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Abstract

We present an expressive feature model for recognizing the
performance effort of human actions. A set of low and high
effort examples for an action are initially factorized into its
three-mode principal components, followed by a learning
phase to compute the expressive features required to bring
the model estimation of effort into agreement with percep-
tual judgements. The approach is demonstrated using real
and illusory movements.

1. Introduction
“Dynamic movements” are categories of movements per-
formed under varying degrees of effort. Does his walk ap-
pearleisurely, or is he walking in ahurry? Does that pack-
age lookheavyor light for her to carry? People are quite
adept at identifying the amount of effort exerted by a per-
son from subtle visual cues. For example, nuances in body
motion can reveal how light or heavy a box is for a person to
lift [16]. Our goal is to develop computational systems ca-
pable of identifying the “perceptual dynamics” associated
with different performance efforts for the task of recogni-
tion. Intelligent machines capable of recognizing human
action efforts are particularly relevant to automatic video
surveillance, ergonomic evaluation, and sports analysis.

Instead of matching new movements to multitudes of
training examples based on their proximity in some fea-
ture space, we present a system that learns the “expressive”
motion features associated with a dynamic movement and
computes a metric estimation of the effort. Our approach
first constructs a three-mode factorization of low and high
effort examples and then tunes the model using expressive
features derived from additional labeled effort examples. A
weighted-SSE minimization technique using perceptually-
labeled training data is employed to approximate human
judgements of effort similarity. We demonstrate the ap-
proach with the task of recognizing the amount of effort
exerted by a person carrying a bag. Two movement illu-

sions are also employed to further demonstrate the percep-
tual similarity of the model.

An important result demonstrated in this research is that
people do not match motion sequences to examples by min-
imizing standard SSE of position or joint-angle trajectories.
We present a three-mode weighted-SSE model can be used
to produce results similar to human observations.

The remainder of this paper is described as follows. In
Sect. 2, we present related work on effort and style analy-
sis. Section 3 motivates the use of expressive (key) features.
The overall framework is presented in Sect. 4, describ-
ing the three-mode factorization technique, the estimation
of action effort, and the expressive feature learning algo-
rithm. In Sect. 5, we outline the experiments performed to
demonstrate the approach, followed by the results in Sect.
6. Lastly, we discuss the relevance of the approach to com-
putational systems in Sect. 7, and present a conclusion of
the research in Sect. 8.

2. Related Work
There has been much recent work in computer vision on
the detection, tracking, and recognition of human actions
(See reviews [1, 8]). In this paper, we present a general
three-mode approach for the analysis and recognition of the
performance effort of human actions.

The most related research addressing a three-mode anal-
ysis of human movements over various performance ef-
forts is presented in [12]. Arm segment velocities of 12
athletes throwing three differently weighted balls were ex-
amined using a three-mode factorization. The components
themselves weremanually inspected in an attempt to de-
termine loadings signifying horizontal/vertical velocities,
proximal/distal velocities, various throwing phases, and dif-
ferent skill levels of the throwers.

Closely related to the recognition of action effort is anal-
ysis of style. A bilinear model was used in [17] for sepa-
rating perceptual content and style parameters. A Fourier-
based approach to generate human motion with emotional



properties was described in [20]. A Hidden Markov
Model (HMM) with entropy minimization was used by [3]
to generate different state-based animation styles, and a
Parameterized-HMM was used by [24] to model stylistic
gesture variations. A factorization of motion capture data
for extracting person-specific motion signatures was de-
scribed in [22], and a movement exaggeration model using
measurements of observability and predictability of joint
angles was presented in [7].

3. Expressive Features as Key Features

The success of perception (machine or man) relies on the
ability to construct model representations whose assump-
tions and constraints reflect the structure and regularity of
the world. In the absence of any domain knowledge or pref-
erence for certain features, any two object classes share the
same number of properties and thus cannot be distinguished
when compared over all possible features (referred to as the
ugly-duckling theorem [23]). A “key feature” is a property
that can be reliably inferred in a particular context, where
the likelihood of correctly indicating the property is high
(few false targets) and the property itself has a significant
prior probability of occurring [14].

With respect to recognizing action effort, do some prop-
erties of the movement vary consistently across effort to en-
able reliable discrimination of effort (e.g., which joint mo-
tions contribute the most to the overall percept of the action
effort)? We refer to these key features asexpressive fea-
tures1. We will show that standard minimization of SSE
over all trajectories is not the approach used by human ob-
servers when matching movements, but that certain trajec-
tories are used to drive the perceptual rankings and there-
fore act as key features. We will present a model that can
infer these expressive features to enable the model to make
judgements similar to those of people.

4. Three-Mode Expressive Model

Many times it is preferable to reduce the dimensionality of
large data sets for ease of analysis (or recognition) by de-
scribing the data as linear combinations of a smaller number
of latent, or hidden, prototypes. Singular value decomposi-
tion and principal components analysis are standard meth-
ods for achieving this data reduction, and have been suc-
cessfully applied to severaltwo-modeproblems in com-
puter vision (e.g., [19, 11, 2]).Three-modefactorization
[18] is an extension of these traditional two-mode methods
and offers a framework suitable to incorporating expressive
features for efficient recognition of action efforts in a low-
dimensional space.

1An alternate meaning of expressive features is given by [6].
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Figure 1: (a) Three-mode configuration of dynamic-effort
movement data. (b) Three-mode factorization of data.

Dynamic movements are inherently three mode: body
pose (mode 1), time (mode 2), and effort (mode 3). With the
use of time-normalized trajectories as input, the data can be
organized into a cubeZ (See Fig. 1.a) with the rows in each
frontal planeZk comprising all the trajectories for a partic-
ular effort indexk. This data cube could be “flattened”, or
rasterized, into an ordinary two-mode matrix, but this sim-
ply ignores the underlying three-mode nature of the data.

Three-mode factorization decomposes the data cubeZ
into three orthonormal matricesG, H, andE that span the
column (pose), row (time), and slice (effort) spaces (See
Fig. 1.b). Typically, each mode needs only to retain its first
few components to capture most of the fit toZ. Note that
any two of the three basis sets cannot be produced within a
single two-mode factorization. The core matrixC has three
dimensions and represents the relationships of the compo-
nents inG, H, andE for reconstructing the original data
in Z. An alternating least-squares algorithm for solving the
three-mode factorization is presented in [9]. A related ten-
sor decomposition can be found in [21].

The three-mode factorization ofZ can be concisely writ-
ten in matrix form as

Z = GC(HT ⊗ ET ) (1)

where⊗ is the Kronecker product. Any frontal planeZk for
a given effort indexk (an action at a particular effort) can
be formulated as

Zk = G

(
u∑

r=1

ekrCr

)
HT (2)

Therefore, we can reconstruct any frontal planeZk by
choosing the correctekr component loadings from the effort
modeE. To identify an unknown effort for a movement, we
must solve for the properekr loadings.

4.1. Estimating Action Effort
The three-mode factorization for each data elementzijk of
Z can be written as a summation of three-mode elements,
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where the effort loadings can be isolated from the remaining
factorized terms

zijk =
s∑

p=1

t∑
q=1

u∑
r=1

giphjqekrcpqr (3)

=
u∑

r=1

ekr

(
s∑

p=1

t∑
q=1

giphjqcpqr

)
(4)

=
u∑

r=1

ekrαijr (5)

If we have a nearly diagonal core (withcpqr ≈ 0 when
p 6= q), we can further reduce the computations with
αijr =

∑min(s,t)
p=1 giphjpcppr. The ekr values in Eqn. 5

can be estimated using least-squares methods.
Human movement exhibits smooth and predictable reg-

ularity with changes in the dynamic condition [10]. There-
fore only a few examples captured at distinct dynamic ef-
forts may be all that is required to successfully model the
actions. If we consider only two extreme efforts for an ac-
tion (e.g., slow/fast walking, light/heavy lifting), the three-
mode factorization ofZ (after mean-subtraction along the
effort dimension) is reduced to contain a single effort pa-
rametere. Movements examined between these extreme ef-
forts should not deviate considerably from this three-mode
basis.

To estimate the effort value for a movement of unknown
effort with this reduced model, we can solve an error func-
tionF using the sum-of-squares of the input and its formu-
lated reconstruction

F =
∑

i

∑
j

(zij − e · αij)
2 (6)

As all trajectories may not equally discriminate the ac-
tion effort (all may not be expressive features), we augment
the error function with expressibility weightsEi for each of
the feature-i trajectories

F ′ =
∑

i

Ei

∑
j

(zij − e · αij)
2 (7)

For minimizingF ′ to estimate the target effort parameter,
we compute the derivative with respect toe and re-arrange
to produce

ê =

∑
i Ei

∑
j zijαij∑

i Ei

∑
j α2

ij

(8)

Setting theEi values to 1 in Eqn. 8 yields the standard least-
squares estimation ofe (also attainable from two-mode
methods). Non-uniform expressive feature weights in Eqn.
8 can be used to compute effort values that do not necessar-
ily correspond to a standard minimization of SSE (as will
be demonstrated with human perceptual judgements of the
actions).

4.2. Learning Expressive Features
To learn the expressive feature weightsEi, we construct a
second error functionJ comparing additional training ex-
amples with knowne values (method to attain thee values
will be described in Sect. 5.4) to the estimatedê values
computed with Eqn. 8.

For a set ofk training motionsZ̃k and their efforts̃ek,
we define the matching error as

J =
∑

k

(ẽk − êk)2 (9)

=
∑

k

(
ẽk −

∑
i Ei

∑
j z̃ijkαij∑

i Ei

∑
j α2

ij

)2

(10)

=
∑

k

(
ẽk −

∑
i EiBijk∑
i EiAij

)2

(11)

This non-linear arrangement of theEi values can be
solved using a fast iterative gradient descent algorithm [5]
of the form

Ei(n + 1) = Ei(n)− η(n) · ∂J

∂Ei
(12)

with the gradients∂J
∂Ei

computed over allk training exam-
ples

∂J

∂Ei
= 2

∑
k

(
ẽk −

∑
i EiBijk∑
i EiAij

)
·
Aij

∑
i EiBijk −Bijk

∑
i EiAij

(
∑

i EiAij)
2 (13)

The learning rateη is re-computed at each iteration to yield
the best incremental update. A random-restart approach is
employed to handle local minima. Following convergence
of Eqn. 12, effort values can be estimated for new input
movements using Eqn. 8.

5. Experiments
We analyzed our approach in the context of determining the
“carrying effort” of a person holding a bag (in one hand) of
increasing weight while walking on a treadmill.

Motion data of the movements were collected, and the
lightest and heaviest carry were used to construct the three-
mode basis. People were then asked to compare each of the
carrying movements to a set of synthetic movements sam-
pled from the three-mode model and choose the best match
(mimicking the computer recognition process). Given these
perceptual mappings, the expressive feature weights were
automatically learned to tune the three-mode model to pro-
duce effort values similar to the human judgements. Two il-
lusory movements were additionally tested with the learned
model and compared to human observations.
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5.1. Motion Capture
A Vicon-8 motion capture system with 14 video cameras
was used to create a hierarchical skeleton of the body
with 3-D joint-angle trajectories sampled at 30 Hz (Ac-
claim ASF/AMC format). The trajectories for the move-
ments were lowpass filtered using a 5th order, zero-phase
forward-and-reverse Butterworth filter with cut-off at 6 Hz.
Two walk cycles were automatically extracted from each se-
quence using trajectory curvature peaks and averaged into a
single walk cycle. The joint positions as seen from a camera
placed between a front and side view of the person (45 de-
grees) were computed and rendered. Recent video tracking
advances that could be applied to generate these joint posi-
tions include [15, 13, 4], and will be investigated in future
work (the focus in this paper is movement representations
for recognition).

We captured 9 carrying sequences (carrying 0 – 40 lbs,
in 5 lb increments) for a person walking on a treadmill at 1.4
MPH. The lowest (lightest) and highest (heaviest) carrying
efforts are shown in Fig. 2.a. Additionally, we produced
22 “synthetic” movements by linearly interpolating and ex-
trapolating a three-mode model created from the position
data for the lightest and heaviest carry (producing 2 lighter,
15 interpolated, and 5 heavier). These synthetic movements
will be used in the perceptual mapping task.

5.2. Input Representation
At this point we must decide on a representation for the
movements to construct the three-mode basis for recogni-
tion. Rather than committing to any particular set of higher-
level composite feature definitions, we represent move-
ments more generally as sets of low-level motion trajecto-
ries. Figure 2.b compares the results of a standard least-
squares effort estimation with the three-mode model for
the carry examples using x-y joint positions and 2-D joint-
angles. As both methods produce essentially the same re-
sults, we selected the 2-D angle representation as it has
fewer degrees-of-freedom (10) and more invariants (e.g.,
translation, scale, and possibly rotation).

5.3. Illusory Movements
We additionally created an artificial low-effort carry̌Zlow

and high-effort carryŽhigh from manually altering the
motion capture data. These two movements, when com-
pared to the 22 synthetic model movements using a non-
expressive effort estimation (Eqn. 8 with allEi = 1), both
map to the same synthetic movement (#11 of 22). How-
ever, these artificial movements perceptually appear quite
distinctly as light and heavy efforts:̌Zlow → LOW-EFFORT

andŽhigh → HIGH-EFFORT. These illusions will be used
to further demonstrate the perceptually-based behavior of
the model that was trained only using the real motions.
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Figure 2: (a) Light (left) and heavy (right) carry figures. A
bag is held in the right hand. (b) Position vs. angular effort
estimation.

5.4. Perceptual Mapping Task
Nine people were given the task of matching the carrying
movements to the set of synthetic model motions to provide
a mapping for Eqn. 12 to learn the expressive features. Each
person was capable of distinguishing side-by-side examples
of extreme light and heavy carrying movements prior to the
matching task.

A computer program was implemented to conduct the
mapping task, and is shown in Fig. 3. On the left, one of
11 carry movies (9 real, 2 illusory) is shown as a “refer-
ence” movie. On the right, one of the 22 synthetic model
movies is shown. Below the synthetic movie, a slider bar is
provided for the user to quickly and easily seek through the
possible synthetics. Moving the slider bar to the left or right
instantly displays lighter or heavier looking movies, respec-
tively. The reference and synthetic movies are synchronized
and played repeatedly. The reference movies are selected in
random order for each trial. The slider bar is initially set to
a random position for each reference movie.

Once the user has made a choice of which synthetic
movie most closely resembles the reference movie, the per-
son selects a confirmation box and clicks theNEXT button
to load the next reference movie. The program records the
synthetic movie choice for each reference movie. Two com-
plete trials were required, with the first trial used only to
familiarize the person with the program and the movies.

5.5. Learning Perceptual Features
After the perceptual task is completed, each reference
movie (for each person) is mapped to a particular synthetic
movie generated from the original three-mode model. For
each selected synthetic movie, there exists a knowne value
(used to generate the movie). The mean and standard devia-
tion for the reference-synthetice mappings of the nine peo-
ple are then computed (not including the illusory movies).
Using the meane values, Eqn. 12 is converged to the ex-
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Figure 3: Screen-shot of perceptual task program.

pressive feature weights needed to bring the model estima-
tion of effort (Eqn. 8) into alignment with the human judge-
ments of the movements.

6. Results
We present the results of the perceptual matching task in
Fig. 4.a. Rather than a smooth mapping from low (light)
to high (heavy) effort, the 7 lower-effort carry movements
visually appeared similar, yet distinct from the remaining 2
higher-effort carry movements. The average mapping cor-
relation of pairwise subjects wasρ = 0.91 (SD 0.05). The
standard least-squares effort estimate is also shown for com-
parison. There is a noticeable difference around reference
movies 6 and 7.

The meane values determined from the perceptual map-
ping task were used in Eqn. 12 to learn the expressive
feature weights. The method consistently converged to the
same trajectory weights, with the lowerback (.36), right-hip
(.15), neck (.59), and right-elbow (1.0) determined to be the
expressive features (See Table 1). These results are mean-
ingful as they relate to the increased leaning of the body
and straightening of the carry arm as weight was added to
the bag. The left counterbalance arm was not found to be
an expressive feature even though it had considerable de-
viation from low to high effort (thus affecting the standard
least-squares estimation). In Fig. 4.b, the efforts estimated
with the learned three-mode model are compared with the
perceptual means.

We additionally tested the sensitivity of the gradient de-
scent algorithm by adding random noise to the perceptual
mean values (within .5 SD for each reference movie). The
normalized average of the expressive weights computed for
100 random-augmented mappings showed a similar result
as the original perceptual means, but introduced very small

Angular Expressive Weights
1 2 3 4 5 6 7 8 9 10

(a) .36 0 0 .15 0 .59 0 0 0 1
(b) .35 .03 0 .35 0 .61 .02 0 .09 1

Table 1: Learned expressive weights (normalized) for the
carrying examples using (a) perceptual means and (b) per-
ceptual means with random noise trials.

weights for the left-hip (.03), left-shoulder (.02), and right-
shoulder (.09). To further demonstrate that standard least-
squares estimation is not sufficient to produce perceptually-
valid results, we turn to the illusory movements. Figure 4.c
illustrates that the non-expressive least-squares estimation
maps the illusory movements to basically the same effort in
the three-mode basis. Perceptually, the result is quite differ-
ent. The illusory movements were perceived to be signifi-
cantly different (Mann-Whitney U test: U=81,p < 0.0003).
The results of the learned model more closely resemble the
perceptual choices than do the standard least-squares re-
sults, even though the illusory data was not used to train
the model. This supports our hypothesis that all motion fea-
tures are not equal during motion recognition.

7. Computational Relevance
As with other principal component approaches, this recog-
nition method provides a fast and efficient computation of
action effort. Additionally, the approach shows that stan-
dard SSE computations do not produce perceptual results.
Once the system has been trained, the recognition of move-
ment effort is computed using Eqn. 8. Theαij values and
the denominator of this equation can be computed off-line
prior to recognition. Since only those feature-i trajectories
with high expressibility weights are used to determine the
effort, trajectories with low weight can be removed from the
computation, reducing the total amount of processed data to
only the most expressive trajectories for the category. This
has an added advantage in that the approach can therefore
accommodate occlusions of non-expressive trajectories. To
verify the action category, the distance-from-feature-space
(DFFS) residual [19] could be examined using the same
three-mode model.

8. Conclusion
We presented an expressive feature model for analyzing and
recognizing action effort. Initially, a set of low and high
effort examples for an action are factorized into its three-
mode principal components. Using a perceptually-based
mapping of real to model-generated synthetic movements,
a weighted-SSE minimization technique learned the expres-
sive motion trajectories needed for the model to produce ef-
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Figure 4: (a) Perceptual (mean± 1SD) and least-squares effort estimation for real motions. (b) Perceptual and learned efforts
of real motions. (c) Perceptual, learned, and least-squares efforts of illusory movements.

fort labels similar to human judgements.
The approach was demonstrated with carrying exam-

ples and two illusory movements to demonstrate the im-
provement of the three-mode weighted-SSE technique over
a non-expressive SSE approach. Future work includes in-
vestigating an auto-mapping procedure that can mimic the
human matching process, examining additional action cat-
egories (walking, running, throwing, lifting, etc.), incorpo-
rating natural video input, and modeling the effort regulari-
ties across multiple people. Perhaps the approach could be
extended to additionally recognize different people.
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