ideal binary mask using
information about the spatial configuration.

Statistics for the relationship of the relative strength between sources and the deviation of the
binaural cues are at the core of our system. We show for mixtures of multiple sound sources that
there exists a strong correlation between the relative strength and ITD/IID, resulting in a
characteristic clustering across frequency bands. Our aim is to maximize the performance of the
system independently for different spatial configurations. Consequently, we employ a
nonparametric classification method to determine decision regions in the ITD-IID feature space
that correspond to an optimal estimate for the ideal mask. We systematically evaluate the system
for configurations of two sound sources in which the target position moves from the median
plane to the side of the head and the smallest separation from the interfering source is 5 degrees.
We also show that the performance of the model for more than two sources is comparable to the
results from the ideal binary mask, although as expected the overall signal-to-noise ratio (SNR)
drops.

The rest of the paper is organized as follows: the next section contains an overview of the
model. Section II describes the peripheral auditory model. Section II I describes the azimuth
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localization algorithm. Section IV is mainly devoted to the ideal binary mask estimation, which
constitutes the core of the model. Section V presents the performance of the system and a
quantitative comparison with the Bodden model. In the last section we give further discussions
and future directions.

I. MODEL ARCHITECTURE

Our model consists of the following four stages: 1) a model of the auditory periphery; 2) binaural
cue extraction and azimuth localization for both target and interference based on a cross-
correlation mechanism; 3) estimation of the ideal binary mask; and 4) reconstruction of the target
signal. Figure 1 illustrates the model architecture for the case of two sound sources.
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Figure 1. Schematic diagram of the model. Binaural signals are obtained by convolving input signals with
head related impulse responses (HRIR). A model of the auditory periphery is employed. Azimuth
localization for all the sources is based on a cross-correlation mechanism. ITD and IID are computed
independently for different frequency channels. A pattern analysis block produces an estimation of an ideal
binary mask, which enables the reconstruction of the target signal and the interfering sound.

The input to our model is a mixture of two or more signals presented at different, but fixed,
locations: target speech and acoustic interference, sampled at 44.1 kHz. The sources are assumed
to be in the horizontal plane, therefore only azimuth localization is considered here. We follow a
standard procedure for simulating free-field acoustic signals from monaural signals (no
reverberations or echoes are considered). Binaural signals are obtained by filtering monaural
signals with head-related transfer functions (HRTF) corresponding to the direction of incidence.
The responses to multiple sources are added at each ear. HRTFs introduce a natural combination
of ITD and IID into the signals that is extracted by subsequent stages of our model. We utilize
here a catalogue of HRTF measurements collected by Gardner and Martin (1994) from a
KEMAR dummy head under anechoic conditions.

The auditory periphery is simulated using a filterbank that models the cochlear filtering
mechanism. In addition, the gains of the filters are adjusted to account for middle ear transfer,
which is direction-independent. The output of each filter is processed using a simple model for
hair cell transduction, giving a representation of auditory nerve activity.
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The auditory nerve responses from both ears are evaluated independently for all frequency
bands in order to extract interaural differences. The most common method to determine ITD is
cross-correlation of the corresponding left and right signals within individual frequency bands,
which is calculated for time lags equally distributed in the plausible range (–1 ms to 1 ms). For
azimuth localization we use only the information derived from ITD. Due to some diffraction
effects, a frequency dependent nonlinear transformation from the time lag axis to the azimuth
axis is necessary. The set of cross-correlations for all frequency bands and at all times results in a
3D structure called the “cross-correlogram”– where the coordinates are given by frequency,
azimuth, time. A cross-correlogram is further evaluated to extract spatial information. Assuming
fixed sources, the source locations are obtained as the positions of the maxima in a pooled cross-
correlogram (Shackelton et al., 1992) – obtained by integrating the cross-correlogram across
time and frequency. Further stages of our model use this spatial information: the number of
sources, their locations and the target source location.

At the core of our system are decision rules that determine whether the target source is
stronger than the interference in individual T-F units. The system is based on observed
characteristic clustering of extracted ITD and IID features. The novelty of our approach lies in
the introduction of independent learning for different spatial configurations and across all
frequency bands in a joint ITD-IID feature space. For a given frequency channel and a stimulus
configuration, conditional probabiliti es are estimated from samples of ITD, IID and the
corresponding relative strength based on a corpus of training data.  Therefore, auditory grouping
is implemented based on proximity in the ITD-IID space. The output of this pattern analysis is a
time-frequency mask, which is an estimate of the ideal binary mask. The time-frequency
resolution for the current implementation is 20-ms time frames with 10 ms overlapping between
consecutive time frames, and 128 frequency channels that cover the range of 80 Hz to 5 kHz.

The last stage of the model is the reconstruction path, which allows the target signal to be
recovered from the target signal from the acoustic mixture by masking the T-F units dominated
by interference.

II. AUDITORY PERIPHERY

It is widely acknowledged that cochlear filtering can be modeled by a bandpass filterbank. The
filterbank employed here consists of 128 fourth-order gammatone filters (Patterson et al., 1988)
following an implementation by Cooke (1993). The impulse response of the ith filter has the
following form:



 ≥+−=

else0,
0 if),2cos()2exp()(

3 ttftbttg iii
i

φππ                                                                   (1)

where ib  is the decay rate of the impulse response, related to the bandwidth of the filter, if  is

the center frequency of the filter, and iφ  is the phase (here we set iφ  to zero).

The equivalent rectangular bandwidth (ERB) scale is a psychoacoustic measure for the
auditory filter bandwidth at each frequency along the cochlea. The center frequencies if  are
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equally distributed on the ERB scale between 80 Hz and 5 kHz, and specifically for each filter
we set the bandwidth according to the following equations (Glasberg and Moore, 1990):

( )11000/37.47.24)( += ffERB                                                                                                                               (2)
)(. ii fERBb 0191=                                                                                                                                                                            (3)

Since the HRTF reflects the filtering effects due to pinna and meatus but not the middle ear
we adjust the gains of the gammatone filters in order to simulate the middle ear transfer function;
such data is provided by Moore et al. (1997). In the final step of the peripheral model, the output
of each gammatone filter is half-wave rectified in order to simulate firing rates of the auditory
nerve. Saturation effects are modeled by taking the square root of the signal.

Psychophysical models for sound localization generally employ envelopes of the responses
in the high-frequency range. Therefore, we additionally extract envelopes using the Hilbert
transform for channels with center frequency above 1.5 kHz. In Section IV we present a
discriminabili ty comparison of different binaural cues.

III. AZIMUTH LOCALIZATION

Current models of azimuth localization almost invariably start with the cross-correlation
mechanism proposed by Jeff ress. Cross-correlation provides excellent time delay estimation for
broadband stimuli , and for narrowband stimuli i n the low-frequency range. However, for high-
frequency narrowband signals it produces multiple ambiguous peaks. Here we use the
normalized cross-correlation computed at lags equally distributed in the plausible range from –1
ms to 1 ms )( 4444 <<− τ  using an integration window of 20 ms (K=880). The cross-correlation
is computed for all frequency channels and updated every 10 ms, according to the following
formula for frequency channel i, time frame j and lag τ :
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where il , ir  refer to the left and right auditory periphery output of the ith channel, and il , ir  refer
to their mean values estimated over the integration window.

For each frequency channel, ITD is estimated as the lag corresponding to the position of
maximum in the cross-correlation function. Diffraction effects introduce weak frequency
dependences for ITD (MacPherson, 1991). As a result, we derive frequency-dependent nonlinear
transformations to map the time-delay axis onto the azimuth axis, resulting in a cross-
correlogram ),,( ϕjiC  where ϕ  denotes azimuth. Fig. 2A shows three ITD-azimuth mappings,
for channels with center frequencies of 500 Hz, 1 kHz, 3 kHz. The functions are monotonic,
being sigmoidal at low frequencies where diffraction effects are greater and increasingly linear at
high frequencies.
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Figure 2. Functions relating azimuth to ITD for three auditory channels with center frequencies of 500 Hz,
1 kHz, and 3 kHz.

In addition, a ‘skeleton’ ),,( ϕjiS  is formed by replacing the peaks in the cross-correlogram
with gaussians whose widths are narrower than the original peaks. Here the width is linear with
respect to the center frequency of the channel. This technique sharpens the cross-correlogram, an
effect similar to the contralateral inhibition mechanism in the Bodden system.

The cross-correlation method provides inconsistent results when two acoustic sources are
present. Figure 3 shows the cross-correlation functions (Fig. 3A) and the skeleton cross-
correlogram (Fig. 3B) for a mixture of male speech presented at 30° and female speech presented
at –10° at time frame 40 (i.e. 400 ms from the starting point). For frequency channels that are
dominated by one source, activity is observed near the true location of that source.  For T-F units
where the two sources overlap the peak deviates, generally being closer to the more intense
source.  Peaks at both locations can occur in high-frequency channels – this ambiguity is due to
the periodicity of the cross-correlation function.  Hence, if littl e overlapping occurs for a
suff icient number of channels a good estimate of the two source locations can be obtained at
every time frame by pooling the cross-correlogram across all frequency channels. At time frame
j and azimuth ϕ , this yields the following pooled cross-correlogram:

∑=
i

jiSjp ),,(),( ϕϕ                                                                                                              (5)

Improved localization results are obtained using the skeleton cross-correlogram proposed
here over the standard cross-correlation, where summing across frequencies produces sharper
peaks for the two locations (compare the bottom plots in Fig. 3A and Fig. 3B). In Fig. 3C we
display the pooled cross-correlogram for a signal of duration 150 frames (i.e. 1.5 seconds). Peaks
in the pooled cross-correlogram indicate the locations of active sources at every frame.
Assuming fixed sources, multiple locations can be reliably determined by further summating the
pooled cross-correlogram across time as shown in the bottom plot of Fig. 3C. This represents our
method for azimuth localization.
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Figure 3. Azimuth localization for a mixture of male utterance at 30° and female utterance at -10°. The
bottom plot in each panel shows a summation across all rows.  A: Cross-correlation functions for 128
frequency channels in the range 80 Hz – 5 kHz at time frame 40 (i.e. 400 ms after the start of the stimulus).
For clarity, only every other channel is shown, resulting in 64 channels. B: Skeleton cross-correlogram for
the same time frame. The arrow indicates channels that contain roughly equal energy from both target and
interference. C: Pooled cross-correlogram for a stimulus of duration 1.5 seconds, shown every 20 ms.

IV. IDEAL MASK ESTIMATION

The objective of this stage of the model is to develop an eff icient mechanism for estimating
the ideal binary mask. We propose an estimation method based on the foll owing observation
regarding the auditory interaction of multi ple sources. In a narrow band, the ITD and IID
corresponding to the target source exhibit azimuth-dependent characteristic values. As the
interference from additi onal sound sources increases, ITD and IID systematically shift away
from these values. Consequently, in a local T-F unit both binaural cues can be potentially
used to determine whether the target signal dominates.

In what follows, we analyze this phenomenon for the case of pure tones. This analysis serves
to motivate our proposed algorithm.
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A. Pure Tones

We consider two sources emitting pure tones in a narrow band. In this case, the left-ear and the
right-ear responses are given by:
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where iA  is the amplitude, iω  is the frequency, id  corresponds to the interaural time delay, and

)( i
r
iH ω  and )( i

l
iH ω represent respectively the right and left HRTF, for the ith source. ϕ∆  is the

sum of phase differences between the initial signals and those due to the arrival times of the
signals at the left ear.

To simplify, we neglect the magnitude of the HRTF response in analyzing ITD, which
represents a reasonable assumption in a narrowband low-frequency range. The cross-correlation
function for infinite-duration signals is obtained by:
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Observe that in approximating the cross-correlation function in a finite duration, there exists a
tradeoff between the difference in frequency || 21 ωω −  and the total integration time. Therefore,
we study the cross-correlation under the following two conditions:

Case 1: ωωω == 21

In this case, we have:
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Due to the periodicity of c(τ), we study the cross-correlation function on a π2  interval
centered at ( ) 2/21 dd +ω . Without loss of generality, assume that the phase differences

21  , dd ωω  are in this interval; otherwise, simply shift the phases with multiples of π2 . To fix

the discussion let 21 dd < . By observing the deviation of the peak location maxτ  from the middle
of the two sources, ( ) 221 /dd + , we obtain the stronger source:

2121max 2/)( AAdd <⇔+>τ        (9)
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This result gives a threshold to decide which source is stronger based on ITD. Furthermore,

we want to study how ITD changes with the relative strength ]1,0[
21

2 ∈
+

=
AA

A
R . Variations in

ϕ∆  affect the distribution of maxτ , and we thus carry out a probabilistic study on the relationship
between ITD and R. A reasonable assumption is that ϕ∆  is uniformly distributed in the range

] ,[ ππ− . To simplify, we use the following notations: ],[
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max ππτωα −∈





 +−= dd

 and

],0[
2

12 πωβ ∈−= dd
, and derive the solution for α  as follows:

π
βϕβ

βα k
AAAA

AA +







+∆++

−=
)cos(2cos)(

sin)(
arctan

21
2
2

2
1

2
1

2
2                                                      (10)

where k is an integer. Fig. 4 shows the domain of α ] ,[ ππ−∈ ; here the phases -β and

β correspond to the two source locations d1 and d2. The relation obtained in (9) restricts α  to the
interval ] ,0[ π  for 21 AA < , and ]0 ,[ π−  for 21 AA > . Hence, { }1 ,0 ±∈k  is uniquely determined.
For a continuous random variable X  with distribution p(x) and a differentiable function g(x), the

distribution of the variable Y=g(X) can be obtained from ∑
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root for y=g(x). Straightforward calculations result in the following formula for the distribution
of α :
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where the bounds 2,1α  are obtained from (10) by setting 1)cos( ±=+∆ βϕ .

For 1→R , both bounds 2,1α  converge to the same location β  (- β  for 0→R ). Therefore,
the probability distribution has a sharp peak indicating the time delay of the predominant source.
As the difference in amplitude gets smaller (i.e. 5.0→R ), παα →− 12 , which increases the
uncertainty (variance) and spreads out the peak in the probability distribution. The distribution

)(αp  has two sharp peaks, i.e. ∞→)(αp  at the bounds 2,1α  (where the denominator cancels).
In order to study the trend of the peak location as the relative strength changes, we analyze the
mean of the distribution, α , obtained by integrating α  from (10) over ϕ∆  from π−  to π . Note
that when the denominator in (10) cancels the integral must be decomposed for the
corresponding continuous intervals and k modified accordingly. It can be shown that the limit of
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α  as 1→R  is β  and - β  for 0→R . In addition, the left and right limit as 5.0→R  are - β
and β  respectively. Moreover, simulations show that a good approximation is given by:
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Case 2: 21 ωω ≠

In this case, due to the orthogonality of sine waves of different frequencies the cross-
correlation function becomes:
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A closed form solution for the peak location in this case does not exist. Instead, we analyze
the behavior of the peak location for relatively close angles, i.e. 2/2211 πωω <− dd . In this

interval, we apply a second-order Taylor expansion as an approximation for the cosine, resulting

in a simple solution: 
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Figure 4. The range of variable α. Here

1d  and 2d  indicate the two source locations.

Figure 5.  Theoretical approximation for the

mean ITD, maxτ , for two pure tones randomly
distributed in a narrow band centered at 500
Hz. The y-axis corresponds to the relative
strength R. Two cases are shown: 4/πβ =
(solid line) and 4/3πβ =  (dashed line).
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For the general case, we observe that as the frequencies 1ω  and 2ω  vary uniformly in a
narrowband centered at ,ω  a good approximation for the mean of maxτ  is given by:
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which is the solution for the maximum position in (13) when 21 ωω = . This function is
monotonically increasing with respect to R when 2/πβ <  and decreasing when 2/πβ >  (see
Fig. 4). Fig. 5 shows the results when Hz 500=ω  and β  equals 4/π  and 4/3π , respectively.

A systematic change in R also results in a corresponding shift in IID. A similar discussion
applies here. That is, the frequency difference between the two tones affects the spread of IID
distribution. We do not study the case 21 ωω =  since the results for IID distribution are
complicated. In addition, IID is most reliable at high frequencies where filter bandwidths are
large. Therefore, we consider the case 21 ωω ≠ . IID is approximated as the ratio of signal power
at the two ears, resulting in the following expression:
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where the power of a signal )(tx  is ∫
−
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lim 2 . Note that IID is monotonic with respect to

the relative strength R.

The above analysis suggests that the distribution of the binaural cues in a given filter channel
is directly influenced by the filter bandwidth. To test this, we simulate left and right signals using
Eq. 6, where the relative strength is fixed, ϕ∆  is uniformly distributed in the range ] ,[ ππ−  and

2,1ω  in ],[ ωωωω ∆+∆− . Figs. 6A and 6B show the mean and the variance of ITD as a function
of R for the condition of Hz 500=ω , 30° azimuth separation, 20-ms integration time and four

ω∆  values in the range of 0 Hz to 200 Hz. In the figure, M1 is the ITD mean as derived in (13)
and it approximates well the case 0=∆ω . M2 is the ITD mean derived in (14) for the more
general case 0≠∆ω . Similarly, Figs. 6C and 6D show results for IID when kHz 5.2=ω  and
five ω∆  values in the range of 0 Hz to 400 Hz. Here, M is the IID mean as derived in (15). It is
worth noting that the theoretical derivations of M2 and M approximate well the simulation results
when the bandwidth approaches the auditory filter ERB, which is 80 Hz for a 500 Hz center
frequency and 300 Hz for 2.5 kHz. In addition, there is a systematic decrease in variance for both
ITD and IID as ω∆  approaches the ERB. This behavior generalizes to other frequencies as well .

To conclude, our analysis shows that ITD and IID undergo systematic shifts from the ideal
target values as the relative strength R of two sinusoidal sources is changed. A comparison of the
above theoretical derivations with the real data presented in the next subsection shows that the
match is very close.
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Figure 6. The influence of filter bandwidth on the mean and variance of ITD and IID with respect to the
relative strength R. The data is from simulations of two pure tones uniformly distributed in a narrow band.
One tone is at 0 o and the another is at 30o. The sampling frequency is 44.1 kHz. A: Mean ITD as a function
of R for 500 Hz center frequency and four bandwidths between 0 Hz and 200 Hz. The auditory filter ERB
here is 80 Hz. M1 and M2 correspond to the theoretical mean ITD as derived in Eq. 13 and Eq. 14,
respectively.  B: ITD variance for the same condition as in A. C: Mean IID as a function of R for a 2.5 kHz
center frequency and five bandwidths between 0 Hz and 400 Hz. M corresponds to the theoretical mean IID
as derived in Eq. 15. The auditory filter ERB is 300 Hz. D: IID variance for the same condition as in C.

B. Model

The analysis of ITD and IID for pure tones shows relatively smooth changes with the relative
strength R in narrow frequency bands. In order to capture this relationship in the context of real
signals, statistics are collected for individual spatial configurations during training. We employ a
training corpus consisting of 10 speech signals from the TIMIT database (Garofolo et al., 1993):
5 male utterances and 5 female utterances as presented in Table I. The speaker ID in the table
uniquely identifies the speaker in the TIMIT database where the first letter indicates the sex of
the speaker. In the two-source case, we select S0-S4 to be target and the rest interference. In the
three-source case, we have S0-S3 as target signals and the 2 interfering sets are S4-S6 and S7-S9.
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TABLE I: SPEECH SIGNALS OF THE TRAINING SET

ID Speaker ID Utterance
S0 MKLS0 “Primitive tribes have an upbeat attitude”
S1 FCKE0 “Only the best players enjoy popularity”
S2 MCDC0 “Our aim must be to learn as much as we teach”
S3 FEAR0 “Development requires a long-term approach”
S4 FDMS0 “Poets, moreover, dwell on human passions”
S5 FETB0 “Change involves the displacement of form”
S6 FCMM0 “The system works as an impersonal mechanism”
S7 MJWS0 “Most assuredly ideas are invaluable”
S8 MRVG0 “False ideas surfeit another sector of our li fe”
S9 MJRH0 “But in every period it has been humanism”

Estimates for ITD, IID and R are extracted independently for all frequency channels.
Computations are based on 20-ms time frames with 10-ms overlap between adjacent frames.
Since the cross-correlation function is periodic, resulting in multiple peaks for mid to high
frequencies, we consider the following strategy for estimating ITD. We study deviations from
the target ITD for individual frequency channels, which is obtained from the ITD-azimuth
mappings presented in Section II I. Consequently, we compute iITD  as the peak location of the
cross-correlation function in the range iωπ /2  centered at the target ITD, where iω  indicates the

center frequency of the ith channel. iIID  corresponds to the mean power ratio at the two ears,
expressed in decibels:
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where il  and ir  refer to the left and right auditory periphery output of the ith channel,
respectively. Note that in computing iIID , we use 20 instead of 10 in order to compensate for the
square root operation in the peripheral processing stage.

The relative amplitude is a measure of the relative strength between the target source and the
acoustic interference, defined using root-mean-square values of the original signals at the
“better” ear (the ear closer to the target source):
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where is  refers to the response of the ith gammatone filter to the target signal and in  the
response to the acoustic interference (noise).
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Fig. 7 shows empirical results obtained for a two-source configuration: target source in the
median plane and interference at 30°. The scatter plot in Fig. 7A shows samples of ITD and R
obtained for the channel with a center frequency of 500 Hz. In addition, we display the empirical
mean of the samples and the theoretical one derived in (14). Similarly, Fig. 7B shows the results
that describe the variation of IID with R for a channel with a center frequency of 2.5 kHz and
compares the empirical mean with the one derived in (15). Note that iR  incorporates the HRTF
responses at the better ear. Therefore, the R axis for the theoretical mean is converted
accordingly. Fig. 7 exhibits a systematic shift of ITD and IID with respect to R for real signals.
Moreover, the theoretical means obtained in the case of pure tones match the empirical ones very
well . Similar matches are observed in other frequency channels and other spatial configurations.

The above observation extends to multiple-source scenarios. As an example, Fig. 8 displays
smoothed histograms that show the relationship between R and both ITD (Fig. 8A) and IID (Fig.
8B) for a three-source situation. Samples correspond to a frequency channel with a center
frequency close to 1.5 kHz for target at 0° (median plane) and two interferences at –30° and 30°.
Note that the interfering sources introduce systematic deviations of the binaural cues. Consider a
particularly troubling case: the target is silent and two interferences have equal energy in a given
T-F unit. This results in binaural cues indicating an auditory event at half of the distance between
the two interference locations; for our setup, it is 0° - the target location. However, the data in
Fig. 8 suggest a low probabili ty for this case. Fig. 8 instead shows a clustering phenomenon,
suggesting that in most cases only one source dominates a T-F unit.
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Figure 7. Relationship between ITD/IID and the relative strength R for a two-source configuration: target
in the median plane and interference on the right side at 30°. A: The scatter plot shows ITD and R estimates
from the training corpus for a channel with center frequency of 500 Hz. The solid curve shows the
theoretical mean (see Eq. 14) and the dash curve shows the data mean. B: Results for IID for a filter
channel with center frequency 2.5 kHz. The solid curve shows the theoretical mean (see Eq. 15) and the
dash curve shows the data mean.
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Figure 8. Relationship between ITD/IID and the relative strength R for a three-source configuration: target
source in the median plane and interference at -30° and 30°. Statistics are obtained from the training corpus
for a channel with center frequency close to 1.5 kHz. A: Histogram of ITD and R samples. B: Histogram of
IID and R samples. C: Clustering in the ITD-IID space.

By displaying the information in the joint ITD-IID space, we observe a location-based
clustering of the binaural cues, which is clearly marked by strong peaks that correspond to
distinct active sources as shown in Fig. 8C. There exists a tradeoff between ITD and IID across
frequencies, where ITD is most salient at low frequencies and IID at high frequencies. But a
fixed cutoff fr equency that separates the effective use of ITD and IID does not exist for different
spatial configurations (see Fig. 9 below). This motivates our choice of a joint ITD-IID feature
space that optimizes the system performance across different configurations. Differential training
seems necessary for different channels given that there exist variations of ITD and, especially,
IID values with different center frequencies.

Since the goal is to estimate an ideal binary mask, we focus on detecting decision
regions in the 2-dimensional ITD-IID feature space for individual frequency channels.
Consequently, standard supervised learning techniques can be appli ed. For the ith channel,
we test the foll owing two hypotheses.  The first one is 1H : target is dominant or 5.0>iR ,
and the second one is 2H : interference is dominant or 5.0<iR . Based on estimates of the
bivariate densiti es )|( 1Hxp  and )|( 2Hxp  the classification is done in accordance with the

maximum a posteriori (MAP) decision rule: )|()()|()( 2211 HxpHpHxpHp > . There exist a
plethora of techniques for probabili ty density estimation ranging from parametric techniques
(e.g. mixture of gaussians) to nonparametric ones (e.g. kernel density estimators). We
initi ally tried the EM algorithm for learning Gaussian mixtures (Duda et al., 2001), but this
did not prove to be robust due to the foll owing factors: (i) the true number of mixing
components is usually unknown, and (ii ) the algorithm is sensiti ve to parameter
initi ali zation. Even for the two-source scenario, the method of computing ITD for mid- to
high-frequencies can result in irregular distributions for the H2 hypothesis (two-peak
distribution). In order to completely characterize the distribution of the data here we use the
kernel density estimation method independently for all frequency channels.
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Whil e the kernel density estimation method is well documented in the lit erature
(Sil verman, 1986), we summarize its essence here. Generally, the multi dimensional kernel
density estimate for n observations n,, xx ...1  of dimensionali ty d is given by the foll owing
formula:
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where ( )dx,...,x1=x  is a feature vector, ijx  is the jth element of ix , K is a Gaussian function,

and s'jh  are parameters called bandwidths that define the amount of smoothing for the empirical

distribution. In our case, the ITD-IID feature space has dimensionali ty 2=d . The selection of
the smoothing parameters is criti cal to the success of the estimation process: for too small values
it approximates the data well but generalizes poorly and for too large values the structure of the
data distribution disappears. One approach for finding optimal values is the least-squares cross-
validation method (LSCV) (Silverman, 1986). We employ the LSCV method for high
dimensions and the Gaussian kernel given by Sain et al. (1994) (p. 808). Optimal smoothing
values are chosen as local minima in the range  [ 461 /n i

/ σ− , 23 61 /n i
/ σ− ], where iσ  represents

the variance of the data set in the ith dimension and n is the size of sample data set.

The performance of the system is then measured on independent test corpuses for different
spatial configurations (see Sect. V). For the two-source scenario, one test set is the corpus
collected by Cooke (1993), chosen because it is commonly used in computational ASA studies
(Brown and Cooke, 1994; Wang and Brown, 1999; Wu et al., 2002). The corpus contains 10
voiced speech signals and 10 noise intrusions, encompassing a variety of common acoustic
interferences such as telephone ringing, rock music, and other speech utterances. In addition, we
employ a second corpus containing 10 normal speech utterances from the TIMIT database (see
Table II) as target mixed with the 10 intrusions from the Cooke corpus. In the case of three
sources, we use for testing the Cooke corpus: 5 speech signals form the target set and the other 5
form one interference source. The 10 intrusions then form the second interference source.
Therefore, in this three-source corpus every mixture contains two utterances plus an additional
intrusion.

One cue not employed in our model is the interaural envelope difference or IED. Auditory
models generally use IED in the high-frequency range (see for example Bodden, 1993) since the
auditory system becomes gradually insensitive to interaural phase differences above 1.5 kHz. We
have compared the individual performance of the three binaural cues: ITD, IID and IED, on a 1-
dimensional classification task based on the kernel density estimation method presented above.
Fig. 9 shows the error rates with respect to frequency channel for the classification task on the
Cooke corpus as the testing set, where we consider two cases: target source in the median plane
and the acoustic interference at 5° (Fig. 9A) and 30°  (Fig. 9B). For IED results are given for the
frequency range of interest - above 1.5 kHz (i.e. channel number > 80). As the source separation
increases, error rates for IED and IID improve. On the other hand, ITD loses discriminabili ty for
high-frequency channels where the multiple-peak problem results in the same ITD for both target
and interference (Fig. 9B). As indicated in Fig. 9, we have found no benefit for using IED after
incorporating ITD and IID. This is the reason that IED is not included in our model. Fig. 9 also
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displays the corresponding error rate for our model that uses the joint ITD-IID space and it gives
the best performance across different spatial configurations.

TABLE II: TARGET SIGNALS OF THE TESTING SET

ID Speaker ID Utterance
S0 MWSB0 “Bright sunshine shimmers on the ocean”
S1 MDCD0 “Challenge each general's intell igence”
S2 MDHS0 “The Thinker is a famous sculpture”
S3 MTAA0 “Only lawyers love milli onaires”
S4 MRPC1 “Biblical scholars argue history”
S5 FPKT0 “They make us conformists look good”
S6 FJRE0 “Artificial intelli gence is for real”
S7 FPAC0 “A good attitude is unbeatable”
S8 FREH0 “Too much curiosity can get you into trouble”
S9 FBCH0 “Clear pronunciation is appreciated”
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Figure 9. Discriminabili ty comparison for the three binaural cues, ITD, IID and IED, and the joint ITD-IID
space. Error rates are displayed as a function of channel number (frequency) for a classification task for
two spatial configurations. A: Target source in the median plane and interference on the right side at 5°. B:
Target source in the median plane and interference on the right side at 30°. IED results are shown for
frequencies above 1.5 kHz, i.e. above channel number 80.

V. EVALUATION AND COMPARISON

A binary mask produced by the model described in the last section approximates very well the
corresponding ideal binary mask. As an example, Fig. 10 shows a comparison between the ideal
binary mask and the estimated mask for a mixture of target male speech presented at 0° and
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interference female speech at 30° at the better ear. In the figure, a blank pixel indicates a T-F unit
in which the target dominates. The two masks are very similar.
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Figure 10. A comparison between an ideal binary mask (A) and the binary mask resulting from our model
(B) for a mixture of male utterance in the median plane (target) and female utterance on the right side at
30° (interference). The black regions indicate those T-F units dominated by target speech.

In order to evaluate the performance of our system for speech segregation, a segregated
signal is reconstructed from a binary mask following a method described by Brown and Cooke
(1994). To quantitatively assess system performance, we measure in decibels the SNR using the
original target speech before mixing:

 ( )∑∑ −=
t

ET

t

T tststsSNR 22
10 )()()(log10                                                                         (19)

where )(tsT  represents the original target signal and )(tsE  the estimated target reconstructed
from the binary mask. One can similarly measure the SNR of the original mixture by replacing
the denominator with )(tsN , the noise intrusion. To avoid distortions, )(tsT  and )(tsN  represent
the reconstructed signals using an all -one binary mask with original target and original intrusion
as input, respectively. To minimize the loss of target energy we take advantage of the higher
initial SNR at the better ear. For example, in the case of target at -15° and interference at 15°, the
initial SNR difference at the two ears is 5.4 dB.  Although our model results in only a SNR
difference of 0.7 dB between the two ears after segregation, the reconstructed signal
corresponding to the better (left) ear contains more target energy, thus yielding better li stening
quali ty. Therefore, all the following evaluations are performed at the better ear.

For the two-source case, the model is systematically evaluated at the better ear for various
combinations of azimuth angles. We compare the SNR gain obtained by our model against that
obtained using the ideal binary mask. For the test corpus of Table II, Fig. 11 shows the results for
a spatial separation of 5° and target at azimuth 0°, 40° and 80°. Results are similar across
mixtures in the same noise category; hence, we present the averaged result for each category.
Very good results are obtained when the target is close to the median plane for an azimuth
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separation as small as 5°. Performance degrades when the target source is moved to the side of
the head and this is a direct consequence of poorer resolution of the binaural cues at higher
azimuth angles. When comparing with the SNR of the initial mixture, there is an average-SNR
gain of 13.76 dB for the target in the median plane, and it reduces to 5.04 dB with target at 80°.
When the spatial separation increases, excellent results are obtained across all spatial
configurations. Figure 12 shows results for target at 0°, 30° and 60° and interference at 30° to the
right of target. Similar results are obtained for other spatial configurations. The above
performance profiles are in qualitative agreement with human experimental data (Blauert, 1997).
Figure 13 shows that the system performs equally well on the Cooke corpus. Fig. 13A gives the
results for a 5° azimuth separation and the average improvement is 13.73 dB. Similarly, Fig. 13B
gives the results for a 30° separation.
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Figure 11. Systematic results for two-source configuration with 5° azimuth separation. Black bars
correspond to the SNR of the initial mixture, white bars indicate the SNR obtained using ideal binary mask,
and gray bars show the SNR from our model. Results are obtained for speech mixed with ten types
intrusions (N0: pure tone; N1: white noise; N2: noise burst; N3: ‘cocktail party’ ; N4: rock music; N5: siren;
N6: trill t elephone; N7: female speech; N8: male speech; N9: female speech) for different spatial
configurations. A: Target at 0°, interference at 5°.  B: Target at 40°, interference at 45°.  C: Target at 80°,
interference at 85°.
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Figure 12. Systematic results for two-source configuration with 30° azimuth separation. Black bars
correspond to SNR of the initial mixture, white bars to the SNR obtained using an ideal binary mask, and
gray bars to the SNR from our model. A: Target at 0°, interference at 30°. B: Target at 30°, interference at
60°. C: Target at 60°, interference at 90°.
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Figure 13. Systematic results for two-source configuration using the Cooke corpus as the test corpus. Black
bars correspond to SNR of the initial mixture, white bars to the SNR obtained using an ideal binary mask,
and gray bars to the SNR from our model. A: Target at 0°, interference at 5°.  B: Target at 0°, interference
at 30°.

Our approach, li ke other location-based methods using cross-correlation, can be
extended to cases with more than two sources. With given locations, our model performs
target segregation in a simil ar manner. Figure 14 ill ustrates the performance of the model in
a three-source scenario with target located in the median plane and two interfering sources
at –30° and 30°. Here, the 10 noise intrusions from the Cooke corpus are presented at 30°
azimuth and the target is reconstructed based on the right ear mixture (closer to 30°). As
previously, results are mean values for the 10 types of noise intrusion. The performance
degrades compared to the corresponding two-source situation, from an average SNR of
about 12 dB to 4.10 dB. Still , the average SNR gain obtained is approximately 11.31 dB.
Informal li stening tests suggests that the model filt ers out the interference effectively.
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Figure 14. Evaluation for a three-source configuration. The target is in the median plane and intrusions are
at -30° and 30°. Black bars correspond to the SNR of the initial mixture, white bars to the SNR obtained
using ideal binary mask, and gray bars to the SNR from our model.

In order to draw a quantitative comparison, we have implemented Bodden model (Bodden,
1993), which produces good-quali ty sound separation using source locations. The method used in
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the Bodden’s cocktail -party processor is a great deal more complicated than the model presented
here. Bodden’s system uses a 24-channel filterbank intended to simulate criti cal bands. His
model contains an extended cross-correlation mechanism based on contralateral inhibition that
incorporates ITD in the low frequency range and IED in the high frequency range as well as IID.
Additional weights in the cross-correlation method are trained to adapt the system to the actual
HRTFs. For a fair comparison, our implementation of the Bodden system uses the same 128
channel gammatone filterbank employed in our system; we also implemented the Bodden model
with 24-channel criti cal bands and the results are not as good. We find that, when two sources
are relatively close, the Bodden model is less robust than ours. Our comparison is based on the
Cooke corpus and a spatial configuration of target at 0° and intrusion on the right side at 30°, an
azimuth separation in the range where his model performs optimally. As displayed in Fig. 15, our
model shows a considerable improvement over the Bodden system, producing 3.5 dB average
improvement.
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Figure 15. SNR comparison between the Bodden model (white bars) and our model (gray bars) for a two-
source configuration: target in the median plane and interference at 30°. The black bars corresponds to the
SNR of the original mixture.

DISCUSSION

The human auditory system is capable of adapting to a variety of acoustical situations. A key
feature of our model is the introduction of supervised learning for different spatial
configurations, and training is conducted independently for different frequency channels. We
assume that such training takes place before performing specific segregation tasks, and it would
correspond to learning during the development stage. Supervised signals for a spatial
configuration of target and intrusion could be supplied in a number of ways, including sound
localization, signal estimation from a specific location, and even information extracted from a
different modali ty (e.g. vision). It is worth emphasizing that, unlike a typical supervised learning
situation, the training here does not need to capture the specific contents of training signals. As a
result the model can be trained equally well using other natural sounds, and estimated
distributions generalize in a broad range. In an earlier study (Roman et al., 2002), for example,
we employed a different training methodology and a different training corpus, but the system
performance was very similar.
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While satisfying the demands of an effective computational system, our model is strongly
motivated by physiological and psychoacoustical findings regarding the extraction of spatial
features (Patterson et al., 1988). The peripheral processing is based on a gammatone filterbank,
which has a foundation in physiology and psychoacoustics. Similarly, the cross-correlation
mechanism for ITD extraction as well as the across-frequency integration for localization are
supported by related physiological findings (Popper and Fay, 1992).

An open question concerns the role of spatial location in perceptual separation of competing
sounds. The experiments by Culli ng and Summerfield (1995), using simulated vowels in which
the formants were defined by noise bands, showed that simultaneous grouping across frequencies
based on ITD is weak. Later experiments by Darwin and Hukin (1997; 1999) found that ITD
plays a weak role in concurrent sound segregation, but a much stronger role in linking acoustic
events from a common location over time. The recent experiments of Freyman et al. (2001)
further showed a sizeable improvement in recognizing target speech in the presence of one or
two competing speakers based on perceived spatial separation, which suggests a location-based
grouping mechanism. Our computational results demonstrate that computed locations can play
an effective role in across-frequency grouping. On the other hand, many monaural cues are also
important for sound source segregation (see the Introduction), and how to incorporate both
monaural and binaural cues in a comprehensive system remains a challenge.

Our approach uses characteristic clustering of the joint ITD-IID space in order to accurately
estimate an ideal binary mask. Related models for estimating target masks have been proposed
previously (Glotin et al., 1999; Jourjine et al., 2000). Such models, however, assume input
directly from microphone recordings and head-related filtering was not considered. Simulation of
human binaural hearing introduces different constraints as well as clues to the problem. First,
both ITD and IID should be utili zed since IID is more reliable for higher frequencies than ITD.
Second, frequency-dependent combinations of ITD and IID arise naturally for a fixed spatial
configuration. Consequently, channel-dependent training for each frequency band becomes
necessary. Our tests with just ITD (as in Glotin et al.) or channel-independent classification (as
in Jourjine et al.) yield considerably inferior performance.

As ill ustrated in Fig. 14, the proposed model can be used to extract target speech from
an acoustic mixture that contains more than one intrusion. Although segregation results are
expected to drop as the number of sources increases, this property of our model differs from
bli nd source separation using independent component analysis (Hyväarinen et al., 2001) or
spatial filt ering using sensor arrays (Krim and Viberg, 1996); such techniques have strong
requirements on the number of sensors that increases as the number of sources increases in
an auditory scene.  A main reason for this difference is that auditory considerations play a
large role in our model design.

In terms of limit ations, our model currently does not address room reverberation or
moving sound sources. The locali zation of multi ple moving sources in reverberant
conditi ons with just two sensors is a complex topic. Some tracking mechanism based on
measurements of binaural cues across frequency channels, combined with channel selection
to discard unreli able T-F units, could be employed to estimate the locations of active
sources. For voiced sources, periodicity may provide a measure for the reliabili ty of T-F
units (see Wu et al., 2002). Other auditory mechanisms, such as the precedence effect and
forward/backward masking, could also provide important cues to cope with reverberation.
Our model also does not address how to define a target in a multi -source situation, and to
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address this issue would inevitably require some high-level processes such as attention and
task specification. We plan to investigate these and other related issues in future work.

To conclude, we have proposed a model for speech segregation based on spatial
location. We have observed systematic deviations of the ITD and IID cues with respect to
the relative strength between target and acoustic interference, and configuration-specific
clustering in the joint ITD-IID feature space. Consequently, learning of binaural patterns
can be employed for individual frequency channels and different spatial configurations.
Finally, the system estimates a binary mask in order to eliminate acoustic energy in time-
frequency units where interference is stronger than target. Our model has been
systematically evaluated, and it achieves substantial improvement over an existing
computational system.
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