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Abstract

Designing scalable and efficient Message Passing Inter-
face (MPI) implementations for emerging cluster intercon-
nects such as VIA-based networks and InfiniBand are im-
portant building next generation clusters. In this paper, we
address the scalability issue in the implementation of MPI
over VIA by on-demand connection management mecha-
nism. The on-demand connection management is designed
to limit the use of resources to what applications absolutely
require. Thus, the MPI implementation ensures that re-
source usage scales only as demanded by the application
itself, not the underlying system.

We address the design issues of incorporating the on-
demand connection mechanism into an implementation
of MPI over VIA. A complete implementation was done
for MVICH over both cLAN VIA and Berkeley VIA. Per-
formance evaluation on a set of microbenchmarks and
NAS parallel benchmarks demonstrates that the on-demand
mechanism can increase the scalability of MPI implemen-
tations by limiting the use of resources as needed by appli-
cations.

Furthermore, performance evaluation also shows that
the on-demand mechanism delivers comparable perfor-
mance as the static mechanism in which a fully-connected
process model exists in MVICH over cLAN VIA. It even
performs better for certain applications. It performs bet-
ter in MVICH over Berkeley VIA on Myrinet. These results
demonstrate that the on-demand connection mechanism is
a feasible solution to increase the scalability of MPI imple-
mentations over VIA- and InfiniBand-based networks.

�
This research is supported in part by Department of Energy’s Grant #

DE-FC02-01ER25506 and an NSF Grant #EIA-9986052.

1 Introduction

In recent years, clusters of workstations have become
both a popular and powerful environment on which to do
parallel processing due to the tremendous improvement in
network hardware and protocols, and the ever decreasing
cost of commodity components. On these cluster systems,
it is crucial to have an efficient communication system that
can make effective use of the capability of the underlying
network hardware and deliver the actual performance of the
hardware to applications.

User-level communication protocols such as AM [32],
VMMC [6], FM [22], U-Net [31, 33], LAPI [29], and
BIP [24] were developed to attempt to achieve this per-
formance objective by bypassing the operating system and
eliminating intermediate copies in the critical communica-
tion path. To achieve high performance promised by these
protocols, it is important that the network interface cards
(NIC) have the ability to perform certain aspects of the pro-
tocol processing, offloading the work from the host CPU.

The Virtual Interface Architecture (VIA) [10, 8] has been
developed to standardize these protocol efforts and to make
these features available in commercial systems. VIA de-
fines an abstraction of network protocols and hardware ca-
pabilities that provides applications with direct access to the
network, eliminates intermediate data copies using remote
direct memory access (RDMA), and thus increases host pro-
cessor application productivity. Since its introduction, dif-
ferent software and hardware implementations of VIA have
become available. Berkeley VIA [7], Giganet VIA [11],
Servernet VIA [28], M-VIA [1], and FirmVIA [5] are some
of the prominent implementations.

More recently, the InfiniBand [14] architecture has been
proposed to provide the next generation high-performance
communication architecture for both inter-processor com-
munication and I/O systems. InfiniBand incorporates many



of the features of the VI architecture and draws on research
efforts from high performance networked I/O. In the next
several years, VIA/InfiniBand will be the standard architec-
ture for high performance computing systems, servers, and
clusters.

On these cluster systems, MPI [19] has become the
de facto standard for developing portable parallel applica-
tions. Several MPI implementations built on VIA are cur-
rently available: MPI/Pro [27] based on GigaNet cLAN;
MVICH [17], a port of the generic MPICH implemen-
tation on M-VIA, GigaNet VIA and Servernet VIA; and
LAM/MPI [18] on M-VIA. We have also recently retar-
geted MVICH to Mellanox’s InfiniBand card [16, 2]. Sev-
eral complex design issues have been addressed in the liter-
ature describing these efforts and in overview papers [25].
However, the aspect of connection management has not yet
been explored in detail.

MPI 1.2 does not specify a connection model. It as-
sumes that all processes are fully connected after initializa-
tion. VIA, though, is connection-oriented, such that for any
pair of processes that will communicate, a VI endpoint must
be created on each node and a connection between these
two VI endpoints must be established beforehand. These
connections between processes must be handled explicitly
by the MPI library itself when implemented on the VI Ar-
chitecture. In MVICH, for instance, each process creates�����

VI endpoints and then establishes
�����

connections
to other processes statically during MPI Init(), where

�
is

the number of processes in the MPI application. Thus, af-
ter initialization, there is a fully-connected network among
all participating processes from the point of view of the VI
layer. The total number of VI endpoints is

���	�
������
, with

half that many connections. This connection management
mechanism is simple to implement; however, there are both
scalability and performance problems in this static connec-
tion mechanism:

1. In large systems, the time to establish and to destroy
a fully-connected process network is considerable and
significantly affects the time to start and to terminate a
parallel application. This is because connection setup
is typically a costly operation with operating system
involvement.

2. Beyond the basic connections required for message
passing, connections are likely to be needed for other
operations, such as for I/O operations on a parallel file
system and for debugging. The number of connections
supported in a specific VIA system serves as a hard
limit to scaling, since each VI endpoint and connec-
tion consumes resources from the VIA library, the de-
vice driver, and the NIC, which are limited. Thus, a
fully-connected parallel application can easily exceed
this limitation with only a moderate task size.

3. The logically fully-connected process network
requires a physically fully-connected network,
which requires a considerable number of links and
switches [35].

4. In an MPI implementation based on VI, each VI is as-
sociated with certain internal buffers and pre-preposted
descriptors [8]. The amount of these resources for each
process would ideally be a function of an application’s
communication pattern when scaling to large systems.
However, in the static connection mechanism, it is a
function of the number of processes in the application,
regardless of what the application really needs. In re-
ality, many large-scale scientific parallel applications
do not require a fully-connected process model. Ta-
ble 1 lists the average number of communication des-
tinations per process in several applications [30]. Con-
sequently, a large amount of resources is never used in
these applications for the static connection mechanism
approach. For example, if each VI is associated with
a 120 kB buffer as in MVICH, the total amount of un-
used memory for the NAS benchmark [20] Conjugate
Gradient (CG) application on a 1024 node cluster is
119 GB using the static connection mechanism. We
should note that due to the restriction of VIA commu-
nication, these buffers have to be pinned down in phys-
ical memory. Therefore, a large amount of memory
is essentially unused. This not only wastes valuable
resource but also adversely affects the system perfor-
mance.

Table 1. Average number of distinct destina-
tions per process in several large-scale appli-
cations.

App 
Number of 
Processes 

Average number of 
distinct destinations 

64 5.5 
sPPM 

1024 < 6 
64 41.88 

SMG2000 
1024  < 1023 

64 0.98 
Sphot 

1024 < 1 
64 3.5 

Sweep3D 
1024 < 4 

64 4.94 
Samrai 4 

1024 < 10 
64 6.36 

CG 
1024 < 11 

 
5. The number of VIs and connections may have an im-

pact on performance [4] of the underlying VIA com-
munication systems, even if the endpoints are never
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used after setup. Figure 1 shows this impact on Berke-
ley VIA over Myrinet. Thus, it is worthwhile to elimi-
nate all unused VIs and connections in the implemen-
tation of MPI on a VIA-based communication system.
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Figure 1. Latencies in BVIA as a function of
the number of active VIs.

An alternative approach that reduces the number of VIs
and connections required by a large application is to estab-
lish connections when they are needed. We call this ap-
proach the on-demand connection mechanism. In this ap-
proach, the creation of two VI endpoints and establishment
of a connection between them are on a per-use basis for any
pair of processes, and undertaken only when it is known that
they need a connection to pass messages.

In this paper, we focus on designing and implementing
an on-demand connection mechanism in MPI over VIA. De-
tailed performance evaluations are also presented. The main
contributions of this paper are as follows:

� We have addressed the issues in incorporating the on-
demand connection mechanism into an MPI imple-
mentation on VIA-based communication systems.

� We have implemented this on-demand connection
mechanism in MVICH over cLAN VIA and over
Berkeley VIA on Mryinet.

� We have shown that by using the on-demand connec-
tion mechanism, the resource consumption of parallel
applications, such as the NAS parallel benchmarks, is
dramatically reduced.

� We have conducted a serial of performance evalua-
tions. Performance results of both microbenchmarks
and the NAS parallel benchmarks show that there is
very little performance degradation after incorporating
the on-demand connection mechanism in MVICH over

cLAN VIA. The performance even increases for cer-
tain applications. The performance over Berkeley VIA
on Myrinet is better than static mechanism.

The rest of the paper is organized as follows. Back-
ground and related work are presented in section 2. Sec-
tion 3 describes the design issues of incorporating the on-
demand connection mechanism into a generic MPI imple-
mentation, while section 4 presents our implementation of
the on-demand connection mechanism in MVICH. The per-
formance results are presented in section 5, followed by
conclusions and future work in section 6.

2 Background and Related Work

The Virtual Interface Architecture (VIA) [8] specifies the
interface between high performance network hardware and
computer systems. This architecture defines mechanisms to
eliminate much of the protocol processing overhead and in-
termediate data copies by providing user applications a pro-
tected and directly accessible network interface called the
Virtual Interface (VI). Many papers offer detailed overviews
of VIA; here, we only present information on VIA related
to connection management.

A VI is a bi-directional communication endpoint. To use
a VI, a point-to-point channel must be established between
two VIs, in a process known as connection setup. Each
channel supports the traditional two-sided send/receive
model, as well as a one-sided remote memory access model.
Each VI consists of a send queue and a receive queue. A
process can submit a request, in the form of a descriptor, to
either queue to facilitate a data transfer. The send/receive
semantics require a one-to-one correspondence between
send descriptors and receive descriptors. Receive descrip-
tors must be posted with the address of the destination
buffer before the arrival of the expected message; otherwise,
the message is dropped. This requirement, consequently,
has a significant impact on the implementation of MPI over
VIA. Particularly, a certain number of descriptors with mes-
sage buffers must be allocated and preposted in the receive
queue for each VI. Note that these buffers must be pinned
down in physical memory.

VI connection establishment is typically a costly opera-
tion with operating system involvement. Initially in version
0.95 of the VIA specification, only a client-server connec-
tion model [8] was defined. The server side waits for in-
coming connection requests and then either accepts them or
rejects them based on the attributes associated with the re-
mote VI. Since VIA specification 1.0, a peer-to-peer model
has been included as well. In this model, either of the two
process to be connected can initiate the connection by call-
ing a VIA peer-to-peer connection setup function. The con-
nection is established after both of them have called the con-
nection setup function.
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There is some literature which analyzes the VI architec-
ture and its ability to support parallel and distributed com-
munication in general, and MPI implementations in par-
ticular. The inherent costs of using VI primitives to im-
plement Active Messages and Split-C was analyzed in [3],
while [27] described efficiency features of the MPI/Pro ar-
chitecture gained by exploiting certain characteristics of the
VI architecture. Also, [18] presented how to build a sub-
strate over VIA to ease the implementation of LAM/MPI,
and [13] compared the performance of Myrinet and Gi-
gaNet and their respective impact on an MPI implementa-
tion. Their results indicated that the implementation of MPI
is crucial for system performance. In [9], performance of
MPI/Pro over cLAN and ScaMPI over SCI was compared,
while [21] compared performance of LAM/MPI, MPICH
and MVICH on a Gigabit Ethernet network. In [34], Wong
et al. present a study of the scalability of the NAS Paral-
lel benchmarks from the aspect of resident working set and
communication performance. None of these works studied
the connection scalability issues of the implementation of
MPI over VIA and the impact of connection management
on application performance.

Brightwell et al. [25] analyze the scalability limitations
of VIA in supporting the CPlant runtime system as well as
any high performance implementation of MPI. The authors
of this paper claim that the on-demand connection mecha-
nism is not a good approach to increase the scalability of
the MPI implementation by qualitative analysis; however,
their analysis does not consider the impact of the number of
connections on the underlying VIA communication systems
and the impact of the allocation of large memory buffers on
system performance. We argue that with efficient design
and implementation, the on-demand connection mechanism
can achieve comparable performance. And it does not re-
quire an extra thread to make progress as well as keeping the
same determinism, predictability, and fairness as the static
mechanism.

3 Design of On-demand Connection Manage-
ment

In the on-demand connection mechanism, the creation of
VI endpoints and the establishment of a connection between
two VI endpoints are performed strictly on a per-use basis
for any pair of processes, and undertaken when they pass
messages for the first time. Although conceptually simple,
it is not trivial to incorporate it into current MPI implemen-
tations. In this section, we present the design issues in on-
demand connection mechanism. We also discuss how to
maintain progress and MPI communication semantics.

3.1 Threading vs. Polling

The on-demand connection mechanism requires that an
MPI process should be able to handle communication re-
quests and connection requests simultaneously. The pro-
cess cannot just block for communication, or just block for
connection. It must be ready to handle both. Since VIA
itself doesn’t provide such capability, this problem must be
addressed explicitly in the MPI implementation.

Two alternatives can be used to solve the problem. The
first one is to use a separate thread to handle all connec-
tion requests. The main thread is dedicated to communi-
cation and computation. In this way, the communication
progress can be ensured. However, a separate thread will
incur quite large overhead and the context switch between
the main thread and the connection thread may degrade ap-
plication performance. Some MPI implementations, like
MPI/Pro, are multi-threaded. For these implementations, it
may be possible to use the existing thread to handle connec-
tion requests. However, many MPI implementations, such
as MPICH, are based on a single thread. These MPI im-
plementations may not even be thread safe. Incorporating
the on-demand connection mechanism into them by adding
a separate thread will be very difficult.

Another method is using polling to handle both com-
munication and connection requests. In a polling based
approach, the process checks periodically to see if there
are pending communication or connection requests. This
matches quite well with single threaded MPI implementa-
tions such as MPICH and it has very little overhead. In this
paper, we have chosen such an approach and implemented
it for MVICH on top of both cLAN VIA and Berkeley VIA.

3.2 Client/Server vs. Peer-to-Peer Connection
Model

VIA provides two connection models: client/server and
peer-to-peer. In theory both model can be used to imple-
ment on-demand connection mechanism. However, we have
found that the peer-to-peer connection model is generally
better for the on-demand connection mechanism.

In the client/server connection model, one process acts
as the server and the other acts as the client. The two pro-
cesses have different actions during the connection setup
procedure. Consequently, we have to be careful choosing
the client and the server; otherwise deadlock situations may
occur. The asymmetry of the client/server model also makes
the implementation awkward.

In the peer-to-peer model, both processes involved in the
connection setup behave similarly. And the order which of
the two processes perform these actions first doesn’t matter.
This matches quite well with the MPI communication be-
cause either the message sender or the receiver can initiate
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the communication setup. The symmetry of the model also
makes the implementation task easier.

In Berkeley VIA, only peer-to-peer connection model is
provided. In cLAN VIA, both models are provided. How-
ever, as we shall see later, the performance of peer-to-peer
connection is much better than client/server in cLAN VIA.

3.3 Progress Rule

The progress rules of MPI [19] are both a promise to
users and a set of constraints on implementors, though dif-
ferent interpretations seem to be possible. MPICH [12] fol-
lows a loose interpretation in which all pending commu-
nication requests are progressed by the library every time
a communication function is called. On the other hand,
MPI/Pro [27] makes progress of all messages independently
of the sequence of the user process calls by using an addi-
tional thread to facilitate progress, complying with a more
strict interpretation of the MPI progress rule. In incorpo-
rating the on-demand connection mechanism into MPI for
the VI Architecture, it is important to maintain this progress
rule.

The on-demand connection mechanism can be incorpo-
rated into the above two typical implementations of MPI
without violation of their respective progress semantics.
The requirement of a “server” thread waiting to establish
connections [25] depends on which interpretation of the
MPI progress rule is provided. In MPICH, no thread is
needed to maintain the loose interpretation of progress. A
peer-to-peer connection request can be considered as an-
other type of nonblocking communication requests. It can
be progressed by the library every time a communication
function is called. In particular, the connection setup can be
done in the first blocking communication request if the ini-
tial send and receive requests are blocking operations. Or it
can be done in other following calls if the first request is a
nonblocking request.

In the case that there is a progress thread as implemented
in MPI/Pro, this progress thread can take care of connection
requests as well as communication requests. No extra con-
trol thread is required.

3.4 Pre-posted Send Requests

In the on-demand connection mechanism, one impor-
tant scenario must be carefully examined for both correct-
ness and message delivery order. This scenario is that in
which an MPI issues multiple nonblocking communication
requests before the corresponding connection is established.
For the VI Architecture, any requests posted into the Send
Queue of a VI which is not yet connected are discarded,
which would result in MPI message loss. To prevent this,
pre-posted send requests must be stored if the correspond-

ing connection is not yet established and handled in order
later when connections are available.

Attention also must be paid to the order of processing
these pre-posted send requests. MPI specifies that messages
are non-overtaking: if a sender sends two messages in suc-
cession to the same destination, and both match the same
receive, the second message cannot be received until after
the first. Without violation of the MPI message order rule,
each VI must have its own first-in-first-out (FIFO) queue
to store these pre-posted send requests. Thus, when a con-
nection is established, pending requests in the associated VI
FIFO queue must be processed in order.

Note that all receive requests and send requests issued
after the related connection is established can be handled
directly.

3.5 Message Reception with MPI ANY SOURCE

MPI allows a special parameter to be specified as the
source host in a receive which serves to match a message
issued from any sender. Since the receive may potentially
match a message issued from any sender, the receiver may
need to establish connections with all other processes.

This communication pattern exhibits a mismatch with
the peer-to-peer connection model on which the on-demand
connection mechanism depends. The only solution is to is-
sue peer connection requests to all other processes in the
specified communicator upon encountering a receive from
MPI ANY SOURCE. The receiver will then have an estab-
lished connection with the process with which it will even-
tually communicate. In this solution, each process has the
same probability to established connection and communi-
cate with the receiver as long as it wants. The receiver
can receive messages from all processes in the group. For
example, the receiver may first receive a message from A,
the connection request from B can arrive before the second
message from A arrives, then a connection can be estab-
lished between B and the receiver. The first message from
B may or may not arrive before the second message from
A.

Note that there is no problem with fairness in this
scenario since any nondeterminism is inherent in the
application itself. If the receiver chooses to use
MPI ANY SOURCE, and there happen to be multiple
senders which could issue messages that might all match the
receive, MPI offers no ordering guarantees, nor any concept
of fairness in this case. As messages arrive, including data
and connection requests, they will be processed in order and
matched against the receive queue.
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3.6 Semantics of MPI Communication Modes

MPI defines four communication modes: standard,
buffered, synchronous and ready. They differ in whether
a matching receive is required in order to start a send, and
whether a send operation completes independently or if it
requires that a matching receive has taken place. Only the
buffered mode send is local since its completion does not
depend on the occurrence of a matching receive. Send op-
erations in the other three modes are non-local: successful
completion of a send operation may depend on the occur-
rence of a matching receive. (The system has the option
of buffering some sends and declaring local completion.)
The on-demand connection mechanism has no impact on
the non-local send modes. It does not change the local se-
mantics of a buffered send either. This means that the se-
mantics of MPI communication modes are maintained after
adding the on-demand connection mechanism into the im-
plementation of MPI.

4 Implementation

We implemented the on-demand connection mechanism
for MVICH on top of both GigaNet cLAN VIA and Berke-
ley VIA on Myrinet. MVICH is a freely available port of
MPICH over several VIA implementations. All modifica-
tion for incorporating the on-demand connection mecha-
nism occur in the ADI layer [12].

Unlike the original MVICH implementation with static
connection management, there is no VI creation and VI
connection setup in the MPI low-level initialization routine,
MPID Init(). Instead, a VI is created and a peer-to-peer
connection request is issued during the processing of the
first communication request. Before the connection for a
VI is established, all send requests on that VI are stored in
a FIFO. Thus, on the sending side, modification is made in
the device contiguous send routines, MPID IsendContig()
and MPID IssendContig(). It first checks whether the lo-
cal VI and its connection for the destination process have
been created and setup. If not, it creates a VI and issues a
peer-to-peer connection request to try to make a connection
between the local VI and a destination VI. The send request
is stored into the pre-posted send request FIFO queue for
that VI. If the VI has been created, but a connection is still
not available, only the request is stored. If the connection is
available, the request is processed normally.

On the receiving side, all calls go through a routine in
the VIA receive interface, MPID VIA Irecv(), and the same
modification as that on the sending side is made there, ex-
cept that there is no extra queue needed to store receive
requests when the connection is not yet established. In
the case that the receive request uses MPI ANY SOURCE,
though, the receiver tries to create a VI for each process

in the specified communicator if the VI does not exist and
further issues a peer-to-peer connection request.

MVICH adheres to the weak form of the MPI progress
rule in that message progress is guaranteed only when user
processes call the MPI library. This is achieved by running
a common device check routine, MPID DeviceCheck(),
as part of most of the MPI library calls. Essentially,
MPID DeviceCheck() is the function in MVICH which
handles all message progress. Modification is thus made to
MPID DeviceCheck() to maintain both connection progress
and message progress. Because the peer-to-peer connec-
tion model is similar to nonblocking point-to-point message
passing, MPID DeviceCheck() can check all pending con-
nection requests in a non-blocking manner. When a connec-
tion is established and the FIFO of the local VI is not empty,
requests in the queue are processed in order by the progress
routine.

Our implementation of the on-demand connection mech-
anism keeps the same communication semantics and
progress guarantees as the original MVICH implementation
using the static connection mechanism except for a small
difference in the non-local semantics of the standard send
mode. In the static mechanism, the standard mode send is
non-local and the successful completion of a send opera-
tion may depend on the occurrence of a matching receive,
for example, when flow control credits are used up for short
messages or a long message switches to a rendezvous proto-
col. In the on-demand connection mechanism, even if flow
control credits are available for short messages, the com-
pletion of short messages still depends on whether the con-
nection can be established. That is, the completion of pre-
posted send requests for short messages at the source pro-
cess depends on whether the receiver has planned to com-
municate with the sender. This is not a problem in any cor-
rect MPI program because the receiver can always find a
chance to issue a connection request to the sender in any
communication requests destined for the sender. Note that
this also complies with the original interpretation of the MPI
progress rule.

5 Performance Results

To evaluate the performance of static connection mecha-
nism and on-demand connection mechanism, we conducted
a series of performance measurements using a set of micro-
benchmarks and NAS parallel benchmarks.

5.1 Experimental Setup

Our experimental testbed is a cluster system consisting
of 8 Dell Power Edge 6400 nodes connected by GigaNet
cLAN and Myrinet. We use cLAN 1000 Host Adapters and
cLAN5300 Cluster switches. LANai 7.0 Adapters are used
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for Myrinet. Each node has four 700MHz Pentium III Xeon
processors, built around the ServerWorks ServerSet III HE
chipset, which has a 64-bit 66MHz PCI bus for all experi-
ments. Thus, there are actually 32 CPU processors in total.
These nodes are equipped with 1GB of SDRAM and 1MB
L2-level cache. The linux kernel is 2.2.17.

5.2 Scalability

One of our main objectives is to increase scalability of
MPI implementations on the Virtual Interface Architecture.
As mentioned earlier, implementing the on-demand connec-
tion mechanism in MVICH enables the implementation of
MPI over VIA to limit the use of resources to what appli-
cations absolutely require. Table 2 lists the average number
of VI endpoints created in each process in static mecha-
nism and on-demand mechanism for tests in this paper (due
to space limit, some of them are not presented and can be
found in [15]). As shown in this table, the utilization of
resources associated with VIs is very low with static mech-
anism. With increase of the size of applications, it can be
expected that the utilization becomes much lower. This is
true for most parallel applications in which the number of
communicated processes does not grow in proportion with
the size of applications, instead it remains constant or grows
with log-scale. On-demand mechanism eliminates all un-
used VI endpoints, connections and their related resources.

Table 2. Average Number of VIs and Resource
Usage in Each Process with static connection
mechanism and on-demand connection mechanism.

Ave. number of VIs Resource Utilization 
App Size 

static on-demand static on-demand 
16 15 2 0.13 1.0 

Ring 
32 31 2 0.06 1.0 
16 15 4 0.27 1.0 

Barrier 
32 31 5 0.16 1.0 
16 15 4 0.27 1.0 

Allreduce 
32 31 5 0.16 1.0 
16 15 15 1.0 1.0 

Alltoall 
32 31 31 1.0 1.0 
16 15 5 0.33 1.0 

Allgather 
32 31 6 0.19 1.0 
16 15 4 0.27 1.0 

Bcast 
32 31 5 0.16 1.0 
16 15 4.75 0.32 1.0 

CG 
32 31 5.78 0.19 1.0 
16 15 15 1.0 1.0 

MG 
32 31 15 1.0 1.0 
16 15 15 1.0 1.0 

IS 
32 31 31 1.0 1.0 
16 15 8 0.53 1.0 

SP 
36 35 9.83 0.28 1.0 
16 15 8 0.53 1.0 

BT 
36 35 9.83 0.28 1.0 
16 15 4 0.27 1.0 

EP 
32 31 4.75 0.15 1.0 

 

Furthermore, decreasing the number of VIs and connec-
tions in the communication system can relieve the issue
of performance scalability in the underlying communica-
tion system, such as Berkeley VIA, which has performance
penalty to maintain a large number of VIs and connections.
The fewer VIs and connections used, the better performance
the NIC and the system can deliver.

5.3 Latency and Bandwidth

Generally there are two methods to complete a request:
one is to infinitely poll the status of the request and an-
other one is to wait for the completion. Particularly, the
default method in MVICH over cLAN VIA is to first check
100 times and then go to wait if the request does not com-
plete (spinwait). Since cLAN VIA does not use polling
to implement wait, this has an impact on the performance
of MVICH when the spincount (the default value is 100)
is changed to a considerablely large number to make re-
quests done in the spin step (here we call it polling). Thus,
two cases are considered with the static connection mech-
anism for the performance measurement on cLAN VIA in
the following several subsections: static polling and static
spinwait. While in Berkeley VIA, wait operation is imple-
mented by an infinite loop to check status. Thus, there is no
difference between polling and spinwait. That is, MVICH
on Berkeley VIA always uses polling to wait for any request
completion. Thus, there is only one case, referred as static
polling, with the static connection mechanism on Berkeley
VIA.

Figures 2(a) and 2(b) show the latency results of
MVICH on cLAN and Berkeley VIA, respectively. Polling,
spinwait and on-demand achieve same performance. In
these latency and bandwidth tests, any request can be done
in spin step in spinwait. Thus, there is no difference be-
tween polling and spinwait on cLAN VIA. Similar results
are shown in Figure 3 for bandwidth. Since the default
threshold from the eager protocol to the rendezvous pro-
tocol is 5000 bytes, a jump happens around 5000 bytes in
the test of bandwidth. This indicates that a threshold greater
than 5000 is expected to deliver better performance.

5.4 Collective Communications

In this subsection, we report the performance results of
MPI Barrier() and MPI Allreduce() using the static con-
nection mechanism and the on-demand mechanism. As
mentioned earlier, two cases, static polling and static spin-
wait, are considered with static connection mechanism on
cLAN VIA.

� MPI Barrier: To measure the latency of a barrier op-
eration, each process repeats 1000 barrier operations
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Figure 2. Latency of MVICH on cLAN VIA and Berkeley VIA.
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Figure 3. Bandwidth of MVICH on cLAN VIA and Berkeley VIA.

and then reports the average latency. One of the nodes
gathers these latency values and computes their aver-
age value as the latency of a barrier operation. Fig-
ure 4(a) shows the latency results with different num-
bers of processes. If the number of processes is not a
power 2 number, fluctuation occurs since extra steps
are needed for nodes which are not in the binomial
tree [26]. As seen in Figure 4(a), the on-demand mech-
anism can achieve same results as the static mechanism
using polling. If spinwait is used, there is a high prob-
ability that some processes cannot complete a request
in the spin step. When these processes go to wait step,
big overhead occurs. Thus, spinwait is no good for
barrier operation.

Figure 4(b) shows the barrier latency of MVICH over

Berkeley VIA. Because the number of VIs and connec-
tions has impact on performance of the Berkeley VIA,
the on-demand mechanism can achieve better perfor-
mance. For example, the latency of barrier on 8 nodes
is 161 microseconds using the on-demand mechanism,
while 196 microseconds using the static mechanism.
The number of VIs is 3 in the former case, and 7 in the
latter case.

� MPI Allreduce: This is one of the most frequently
used operations [30] in large scientific applications.
The test program we used is the llcbench [23] bench-
mark suite. The operation in MPI Allreduce is
MPI SUM. Originally, this program repeats these col-
lective operations multiple times and then each process
reports its own average latency. Only the latency on the
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Figure 4. Latency of Barrier in MVICH on cLAN VIA and Berkeley VIA.

master process (process 0 as default) is reported as the
latency of the allreduce operation. In our test, the mas-
ter process gathers all values from others and outputs
the average value as the latency shown in Figure 5.

On cLAN VIA, the on-demand mechanism can achieve
the same performance as the static mechanism using
polling with negligible degradation. If spinwait is
used, performance of MPI Allreduce is worse. The
same reason as in the barrier operation can be applied
here.

On Berkeley VIA, the reduction of VIs in the on-
demand mechanism is beneficial. It can be seen that the
on-demand mechanism achieves better performance
than the static mechanism.

Similar results are achieved for other collective opera-
tions. Overall, on-demand mechanism delivers the same
performance as static polling, while both perform better
than static spinwait.

5.5 Results of NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB) have been widely used
to objectively measure the performance of highly parallel
computers and to compare their performance [20]. The
NPB suite consists of a set of 8 programs: EP, FT, MG,
CG, IS, LU, SP and BT. There are three standard problem
sizes, Class A, B and C for small, medium and large size
problems, respectively. The benchmark results are given by
the CPU time, total operation count (Mop/s) and process
utilization (Mop/s per process). Mop/s is derived from the
CPU time and the total operations in the benchmarks. In this
paper, we show the results of MG, CG, IS, SP and BT only.
We use the CPU time as comparison metrics. Because we

are interested in the impact of on-demand mechanism, the
normalized CPU time is presented in this paper, in addition
the CPU time.

Figure 6 shows the performance of 5 NPB programs
with different program sizes and numbers of processes. Our
testbed has 32 processors, the largest number of processes
tested in CG, MG, IS is 32, while only 16 in SP and BT
since they require a power-of-two number of processes. For
MVICH over Berkeley VIA, we could not run more than
one processes on each node. Thus, the largest number of
processes supported for Berkeley is 8. The x axis lists the
tested combinations of the class and The number of pro-
cesses for each program, and the y axis represents the nor-
malized CPU time for clearer comparison. For example, in
Figure 6(c), C.32 means the CG program runs on 32 pro-
cessors using the Class C size.

It should be noted that in those benchmarks, the time for
establishing connections is not included with static connec-
tion mechanism. In on-demand mechanism, part of connec-
tions are established during the MPI initialization (MPI Init
has communication) and others are established during the
execution of applications. That is, part of connection time
is included in the CPU time reported by the NAS bench-
marks with on-demand mechanism. This connection over-
head can be amortized by all communication operations on
that connection. When there is much communication, the
performance improvement by the reduction of VIs and con-
nections and other related resources can win up. This is a
common pattern found in all benchmarks, as seen in Fig-
ure 6 and 7.

MG results are shown in Figure 6(a). MG uses fine-
grain communication. Its spatial decomposition of data pro-
vides nice communication pattern in the nearest-neighbor
region. Barrier, allreduce and bcast are called in MG be-
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Figure 5. Allreduce Latency in MVICH on cLAN VIA and Berkeley VIA.

sides send/recv. Thus, the on-demand mechanism and static
polling can achieve better performance over static spinwait
for MG. Figure 6(a) also shows that on-demand mechanism
can deliver better performance compared to static polling.
This may be related to our modification in the communica-
tion code path.

IS benchmark mainly relies on allreduce, alltoall and all-
toallv (a vector version of the all-to-all operation). IS is
communication bound. For the B class with 16 processes
a total amount of 1920 MB must be transfered at each all-
to-all exchange [9]. Thus, as shown in Figure 6(b), IS can
benefit from the better performance of collective operations
in static polling compared to on-demand mechanism. Simi-
larly they both perform better than static spinwait.

Figure 6(c) shows the CG performance. We can see that
the on-demand mechanism can achieve comparable perfor-
mance to the static mechanism when polling is used. The
average percentage of performance degradation is less than
2%. It performs better than the static mechanism when spin-
wait is used.

Figure 6(d) shows the performance of SP and BT. It
can be observed that the on-demand mechanism can deliver
comparable performance as the static polling.

Figure 7 shows the performance of IS, CG, EP, SP and
BT of MVICH over Berkeley VIA. The on-demand mecha-
nism performs better than the static mechanism. This is at-
tributed to the performance improvement with the reduction
of VIs and connections. Note that even there is same num-
ber of VIs with static and on-demand mechanisms in the
IS benchmark, on-demand mechanism still performs better.
This is because the number of VIs gradually increases as
needed with on-demand mechanism.

Table 3 represents the actual CPU time.

5.6 Initialization Time

As mentioned earlier, the static mechanism can be imple-
mented in two ways: client-sever and peer-to-peer models.
cLAN VIA supports both models, while Berkeley VIA only
supports peer-to-peer model. We measured the time for fin-
ishing MPI init function in MVICH over cLAN VIA and
Berkeley VIA, respectively. The initialization time shown
is an average of the initialization time from all processes.
The client-server implementation and the peer-to-peer im-
plementation over cLAN VIA are both measured.

Figure 8(a) shows the initialization time over cLAN
VIA. Current implementation of the client-server model in
MVICH is a serialized version, in which connections are
established in order regardless of the arrival order of con-
nection requests from peer processes, while the peer-to-peer
scheme can avoid this serialization by checking each poten-
tial connection request. Thus, time for establishing a fully-
connected VI network among all participating processes in
the client-server model is much higher than other two. Note
that in the on-demand mechanism, it also uses peer-to-peer
model. However, it does not create a fully-connected net-
work. Thus, the initialization time is lower than the peer-to-
peer implementation of the static mechanism.

Figure 8(b) shows the initialization time in MVICH over
Berkeley VIA. Similarly, the initialization time is lower
than the peer-to-peer implementation of static mechanism.
This time has an impact on the wall clock time for the exe-
cution of applications.

6 Conclusions and Future Work

The scalability of an implementation of MPI over VIA is
one of crucial issues in cluster systems connected by VIA-
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Figure 6. Performance results of NPB programs with static connection management and on-demand connec-
tion management in MVICH over cLAN.
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Figure 7. Performance results of NPB programs with static connection management and on-demand connec-
tion management in MVICH over Berkeley VIA on Myrinet

based networks. Since InfiniBand has many characteris-
tics in common with VIA and with VIA-based I/O spec-
ifications such as Next Generation I/O (NGIO), this issue
will continue to exist along with next-generation InfiniBand
hardware. In this paper, we addressed the design issues
of incorporating the on-demand connection mechanism into
an implementation of MPI over VIA. A complete imple-

mentation was done for MVICH over cLAN VIA and over
Berkeley VIA on Myrinet. Performance evaluation on a set
of microbenchmarks and NAS parallel benchmarks demon-
strates that the on-demand mechanism can limit the use of
resources to what applications absolutely require. Thus,
the MPI implementation ensures that resource usage scales
only as demanded by the application itself, not the underly-
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Figure 8. Initialization time in MVICH on cLAN VIA and Berkeley VIA.

ing system.
Furthermore, performance evaluation also shows that the

on-demand mechanism delivers comparable performance
for collective operations based on MVICH over cLAN VIA
and better performance over Berkeley VIA on Myrinet. Per-
formance results of the NAS parallel benchmarks show that
the on-demand mechanism performs better than the static
mechanism over Berkeley VIA on Myrinet. The on-demand
mechanism can deliver comparable performance for these
benchmarks to static mechanism using polling over cLAN
VI over cLAN VI. It even performs better for certain bench-
marks.

We also addressed how to design and implement the on-
demand mechanism to maintain MPI semantics, determin-
ism, predictability, and fairness. We believe that the on-
demand mechanism is a feasible solution to address one im-
portant current scalability limitation in the implementation
of MPI on VIA-based networks.

Truly large-scale application performance evaluation is a
natural extension of this work. Combination of on-demand
connection establishment and dynamic flow-control on each
VI connection is another planned work.
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