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ABSTRACT 

We present GS3, a distributed, scalable, self-configuration and self-healing 
algorithm for multi-hop wireless networks. The algorithm enables network nodes in a 
2D plane to configure themselves into a cellular hexagonal structure such that cells 
have tightly bounded geographic radius and low overlap between neighboring cells. 
The structure is self-healing under various perturbations, such as node joins, leaves, 
deaths, movements, and state corruptions. For instance, it slides as a whole if nodes 
in many cells die at the same rate. Moreover, its configuration and healing are 
scalable in three respects: first, local knowledge enables each node to maintain only 
limited information with respect to a constant number of nearby nodes; second, local 
healing guarantees that all perturbations are contained within a tightly bounded 
region with respect to the perturbed area and dealt with in a one-way message 
diffusion time across the region; third, only local coordination is needed in both 
configuration and self-healing.  
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1. INTRODUCTION 
As increasingly small network nodes are becoming 
available, many “sense-compute-actuate”  networks are 
being realized. Several of these networks use 
unattended wireless nodes [1,2,4], which communicate 
with one another via intermediate node relays due to 
limited transmission range or energy [7,8]. The number 
of nodes is potentially large (thousands and millions of 
nodes are considered in earthquake relief and 
unmanned space vehicle scenarios, for instance) [1]. 
Thus, scalability is a key issue for large-scale multi-hop 
wireless networks.  

One way to achieve scalability is by “divide and 
conquer” , or hierarchical control. Network nodes are 
first grouped into a set of clusters by some clustering 
criterion. A leader is elected in each cluster to represent 
the cluster at higher levels. The same clustering scheme 
may be iteratively applied to the cluster leaders to form 
a hierarchy. In this hierarchy, local control is applied at 
each level to achieve some global objective. 

Most previous work on clustering [3,12] treats a 
network as a geography-unaware graph. The clustering 
criteria adopted are, for instance, the number of nodes 
in a cluster and the cluster size. These criteria do not 
take the geographic radius of clusters (simply called 
radius, henceforth) into account, which we argue is 
desirable in wireless networks, especially in large-
scale, resource constrained multi-hop networks: 1) 
many multi-hop wireless network applications, such as 
environment monitoring and temperature sensing, are 
inherently geography-aware and so reflecting 
geography in the underlying structure enables 
optimization of system performance. 2) Cluster radius 
affects energy dissipated for intra cluster coordination 
and thus the lifetime of a network. 3) Cluster radius 
affects the efficiency of local coordination functions 
such as data aggregation and load balancing. 4) Cluster 
radius affects the quality of communication over a 
shared wireless transmission medium; also, the larger 
the cluster radius, the less the frequency reuse. 5) 
Cluster radius affects the scalability and availability of 
a network, since it affects the number of clusters and 
the number of nodes in each cluster (the more the 
nodes in a cluster, the more available the cluster is).  

Moreover, given that expected multi-hop wireless 
networks are of large scale, they are subject to node 
failure, node join and leave, mobility, and state 
corruption, and they usually cannot be managed 
manually [5], self-configuration and self-healing is 
necessary in multi-hop wireless networks.  
 

Contributions of the paper In this paper, we 
present a distributed algorithm (GS3) for configuring a 

wireless locally planar network into clusters (which we 
henceforth call cells due to their geographic nature.) 
More specifically, the network nodes configure 
themselves into a cellular hexagonal structure, in 
which the network nodes are partitioned into hexagonal 
cells each with a radius that is tightly bounded with 
respect to a given value R (an ideal cluster radius) and 
zero overlap between neighboring cells. One node in 
each cell is distinguished, as the head of the cell, to 
represent this cell in the network. All heads in a 
network form a directed graph, called head graph, that 
is rooted at a “big”  node, which is the interface 
between the wireless network and external networks 
such as Internet.  

Our algorithm yields a self-healing system. The 
head graph and cellular hexagon structure are self-
healing in the presence of various perturbations, such 
as one or more node joins, leaves, deaths, movements, 
and state corruptions. More specifically, the self-
healing is such that the head graph and the cellular 
hexagon structure remain stable in the following 
senses: 1) unanticipated node leaves within a cell are 
masked by the cell; 2) in case several cells experience 
node deaths at about the same time (due to energy 
exhaustion), an independent shift of each cell enables 
the head graph as well as the cellular hexagon structure 
to slide as a whole yet maintain consistent relative 
location among cells and heads; 3) in case the root of 
the head graph moves d away from its previous 
location, only the part of the head graph that is within 

3d/2 radius from the root needs to change 
accordingly. Thus, an originally dynamic or mobile 
system is turned into a stable infrastructure for other 
network services such as routing.  The self-healing 
capability and the modular design of algorithm GS3 
enable different modules to be integrated so as to cater 
to different scenarios, in static as well as dynamic 
networks, immobile as well as mobile networks, and 
networks with just one big node or multiple big nodes.  

Our algorithm achieves scalablity in three respects: 
1) local knowledge enables each node to maintain the 
identities of only a constant number of nearby nodes; 2) 
local self-healing guarantees that all perturbations are 
dealt within (and the impact is confined to) a tightly 
bounded region around the perturbed area; the structure 
self-stabilizes within the time to diffuse an one-way 
message across the perturbed area; 3) only local 
coordination is needed in both the self-configuration 
and self-healing processes. (The complexity and 
convergence properties of our algorithm are 
summarized in Appendix 1.)  

The rest of the paper is organized as follows. In 
Section 2, we present the system model and problem 
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statement. We then develop algorithm for static 
networks, dynamic networks, and dynamic mobile 
networks in Section 3, 4, and 5 respectively. We 
discuss related work in Section 6. Section 7 concludes 
the paper and makes further comments on system 
model. For reasons of space, we relegate the discussion 
of complexity as well as convergence properties of our 
algorithm, description of algorithm modules, and 
proofs for theorems of the paper to the Appendix.  

2. SYSTEM MODEL AND PROBLEM 
STATEMENT 

2.1 System Model  
The system model consists of two parts: models for 
system nodes and perturbations.  
System nodes A system consists of a set of nodes on a 
2D plane, each having a certain wireless transmission 
range.  

Node distribution assumption There exists Rt 
(called radius tolerance) such that, with high 
probability, there are multiple nodes in each 
circular area of radius Rt in the plane.  

There are two kinds of nodes: big and small. 
Intuitively, the big node acts as the initiator as well as 
the access point for small nodes. That is, the big node 
initiates operations (such as clustering) at small nodes, 
and acts as the interface between small nodes and 
external systems such as Internet. For convenience, we 
assume that the system has one big node, and all other 
nodes are small (In Section 7, we discuss the case of 
multiple big nodes).  

Many wireless networks have some central control 
points that control system wide operations. E.g., sensor 
networks are used to sample the environment for 
sensory information (e.g. temperature) and propagate 
this data to a central point [6]. Also, in disaster 
recovery or battlefield scenarios, there is usually a 
commander for a group of rescue workers or soldiers 
that is the central point.  

Wireless transmission assumption Nodes can 
adjust transmission range, and detect location 
relative to other nodes. Destination-aware message 
transmission is reliable, but destination-unaware 
message transmission (such as broadcast) may be 
unreliable.  

A network node can detect the strength of a received 
signal, and calculate the distance from its 
communicating peer [15]. Thus nodes can calculate 
relative location among themselves just by local 
information exchange in a dense network, even without 
GPS support. Moreover, when a node sends a message 
to some known node(s), the message transmission can 

always be made reliable through mechanisms like 
acknowledgement and retransmission.  
Perturbations We consider two types of perturbations: 
dynamic and mobile. The former consists of node joins, 
leaves, deaths, and state corruptions, and the latter 
consists of node movements.  

Perturbation frequency assumption Node joins, 
leaves, and state corruptions are unanticipated and 
thus rare. Node death is predictable (e.g. as a 
function of its rate of energy consumption). The 
probability for a node to move distance d is 
proportional to 1/d.  

For pedagogical reasons, we classify networks into 
three: In a static network, there are neither dynamic nor 
mobile nodes. In a dynamic network, there can be 
dynamic nodes, but no mobile nodes. In a mobile 
dynamic network, both dynamic nodes and mobile 
nodes can exist.  

2.2 Problem of Self-configuration and Self-
healing 

Informally, the self-healing configuration problem is to 
partition a system such that the maximum distance 
between nodes within a partition is bounded, each 
partition, called cell, has a unique distinguished node, 
called head, and the heads are organized into a head 
graph that is self-healing under various perturbations. 
Nodes other than the head in a cell are called 
associates, and they communicate with nodes beyond 
their cell only through the cell head.  

We define: 
� Head graph: a tree that is rooted at the big node 

and consists of all cell heads.  
� Cell radius: the maximum geographic distance 

between the head of a cell and its associates.  
Formally, the problem is to design an algorithm 

that given R (ideal cell radius) where R ≥ Rt, 
constructs a set of cells and head graph that meet the 
following requirements:  

a) Each cell is of radius R± c, where c is a small 
bounded value with respect to R, and is a 
function of Rt.  

b) Each node is in at most one cell.  
c) A node is included a cell if and only if it is 

connected to the big node.   
d) The set of cells and the head graph are self-

healing in the presence of dynamic as well as 
mobile nodes. By self-healing, a system can 
recover from a perturbed state to its stable state 
by itself.  

Motivation a) The primary goal of geography aware 
self-configuration is to organize nodes into cells with 
certain ideal radius R that depends on application 
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scenarios (e.g. data aggregation ratio and node 
distribution). In practice, a system may not be able to 
organize itself into cells of exactly the ideal radius R, 
but the difference between the actual radius and R still 
need to be small enough, and is a function of Rt. b) By 
guaranteeing that each node belongs to only one cell, 
energy can be saved, and the number of cells as well as 
control complexity is reduced. c) If a node is able 
(unable) to communicate with the big node before 
configuration, it should still be able (unable) to do so 
after it. d) In large-scale wireless networks, automation 
is important. Moreover, node crash can drive a crashing 
network protocol into arbitrary state [17]. Thus self-
healing ability of a large-scale system is a must when 
the system elements are dynamic, mobile, and under 
perturbations from exterior environments. One way to 
achieve it is by self-stabilization.  

3. STATIC NETWORK 
3.1 Concepts 
Recall that in static networks, nodes are neither 
dynamic nor mobile. So we solve our problem without 
considering perturbations (i.e., requirement d) is 
ignored). Moreover, we assume there is no Rt-gap in 
static networks, where an Rt-gap is a circular area of 
radius Rt with no node inside. Rt-gaps are dealt with as 
a kind of rare perturbation in dynamic networks 
discussed in Section 4.  

Let us first consider an ideal case of the problem: 
given a plane with a continuous distribution of nodes, 
we may divide it into cells of equal radius R with 
minimum overlap between neighboring cells to obtain a 
cellular hexagon structure as shown in Figure 1. In this 
structure, each cell is a hexagon with the maximum 
distance between its geometric center and any point in 
it being R. Let the geometric center of a cell be the 
“head”  of all points in the cell. Then the distance 
between the heads of any two neighboring cells is R3 . 
And each cell that is not on the boundary of the plane is 
surrounded by 6 neighboring cells.  

R R3
IL1

IL2

IL3

 
Figure 1: Cellular hexagon structure 

Of course, in reality, node distribution is not 
continuous, thus there may be no node at the geometric 
center of some cell and it may be impossible to divide 
the network into exact hexagons as in Figure 1. But in 
scenarios where there are multiple nodes in any circular 
area of radius Rt, we can still approximate this structure 
by letting some node within Rt distance from the 

geometric center of a cell be a head, as is allowed in 
traditional cellular networks [10].  

Our solution is achieved in three steps. First, we 
cover a system with a hexagonal virtual structure as in 
Figure 1 such that the big node is located at the 
geometric center of some cell. Second, for each cell C 
in the virtual structure, we choose a node k closest to 
the geometric center pc of C as a head, and pc is called 
the Ideal Location of k, IL(k); Third, for every non-
head small node j covered by a cell C, we let j be an 
associate and chooses the best (e.g. the closest in a 
clockwise sense) head as its head, H(j); Thus, a head 
together with its associates form a cell, and the IL of 
the head is also called the IL of the cell.  

We designate the cell where the big node is as the 
central cell, and each set of cells of equal minimum 
distance from the central cell in terms of the number of 
cells in between as a cell band. If cells in a band are of 
d-cell distance from the central cell, this band is called 
a d-band, and the central cell alone forms the 0-band.   

Next, we discuss a scalable distributed algorithm 
that implements the above concepts.  

3.2 Algorithm 
Overview The self-configuration algorithm consists of 
a one-way diffusing computation across the network. 
The big node H0 initiates the computation by acting as 
the head for the 0-band cell (i.e. the cell whose IL is at 
H0), and selecting the heads of its neighboring cells in 
its search region. Then each newly selected head 
selects the heads of its neighboring cells in its search 
region, and so on until no new head is selected. Every 
node that has participated in the computation but not 
been selected as head becomes an associate and 
chooses the best head in the system as its head.  

If head i is elected by head j, we say that j is the 
parent of i, P(i), and i is a child of j, CH(j). P(H0) is H0. 
Then the search region of a head i is defined as the area 
within ( 3R+2Rt) distance from i that is between the 
two directions: L direction (LD) and R direction (RD) 
with respect to direction )()),(( iILiPIL  (see Figure 3). In 
order to guarantee that every node connected to H0 is 
covered by the diffusing computation, <LD, RD> is 
chosen as <0o, 360o> and <-60o-α, 60o+α> for H0 and 
the other heads respectively, where α = Sin-1(Rt/ 3R).  

In most cases, a (d+1)-band cell head is selected by 
a d-band head (d ≥ 0). But in the case where the speed 
of the diffusing computation differs at different 
directions with respect to H0, it is also possible that a 
(d+1)-band head is selected by a (d+2)-band head (d ≥ 
1). But this does not affect the correctness of GS3-S, 
and it is dealt implicitly in algorithm in Section 4. For 
simplicity, we do not discuss this case any further.  
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Algorithm modules The algorithm (GS3-S) consists 
of two programs (described in Figure 2): Big_node at 
H0 and Small_node at all the small nodes. Underlying 
these two programs are modules used for head 
organization: HEAD_ORG, used to organize heads, and 
HEAD_ORG_ RESP as well as ASSOCIATE_ORG_RESP, 
used to respond to a HEAD_ORG.  

In HEAD_ORG, a head i (including H0) organizes 
neighboring heads in its search region. It first gets the 
state (e.g. geographic location) of all the nodes in its 
search region by local information exchange; then it 
selects the neighboring heads using the low-level 
module HEAD_SELECT; last, it broadcasts the selected 
set of heads to nodes within ( 3R+2Rt) distance. In 
HEAD_SELECT (described in Figure 3), head i first 
calculates the ILs for the neighboring cells in its search 
region; then for each IL j that is not the IL of an 
existing head, i selects the best node less than Rt away 
from j as a head.  

In HEAD_ORG_RESP, a head sends its state in 
response to a HEAD_ORG at another head at most 
( 3R+2Rt) away. In ASSOCIATE_ORG_RESP, which is 
executed by a small node i in response to a HEAD_ORG 
at a head j at most ( 3R+2Rt) away, if i already has a 
head, i sets j as its head only if j is better than its 
current head; if i does not have a head, it sends its state 
to j, and waits for j’ s decision of whether i is selected 
as a head, and sets its status accordingly.  
(A more detailed description of these modules is given 
in Appendix 2) 

3.3 Analysis  
In this subsection, we discuss the invariant, fixpoint, 
self-stabilization, and other properties of algorithm 
GS3-S (proofs are given in Appendix 4).  
Notation 
Physical network Gp = (Vp, Ep), where Vp = {  j: j is a node in the 

system}  and Ep = { (i, j): i ∈ Vp ∧ j ∈ Vp ∧ (i and j are within 
transmission range of each other)} .  

Head Graph Gh = (Vh, Eh), where Vh={ i: i∈Vp ∧ i is a cell head}  
and Eh ={ (i, j): i ∈ Vh, j ∈ CH(i)} . 

Head level structure: the set of heads in a system and the 
geographic relation (distance, relative direction) among them.  

Geographic coverage: the geographic coverage of a node is the 
circular area on a plane that is centered at the node and has a 
radius equal to the current transmission range of the node. The 
geographic coverage of a system is the union of the geographic 
coverage of all the nodes in a system.  

Boundary cell: a cell that is on the boundary of the geographic 
coverage of a system.  

Inner cell: a cell that is not a boundary cell. 
Neighboring_heads(i): {  j: j is a head ∧ (head i and j’s geographic 

coverage adjoins} .  
Visible node: a node that is connected to H0  in Vp. 
Dist(i, j): cartesian distance between nodes i and j.  

Figure 2: Self-configuration algorithm for static networks (GS3-S) 

Figure 3: HEAD_SELECT module used in HEAD_ORG 

3.3.1 Invariant  
We show the correctness of algorithm GS3-S using 

an invariant, i.e. a state predicate that is always true in 
every system computation. Note that an invariant 
depends on the granularity of actions. Here we consider 
every algorithm module (e.g. HEAD_ORG) as an atomic 
action. Our invariant SI = I1 ∧ I2 ∧ I3, where Ij (j = 1, 2, 

Program Big_node 
var q: { bootup, work} ;   //node status 

/*  Big node boots up and organizes the 1-band cells * / 
q = bootup → HEAD_ORG(0o, 360o, R, R/4) //transit to status work 

Program Small_node 
var q: { bootup, head, work, associate} ;   //node status 

/*  Small nodes boot up, listen to nearby HEAD_ORG */ 
q = bootup → ASSOCIATE_ORG_RESP //transit to status head or 

associate 
[] 

/*  Heads organize neighboring heads in their search regions * / 
q = head → HEAD_ORG(-60o-α, +60o+α, R, R/4)  //transit to status 

work: α = Sin-1(Rt/ 3 R) 

[] 
q = work → HEAD_ORG_RESP 
[] 

/*  Associates respond to HEAD_ORG */ 
q = associate → ASSOCIATE_ORG_RESP  //remain status associate 

Module HEAD_SELECT (SmallNodes, ExistingHeads, LD, RD, R, Rt)  

Step 1: Calculate ILs of neighboring heads, NH, in the search region of i. 
Use  )()),(( iILiPIL  as reference direction (RD) (if P(i) =i, RD can be 

any direction), IL(i) as origin, and 3 R as radius, go both clockwise and 

counterclockwise, the points on the arc that are j×60o ( LD/60 ≤j ≤
RD/60) degree from RD are the ILs of neighboring heads.  

IL(i)

IL(P(i))

RtLD RDi1
i3

i2

-60o 60o
+2Rt

RD

R3

R3

R3

search region

a a

   

Step 2: Remove the set of IL that is the IL of some existing head from 
NH. I.e. NH ← (NH – EH), where EH = { j : j ∈ NH ∧ (∃ k ∈
ExistingHeads : ( dist(j, k) ≤ Rt ))} .  

Step 3: For each IL j in NH, let CA(j) = { k : k ∈ SmallNodes ∧ dist(k, j) 
≤ Rt} . CA(j) is the set of small nodes within Rt distance from IL j.  

Step 4:  For each IL j in NH, since CA(j) is non-empty, select the highest 
ranked node j’  in CA(j) as the  cell head corresponding to IL j, and 
set CH(i) as ( CH(i) ∪ { j’ }  ).  

Every node k in CA(j) is lexicographically ordered by <d, |A|, 
A>, where d is the distance between j and k, A stands for the angle 
(-180o ≤ A ≤ 180o) formed by GR and kj,  (A is negative if kj,
goes clockwise with respect to GR and positive if counter-
clockwise), and d has the highest significance. 

i

j
j’A

d
Rt

GR

                              �
 

Time complexity: θ ( |SmallNodes| ) 
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3) is individually closed under algorithm actions. The 
predicates are as follows.  
I1 (Connectivity) = I1.1 ∧ I1.2, where 

�
I1.1: Every pair of heads that is connected in Gh is 
connected in Gp, and vice versa.   
(∀ i, j ∈ Vh: there is a path between i and j in Gh ⇔ there is a path 

between i and j in Gp)  �
I1.2: Gh is a tree rooted at the big node H0.   
((P(H0) = H0) ∧ (hops(H0) = 0)) ∧ 
(∀ i ∈ (Vh – { H0} ): hops(H0, i) = hops(H0, P(i))+1) ∧ 
(∀ i, j ∈ Vh: i and j are connected in Gh) ∧  
(∀ i, j∈Vh: there is a path of length ≥ 2 between i and j  ⇒  

( P(i) ≠ j ∧ P(j) ≠ i ) 
where hops(i, j) is the path length between i to j in Gh.  

I2 (Hexagonal Structure)  = I2.1 ∧ I2.2 ∧ I2.3 ∧ I2.4, where 
�

I2.1: Each inner cell head has exactly 6 neighboring 
heads that form a cellular hexagon centered at head i 
and of edge length 3R, with vertices′ location 
deviation at most Rt.   
(∀ inner cell head i:  ( | neighboring_heads(i) | = 6)  
∧(∀j∈neighboring_heads(i): 3 R-2Rt ≤ dist(i, j) ≤ 3 R+2Rt )) 

�
I2.2: Each boundary cell head has less than 6 
neighboring heads, and the distance among them is 
bounded by [ 3R-2Rt, 3R-2Rt].   

(∀ boundary cell head i:  | neighboring_heads(i) | < 6)  
∧ (∀j∈neighboring_heads(i): 3 R-2Rt ≤ dist(i, j) ≤ 3 R+2Rt) ) 

�
I2.3: Each head, except for H0, has at most 3 children 
heads. H0 has 6 children heads if it is an inner cell 
head and at most 5 children heads otherwise.   

( ∀ head i ≠ H0: | CH(i) | ≤ 3 ) ∧  
(H0 is an inner cell head ⇒  ( | CH(H0) | = 6 )) ∧ 
(H0 is a boundary cell head ⇒  ( | CH(H0) | ≤ 5 ) ) 

�
I2.4: Each cell is of radius (R+Rrandom), where |Rrandom| 
is at most (2Rt/ 3 ). Each associate is of (R+Rrandom) 
distance to its head.   

(∀ inner cell C: ∀associate i ∈C: R−(2Rt/ 3 ) ≤ dist(i,H(i))  ≤ R+(2Rt/ 3 ))  

I3 (Inner Cell Optimality): Each associate in an inner cell 
belongs to only one cell and chooses the best (e.g. 
closest) head as its head. 

(∀ associate i in an inner cell: ∀head j ≠ H(i)⇒H(i) better than j ) 

Theorem 1: SI is an invariant of algorithm GS3-S.   
Theorem 1 and I2 imply 

Corollary 1: The distance among neighboring cell 
heads is bounded by [ 3R-2Rt, 3R-2Rt].  

(∀head i: (∀j∈neighboring_heads(i): 3 R-2 Rt ≤ dist(i, j) ≤ 3 R+2 Rt ) 

Corollary 2: The heads and their cells form a cellular 
hexagonal structure (shown in Figure 4) with bounded 
head location deviation Rt.  

3.3.2 Fixpoint 
A fixpoint is a set of system states where either no 

action is enabled or any enabled action does not change 
any system state we are interested in (e.g. Gh). It 
therefore characterizes the result of the self-
configuration process. Our fixpoint SF = F1 ∧ F2 ∧ F3 ∧ 
F4 as follows.  

H0

H22

H32

H33

H23

  H12H11

H21

H31

H41

H42

H13

H16

H14H15

H43

H34
GAP

 < dp   
Figure 4: Self-configured cellular hexagon structure  

F1 (Connectivity) and F2 (Hexagonal Structure) are the 
same as I1 and I2 respectively.  
F3 (Cell Optimality): Each associate belongs to only one 

cell and chooses the best head as its head.  
(∀ associate i : ∀ head j ≠ H(i) ⇒ H(i) better than j )  

F4 (Coverage): The set of heads and cells covers all the 
visible nodes in a system.    

(∀ visible node i : ∃ head j: j = H(i) ) 

Theorem 2: SF is a fixpoint of algorithm GS3-S.  
Requirement a) and b) are satisfied by Theorem 1 

and 2.  
Theorem 2, F1 and F4 imply 

Corollary 3: At SF, a node is in a cell if and only if it is 
connected to the big node in Gp, and vice versa.  

(∀ node i : H(i) ≠ NULL ⇔ there is a path between i and H0 in Gp)   
Requirement c) is satisfied by Corollary 3.  

3.3.3 Self-stabilization 
Theorem 3: Starting from any state, every computation 
of GS3-S reaches a state where SI holds within a 
constant amount of time.  
Theorem 4: Starting from any state where SI holds, 
every computation of GS3-S reaches a state where SF 
holds within time θ(Db), where Db = max{ dist(H0, i): i 
is a small node, and dist(H0,i) is the cartesian distance 
between H0 and i} .   

Theorem 3 and 4 imply 
Corollary 4: Starting from any state, every computation 
of GS3-S reaches a state where SF holds within time 
θ(Db).  

Termination of the diffusing computation follows 
from Corollary 4. 

3.3.4 Scalability 
The self-configuration algorithm GS3-S is scalable in 
that it only requires local coordination among nodes 
within ( 3R+2Rt) distance from one another, and each 
node maintains the identities (e.g. MAC address) of 
only a constant number of nodes, 1 for associates and 
at most 6 for heads, irrespective of network size.  

4. DYNAMIC NETWORK 
4.1 Concepts 
Recall that in dynamic networks, nodes can join, leave 
(e.g. failure), die, and node state can be corrupted. 
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Excluding node death, which is predictable, the other 
perturbations are unanticipated and therefore rare. 
There may also be Rt-gaps in node distribution. In this 
section, we extend GS3-S to GS3-D to deal with these 
perturbations.  

We propose three mechanisms to deal with node 
leave and death: head shift, cell shift, and cell 
abandonment. Self-stabilization easily handles the 
remaining perturbations, i.e. node joins and state 
corruptions. 

Head shift In dynamic networks, the associates in a 
cell are divided into two categories: candidate and non-
candidate. Associates within Rt distance from the IL of 
the cell are head candidates, with the rest being non-
candidates. In the case where only unanticipated head 
leaves occur, a new head can be found with high 
probability from the set of candidates, due to the low 
probability of all candidates in a cell leaving at the 
same time. Moreover, the extreme case where all 
candidates leave can still be dealt with using cell shift.  

Cell shift In case node death occurs, it is possible 
that the set of candidates of a cell becomes empty due 
to energy exhaustion after long enough system 
operation. In this case, the IL of the cell is changed to 
another point IL′ within the geographic coverage of the 
cell such that the corresponding candidate set is non-
empty, since energy usually exhausts faster at a head 
than at an associate. In many envisioned large-scale 
wireless networks, the traffic load across a network is 
statistically uniform due to in-network processing such 
as data aggregation [16], which means statistically 
uniform energy dissipation across the network. Given 
the fact that statistically there are multiple nodes in any 
Rt-radius circular area at the beginning of the self-
configuration, the lifetime of any two sets of candidates 
at different cells is statistically the same with low 
deviation, especially for cells close by. Therefore, if the 
ILs at different cells change (the relative position 
between IL and IL′) independently but in the same 
deterministic manner, the head graph as well as head 
level structure will slide as a whole but maintain 
consistent relative location among cells and heads.  

Cell abandonment It is possible albeit rarely that a 
cell is so heavily perturbed that nodes in a larger than 
Rt-radius area die at the same time. Even though cell 
shift may be able to change the IL of the cell to IL′, the 
distance between IL′ and the ILs of all neighboring 
cells may deviate beyond 3R. In this case, we let the 
cell to be abandoned in the sense that every node in it 
becomes an associate of one of the neighboring cells.  
(Note that, because of the sliding of the head level 

structure resulted from cell shift, a new head can be 
selected within an abandoned cell later.)  

4.2 Algorithm 
Overview In GS3-D, when a head i tries to select the 
heads for its neighboring cells in its search region, it is 
possible that there is an Rt-gap at the IL of a 
neighboring cell C. Given the low probability of this 
case, i does not select head for cell C, and every node 
in C becomes an associate of a neighboring cell of C 
(this is similar to cell abandonment). However, due to 
node join and the sliding of head level structure, new 
nodes may show up in the area of C or the IL for C is 
changed such that there is a node within Rt distance to 
the IL of C later. By periodically checking this case, 
head i will select the head for C whenever it shows up 
later.   

When a node j joins an existing system, it tries to 
find the best existing head as its head if there is any 
within ( 3R+2Rt) distance. Otherwise, j tries to find 
the best associate as its surrogate head if there is any 
associate within its radio transmission range. If both 
trials fail, j gives up and retries the above process after 
a certain amount of time. In the above process, if a 
head k within ( 3R+2Rt) distance is executing 
HEAD_ORG, j responds with ASSOCIATE_ORG_RESP 
and becomes either a child head or an associate of k.  

Node leave or death is dealt with by intra-cell and 
inter-cell maintenance. In intra-cell maintenance, head 
shift enables the highest ranked candidate to become 
the new head of a cell when the head of the cell fails or 
proactively becomes an associate when it is resource 
scarce or a candidate better serves as head; when the 
candidate set is weak (e.g. empty), cell shift enables the 
cell head to strengthen the candidate set by selecting a 
better IL for this cell if any such IL exists (described in 
figure 5); cell abandonment enables nodes within a 
heavily perturbed cell to become an associate in one of 
its neighboring cells. In inter-cell maintenance, a 
parent head and its children heads monitor one another. 
If a head h leaves and the intra-cell maintenance in its 
cell fails, the parent of h, P(h), tries to recover it first. If 
P(h) fails too, each child of h tries to find a new parent 
by themselves; also, a head chooses the neighboring 
head closest to H0 as its parent; an optional action is for 
a cell to synchronize its IL with that of its neighboring 
cells, which affects the tightness of cell radius with 
respect to R locally within its one-hop neighborhood.  

Node state corruption is dealt with by “sanity 
checking” . Periodically (with low frequency) each head 
h checks the hexagonal relation with its neighboring 
heads, according to the system invariant. If the 
invariant is violated, h asks its neighboring heads to 



7 

check their state. If all its neighboring heads are valid, 
the state of h must be corrupted, and h becomes an 
associate; if some of its neighboring heads are invalid, 
h cannot decide whether it is valid at this moment, and 
will check this next time.  

Algorithm modules Compared with GS3-S, GS3-D, 
as described in Figure 6, has modified head 
organization modules, new modules for node join, 
intra-cell maintenance, inter-cell maintenance, and 
sanity checking (detailed description of these modules 
is in given Appendix 2). 

Modified head organization modules are as 
follows. In HEAD_ORG, executed by a head i, i 
maintains not only its children heads set, but also its 
neighboring heads set and candidates set. In 
HEAD_SELECT executed by a head i, i does not select 
head a cell in its search region if there is an Rt-gap at 
the IL of the cell. In HEAD_ORG_RESP, executed by a 
head i in response to the HEAD_ ORG at a head j, i sets 
j as its parent if j is better (e.g. closer to the big node) 
than its current parent.  

Node join consists of three modules: 
SMALL_NODE_BOOT_UP used by a bootup node 
trying to find a nearby head or associate; 
HEAD_JOIN_RESP and ASSOCIATE_JOIN_RESP used 
by a head or an associate respectively in response to the 
SMALL_NODE_BOOT_UP at a nearby  “bootup”  node, 
where it sends its state to the bootup node and listens to 
its decision to join or not.  

Intra-cell maintenance consists of four modules: 
HEAD_INTRA_CELL, CANDIDATE_INTRA_CELL, 
ASSOCIATE_INTRA_CELL, and BIG_SLIDE.  

In HEAD_INTRA_CELL, executed by a head i, it 
exchanges heartbeats with associates in its cell. Head i 
becomes an associate when it is resource scarce, a 
candidate serves better as head, or the big node is in its 
cell and resumes its role as head. When the candidate 
set is weak, i strengthens it using the low-level module 
STRENGTHEN_CELL that implements the concept of 
cell shift (description of STRENGTHEN_ CELL is 
given in Appendix 2). If its cell is heavily perturbed 
such that the hexagonal property within its 
neighborhood has deviated too much, i abandons its 
cell and transits to status bootup.  

In CANDIDATE_INTRA_CELL, executed by a 
candidate i, i exchanges heartbeats with its head. When 
its head fails or becomes an associate, i coordinates 
with other candidates in its cell to elect a new head. 
When its head transits to status bootup, i transits to 
status bootup too. When a head j that is better than its 
current head shows up, i sets j as its new head. 
ASSOCIATE_INTRA_CELL executed by a non-
candidate i is almost the same as CANDIDATE_INTRA_  

Figure 5: Method to change the IL of a cell  

Figure 6: Self-configuration algorithm for dynamic networks (GS3-D) 

CELL except that i transits to status bootup when its 
head fails.  

In BIG_SLIDE executed by the big node H0, H0 
keeps the head in the coverage of its original cell as 

Program Big_node 
GS3-S with modified HEAD_ORG 
[] 
/*  Deal with node join * / 
q = work  → HEAD_JOIN_RESP   //remain status work 
[] 
/*  Deal with node leave:  remain status work or transit to status big_slide * /  
q = work → [HEAD_INTRA_CELL|HEAD_INTER_CELL]   
[] 
/*  The big node does not act as head * /  
q = big_slide  → BIG_SLIDE  //remain status big_slide, or transit to status 

work 

Program Small_node 
GS3-S with modified HEAD_ORG & HEAD_ORG_RESP  
[] 
q = bootup → SMALL_NODE_BOOT_UP //remain status bootup, or 

transit to status associate or surrogate associate 
[] 
/* Head node */ 

/*  Deal with node join * / 
q = work → HEAD_JOIN_RESP      //remain status work 
[] 
/*Deal with node leave: remain status work, or transit to status associate* / 
q = work → [HEAD_INTRA_CELL|HEAD_INTER_CELL]  
[] 
/*  Sanity checking: remain status work, or transit to status associate */ 
q = work →Ts  SANITY_CHECK   
[] 

/* Associate node */ 
/*  Deal with node join: remain status associate/candidate * / 
(q = associate ∨ q = candidate) → ASSOCIATE_JOIN_RESP 
[] 
/*  Deal with node leave: remain status candidate/associate, or transit to 

status head or bootup * / 
q = candidate → CANDIDATE_INTRA_CELL 
[] 
q = associate → ASSOCIATE_INTRA_CELL  

We call a cell C formed in the initial phase of self-configuration an 
original cell, and the IL of C an original ideal location (OIL). To 
maximize the lifetime of the hexagonal structure, for any original cell C, 
the union of its candidate sets of all the ILs should cover all nodes in C. 
Let CA(ILk) be the Rt-radius circular area centered at an ideal location 
ILk. Then a cell can be divided into a set of such CAs as shown in the 
following figure, which is self-similar to a system being divided into a 
set of cells: 

OIL
1

2

CIC

ICP

2
1

0
GR

Rt

R

CA(<2,7>)  
 Analogous to “bands” ,  we call each set of CAs of equal minimum 

distance to its OIL (in terms of CAs in between) an Intra Cell Cycle 
(ICC). The set of CAs on the same ICC is numbered, called Intra Cycle 
Postion (ICP), in an increasing order clockwise with respect to GR  (for a 
certain ICC, the range for ICP is [0, 6×ICP-1]). Then the ILs in a cell can
be lexicographically ordered by tuple <ICC, ICP>, and are considered for 
becoming the current IL of a cell in an increasing order.  
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head, and resumes head role when the OIL of its cell 
becomes the current IL.   

Inter-cell maintenance is implemented by the 
module HEAD_INTER_CELL. In HEAD_INTER_CELL, 
executed by a head i, i exchanges heartbeats with its 
neighboring cell heads. If a neighboring head j is closer 
to H0 than its current parent, i sets j as its new parent. If 
a child j fails and the intra-cell maintenance at its cell 
fails too, i tries to deal with it using HEAD_ORG in the 
direction of j. If the parent of i, P(i), fails, and the 
failure is not recovered by the intra-cell maintenance at 
P(i)’s cell or by P(i)’s parent, i tries to find a new 
parent using low-level module PARENT_SEEK. If i is a 
boundary cell head, it periodically checks whether new 
nodes show up in the direction where it does not have a 
child, using HEAD_ORG in that direction. When a 
neighboring head, a child, or its parent changes its IL, i 
optionally synchronizes its IL using low-level module 
SYN_CELL (the description of PARENT_SEEK and 
SYN_CELL is given in Appendix 2).  

Sanity checking is implemented by the module 
SANITY_CHECK whose time complexity is θ(Dc), 
where Dc is the diameter of a contiguous state-
corrupted area.  

4.3 Analysis 
New notation 
Head Neighboring Graph Ghn = (Vhn , Ehn), where Vhn = Vh of Gh, 

and Ehn = { (i, j): i and j are neighboring heads} .  

4.3.1 Invariant 
The invariant of GS3-D is the same as that of GS3-S 

except for the following three points (formal 
descriptions are given in Appendix 3):  

	 In I2.1 and I2.2, if the <ICC, ICP> value (see figure 5) 
of a head i is different from that of a neighboring 
head j, the distance between them is bounded by [d 
-2Rt, d +2Rt], where d is the distance between IL(i) 
and IL(j) and is bounded by (0, 2 3 R). 


 In I2.3, the number of children heads of a head other 
than the big node is at most 5 (instead of 3). 

� In I2.4, the radius of an inner cell is bounded by (0, 
2R+Rt] if its <ICC, ICP> value is different from that 
of any of its neighboring cell; and |Rrandom| is at 
most (( 3 -1)R+2Rt+dp) for boundary cells, with dp 
being the diameter of the gap-perturbed area 
adjoining the boundary cell (dp is 0 if there is no 
gap-perturbed area).  

Theorem 5: DI is an invariant of algorithm GS3-D, 
where DI = SI (invariant of GS3-S) with I2 relaxed as 
above.  

4.3.2 Fixpoint 
The fixpoint of GS3-D is the same as that of GS3-S 

except for the following two points: 

� F1.2 is strengthened as: Gh is a minimum-distance 
(with respect to the big node H0) spanning tree of 
Ghn rooted at H0, i.e. the path between H0 and a 
head i in Gh is a minimum distance path between 
H0 and i in Ghn.  


 F2.4 is relaxed as: (F2.4 of GS3-S) ∧ (|Rrandom| is at 
most (2Rt/ 3  + dp) for boundary cells).  

Theorem 6: DF is a fixpoint of algorithm GS3-D, where 
DF = SF (fixpoint of GS3-S) with F1.2 and F2.4 updated 
as above.  

F1, F2, F3, and F4 imply  
Corollary 5: At DF, Corollary 1, 2, and 3 hold in 
dynamic networks.  

4.3.3 Self-stabilization 
Theorem 7: Starting from any state, every computation 
of GS3-D reaches a state where DI holds within time 
O(Dc), where Dc is the diameter of a continuous state-
corrupted area. 
Theorem 8: Starting from any state where DI holds, 
every computation of GS3-D reaches a state where DF 
holds within time O(max{ (Dd/c1), Td} ), where c1 is the 
average speed of message diffusing and Td is the 
maximum difference between the lifetime of the 
candidate set of two neighboring cells.  

Theorem 7 and 8 imply 
Corollary 6: Starting from any state, every computation 
of GS3-D reaches a state where DF holds within time 
O(max{ (Dd/c1), Td} ).  

Requirement d) is satisfied by Theorem 7 and 8.  

4.3.4 Remarks 
� Scalable self-healing  

The self-healing of the head graph and hexagonal 
structure is scalable in three senses: first, local self-
healing enables the system to stabilize from a perturbed 
state to its stable state (fixpoint) in a one-way message 
diffusing time across the perturbed area through local 
coordination among nodes within ( 3R+2Rt) distance 
from one another; second, local knowledge enables 
each node to maintain the identities of only a constant 
number of nodes within ( 3R+2Rt) distance, 
irrespective of network size; third, the head graph and 
hexagonal structure can tolerate multiple simultaneous 
perturbations due to the locality property of GS3-D.  

� Stable head level structure 
In the presence of dynamic nodes, the head level 

structure is stable in the following senses: 1) In the case 
of node join, the head level structure remains 
unchanged except for the possibility that the head of 
some cell is replaced by a new node if the new node 
better serves as head; 2) Node leave within a cell is 
masked within the cell by head shift such that the rest 
of the structure remains unchanged; 3) In the case of 



9 

node death such that candidate sets of many cells die, 
independent cell shift at each cell enables the head 
level structure to slide as a whole but maintain 
consistent relative location among cells and heads, 
which lengthens the lifetime of the structure by a factor 
of Ω(nc), where nc is the number of nodes in a cell; 4) 
In case intra-cell maintenance fails, inter-cell 
maintenance enables a system to stabilize to its stable 
state within a one-way message diffusing time across 
the perturbed area; 5) In case of state corruption, sanity 
checking ensures that the erroneous state is corrected 
by checking the hexagonal properties among heads.  

5. MOBILE DYNAMIC NETWORK 
5.1 Concepts 
Recall that in mobile dynamic networks not only can 
nodes be dynamic, but they can also move. The 
probability of movement is inversely related to the 
distance of movement.  In this section, we extend GS3-
D to GS3-M to deal with node mobility.  

Conceptually, node mobility is modeled as a 
correlated node join (at the new location) and leave 
(from the old location). GS3-D is easily adapted to deal 
with the mobility of small nodes (more detailed 
description is given in Appendix 2).  Thus, we focus on 
how to deal with big node movements.  

In mobile dynamic networks, the head graph needs 
to be maintained such that, in spite of the movement of 
the big node H0, it is connected and the path between 
H0 and every head is of minimum distance. To achieve 
this, the closest head to H0 in the network acts as the 
proxy of H0 during the time when H0 itself is not a 
head, and the distance from the proxy to H0 is set as 0. 
Then, just by algorithm GS3-D, the head graph can be 
maintained as a minimum distance tree to the proxy, 
and thus every head is of minimum hops to H0. 
Moreover, the impact of the movement of H0 on the 
head graph is contained within a local range of radius 

3d/2, where d is the distance H0 moves.  

5.2 Algorithm 
Overview In mobile dynamic networks, if the big 

node H0 moves more than Rt away from the IL of its 
cell, it retreats from the head role, and transits to status 
big_move where it moves around and maintains a 
proxy-relationship to its proxy. Whenever H0 moves 
within Rt distance to the IL of a cell later, it replaces 
the existing head of the cell to act as head. 

Algorithm modules Compared with GS3-D, GS3-M 
has a new module BIG_MOVE, modified big node, 
intra-cell maintenance, and inter-cell maintenance, as 
shown in Figure 7 (a more detailed description is given 
in Appendix 2).  

Figure 7: Self-configuration algorithm for dynamic mobile networks 
(GS3-M) 

5.3 Analysis 

5.3.1 Invariant & Fixpoint 
The invariant as well as fixpoint of GS3-D is preserved 
in GS3-M, except for one more fixpoint predicate F5 for 
GS3-M as follows. 
F5 (Proxy optimality): The big node H0 chooses the best 
neighboring head as its proxy. i.e.  

(∀ head i : proxy of H0 better than i) 

Theorem 9: MI is an invariant of algorithm GS3-M, 
where MI = DI (invariant of GS3-D).  
 Theorem 10: MF is a fixpoint of algorithm GS3-M, 
where MF = DF (fixpoint of GS3-D) ∧ F5. 

5.3.2 Self-stabilization 
Theorem 11:  When the big node moves from point A 
to B on a plane, its impact on the head graph Gh is 
contained within a circular area entered at point C and 
of radius 3d/2, where C is the midpoint of segment 
ABand d is the cartesian distance between A and B.  
Theorem 12: Starting from any state, every 
computation of GS3-M reaches a state where MI holds 
within time O(Dc), where Dc is the diameter of a 
continuous state-corrupted area.  
Theorem 13: Starting from any state where MI holds, 
every computation of GS3-D reaches a state where MF 
holds within time O(max{ (Dd/c1), Td} ), where c1 is the 
average speed of message diffusing and Td is the 
maximum difference between the lifetime of the 
candidate set of two neighboring cells.  

Theorem 12 and 13 imply 
Corollary 7: Starting from any state, every computation 
of GS3-M reaches a state where MF holds within time 
O(max{ (Dd/c1), Td} ).  

5.3.3 System stability  
In mobile dynamic networks, node mobility is dealt 

as a special kind of node dynamics. So the stability 
property of the head level structure and head graph in 
dynamic networks is preserved in mobile dynamic 
networks. The invariant and fixpoint of GS3-M only 
depend on local coordination, which enables them to 
tolerate high degree of node mobility because local 
coordination converges fast.  

Program Big_node 
GS3-D with removed BIG_SLIDE, modified intra-cell as well as inter-cell 
maintenance modules 
[] 
/*  During status of “big move”  * / 
q=big_move→BIG_MOVE //remain status big_move, or transit to status head 

Program Small_node 
GS3-D with modified intra-cell as well inter-cell maintenance modules 
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6. RELATED WORK 
In [18], a distributed algorithm LEACH is proposed, 
but it offers no guarantee about placement and the 
number of cluster heads in a system. Moreover, the 
clustering operation is periodically repeated globally in 
the system over its lifetime. In [3], a distributed 
algorithm for clustering in wireless networks is 
designed, but it only considers logical radius (hops) of 
clusters, instead of their geographic radius, which 
makes long intra-cluster link possible. Also, its 
convergence under perturbations depends on multiple 
rounds of message diffusion, instead of the one-way 
diffusion within perturbed areas as in our algorithm. 
Moreover, given certain node density in a network, the 
geographic radius in our algorithm implicitly 
guarantees the logical radius of clusters. In [4], an 
access-based clustering algorithm is presented that 
focuses on the stability of clusters, but the algorithm 
does not consider the size of clusters and it requires 
GPS at every node.  

In [10], a cellular hexagon structure is described 
for cellular networks, but it is pre-configured and there 
is no self-healing consideration. In [11,12], different 
algorithms for topology control in networks are 
developed, but they are either centralized or semi-
centralized, and thus not scalable.  

In [7−9], algorithms for topology control in 
wireless networks for energy saving are developed. In 
[13], adaptive fidelity control and routing algorithms 
are developed for wireless sensor networks. Our self-
configuration algorithm provides a stable network 
infrastructure for tasks such as routing or power 
control, and is thus orthogonal to these works.   

[19] proposes an algorithm for fault-local mending 
in time, but it is not local in space. [20] proposes the 
application of local detection paradigm to self-
stabilization, but it is not local in time even though it is 
local in space. The self-healing in GS3 is local both in 
time and in space.  

7. CONCLUSION 
In this paper, we have presented an algorithm (GS3) 

for self-configuring a network into cells of tightly 
bounded geographic radius and low overlap between 
cells. GS3 enables network nodes to organize 
themselves into a cellular hexagon structure with a set 
of proved properties. GS3 is self-healing, and thus 
applicable to both static networks and networks with 
dynamic as well as mobile nodes. GS3 is also scalable 
because of its local knowledge, local self-healing, and 
local coordination properties. GS3 yields a stable 
structure even in the presence of dynamic and mobile 
nodes, which enables a more available infrastructure 

for other system services such as routing, power 
control, QoS etc.  

Our algorithm is readily extended to the following 
cases: 1) in a mobile dynamic network where there are 
multiple big nodes, by letting each small node maintain 
the current big node it chooses, GS3-M enables each 
small node to choose the best (e.g. closest) big node to 
communicate. 2) Due to its locality property, GS3 is 
also applicable to the case where nodes are not 
deployed on a 2D plane, but where nodes within each 
neighborhood (e.g. a circular area of radius R) are 
locally planar. 3) GS3 is also applicable to the case 
where the ideal cell radius R is larger than the 
maximum transmission range of small nodes, because 
R does not affect the correctness of the algorithm.  

GS3 is local and its convergence time is low, thus it 
is applicable to networks with high degree of dynamics 
and mobility. More detailed study of dealing with 
different degrees of node dynamics and mobility is 
underway.  
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APPENDIX 
In this appendix, we present the complexity and 
convergence properties of our algorithm, description of 
some modules in GS3-S, GS3-D and GS3-M, the 
invariant as well as fixpoint of GS3-D, and proofs for 
various theorems in this technical report.  

Appendix 1:  Complexity and convergence 
properties of GS3-S/D/M 

 

Information maintained at each node  θ(log n) 

Factor of lengthened lifetime of head level 
structure by intra-cell & inter-cell 
maintenance 

Ω(nc)  

Convergence time under perturbations  O(Dp) 

Convergence time to the stable state in 
static networks 

θ(Db) 

Convergence time from any state to the 
stable state in dynamic/mobile networks 

O(Dd) 

n: the number of nodes in a system; 
nc: the number of nodes in a cell; 
Dd: max{ dist(i, j): i and j are small nodes, and dist(i, 

j) is the cartesian distance between i and j} ; 
Dp: the diameter of a contiguous perturbed area; 
Db:  max{ dist(H0, i): i is a small node, and dist(H0,i) 

is the cartesian distance between the big node H0 
and i} . 

Appendix 2:  Description of modules in GS3-S, 
GS3-D and GS3-M 

In this subsection, we give more detailed description of 
some algorithm modules in GS3-S, GS3-D and GS3-M 
as follows. The complete program is presented in [14]. 

1) Algorithm GS3-S 
a) HEAD_ORG (LD, RD, R, Rt)  

There are four arguments to HEAD_ORG: 1) L 
direction (LD) and R direction (RD) with respect to 
direction iiP ),(  (see Figure 3). LD and RD determine 
the search region of a head in the process of organizing 
its neighboring cell heads. 2) ideal radius R and radius 
tolerance Rt.  

The function of HEAD_ORG executed by a head i 
is for head i to organize the neighboring cell heads in 
its search region. HEAD_ORG executed by head i 
works as follows: first, head i reserves wireless 
channel and broadcasts message org within ( 3R+2Rt) 
distance; second, head i listens to replies (message 
org_reply or head_org_reply) from nodes no more 
than ( 3R+2Rt) away and within (LD, RD) search 
region for certain amount of time and calculates the set 
of small nodes and head nodes (SmallNodes and 
ExistingHeads respectively) in the search region; 
Third, using the low level module HEAD_SELECT (see 
Figure 3), head i selects neighboring cell heads 
HeadSet; fourth, head i broadcasts message 〈HeadSet〉 
to nodes within ( 3R+2Rt) distance, revokes channel 
reservation, and transits to status work.  

In HEAD_SELECT executed by head i, head i 
needs to select neighboring cell heads in its search 
region. It achieves this in two steps: first, it calculates 
the ideal locations for those possible neighboring cell 
heads; second, for each possible neighboring cell, if 
there is any small node that is in the Rt-radius circular 
area centered by the ideal location of the cell, select 
the highest ranked such node as the cell head. The 
algorithm is described in Figure 3 and its time 
complexity is θ(|SmallNodes|).  
b) HEAD_ORG_RESP  

When a head node i (at status head or work, and 
not including the big node) receives a message org 
from a head j, it replies with a message 
head_org_reply, and waits until head j’s HEAD_ORG 
process finishes (by overhearing its message 
〈HeadSet〉). No status transition in this module.  
c) ASSOCIATE_ORG_RESP 

When a small node i is at status bootup or 
associate, it will execute ASSOCIATE_ORG_RESP 
process upon receiving a message org from a head j. If 
node i is at status bootup or status associate but head j 
is better (such as closer, with higher remaining energy) 
than its current head H(i), node i replies a message 
org_reply to head j. Then waits for head j’s message 
〈HeadSet〉. If node i is selected as a cell head, it sets 
head j as its parent head, and transits to status head; 
otherwise, node i sets head j as its head, and transits to 
status associate. On the other hand, if node i fails to 
hear the message 〈HeadSet〉 from head j after a certain 
amount of time, it transits back to its status at the 
beginning of the process (i.e. bootup or associate).   
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2) Algorithm GS3-D 
Intra-cell maintenance 
a) HEAD_INTRA_CELL 

In HEAD_INTRA_CELL executed by a head i, head 
i executes the following actions:  
i. It periodically broadcasts message 

head_intra_alive within its cell, and updates its 
candidate as well as associate set according to 
replies from the associates in its cell.  

ii. If head i receives a message associate_ alive or 
associate_retreat from an associate, it needs to 
update candidate as well as associate set properly.  

iii. If i is resource scarce or a candidate better serves 
as head, i broadcast a message head_retreat within 
its cell and retreats back to be an associate.  

iv. If i receives message replacing_head from the big 
node H0 or a head candidate j, it retreats to be an 
associate, and sets H0 or j as its head.  

v. If the candidate set of its cell is weak, i calls 
STRENGTHEN_CELL to strengthen it. 

vi. If the distance IL of its cell that of all its 
neighboring cells deviates too much from 3R, 
exceeding certain threshold Td, it abandons the cell 
by broadcasting a message cell_abandoned within 
its cell and transiting to status bootup. 
In STRENGTHEN_CELL, head i first finds the next 

ideal location (IL) of its cell whose corresponding 
candidate set is not empty, according to the cell’ s 
current <ICC, ICP> value and the ordering of all ILs in 
its cell (see Figure 5). Then it calculates the new 
candidate set with respect to the new IL. Last, it 
broadcasts two messages (head_intra_alive containing 
the new candidate set, and head_retreat) within its 
cell, and retreats to be an associate. Time complexity 
is O(nc), where nc is the number of nodes in a cell.  
b) CANDIDATE_INTRA_CELL 

In CANDIDATE_INTRA_CELL executed by a 
candidate i, i executes the following actions:  
i. Upon receiving a message head_intra_alive from a 

head j: if j is its head, i checks whether it is still in 
j’ s candidate set, and transits to status associate if 
not; otherwise, replies a head_intra_ack message. 
If j is not its head and is better than its current 
head, i sends a associate_retreat message to its 
current head and associate_alive message to head 
j.  

ii. If i receives a message head_retreat from or 
detects the failure of its current head, it 
coordinates with other candidates in this cell to 

elect the highest ranked candidate as the new head. 
The head candidates in a cell are ranked in the 
same way as that in HEAD_SELECT (see Section 
3).  

iii. If i receives a message cell_abandoned, head_ 
retreat_corrupted, head_disconnected, or syn_cell 
from its head, it transits back to boot up status.   

Inter-cell maintenance 
a) HEAD_INTER_CELL 

In HEAD_INTER_CELL executed by a head i, head 
i executes the following actions:  
i. Periodically broadcasts message head_inter_alive 

as heartbeat to its parent as well children heads.  
ii. Upon receiving a message head_inter_alive from 

head j, update children set, and neighboring head 
set properly. If j is not i’ s parent head but is better 
(closer to the big node, for example) than its 
current parent head, i sets j as parent head, and 
sends a message new_child_head to j.  

iii. If i receives a message new_child_head from j, 
update children heads set as well neighboring 
heads set accordingly.  

iv. If a neighboring cell Cn (including child as well as 
parent cell) has a new head due to intra-cell 
maintenance, i updates neighboring head set, 
children head set, or parent head accordingly. If Cn 
has a newer <ICC, ICP> value, head i synchronizes 
its cell to the new <ICC, ICP> by calling 
SYN_CELL process (this is optional).  

v. If i receives a syn_cell message from a neighboring 
cell’ s head j, it updates (remove j) neighboring 
head and child head sets accordingly. If j is i’ s 
parent head, i executes PARENT_SEEK to find a 
new parent head. If syn_cell message carries a 
newer <ICC, ICP> value, i executes SYN_CELL.  

vi. If i is a boundary head and there is no head at 
certain neighboring cell area in its search region, it 
periodically executes HEAD_ORG to check 
whether new nodes have shown up in this 
direction.  

vii. If a child head j fails, i executes HEAD_ORG in j’ s 
direction, trying to organize a new head.  

viii. If i’ s parent head P(i) fails, and P(i)’s failure has 
not been recovered by P(i)’s parent head, i 
executes to PARENT_SEEK. If i receives a message 
parent_seek from a head j and they don’ t have the 
same parent head, it replies a parent_seek_ack 
message.   

ix. If i receives a message sanity_check_req from a 
neighboring head j, it checks its own status. If its 



3 

status is valid, i replies a message 
sanity_check_valid message to j; otherwise, i 
executes SANITY_CHECK.  

x. If i receives a head_retreat_corrupted message 
from a neighboring cell’ s head j, it updates 
(remove j) its neighboring head set and children 
head sets accordingly. If j is i’ s parent head, i 
executes PARENT_SEEK.  
In SYN_CELL, head i first calculates the new IL 

with respect to the new <ICC, ICP> value. Then it 
calculates the candidate set corresponding to this IL. If 
the candidate set is not empty, i broadcasts a message 
head_retreat within its cell; otherwise, it broadcasts a 
message syn_cell to its neighboring heads that includes 
the current <ICC, ICP> value. Last, i transits to status 
big_slide if it is the big node or status associate 
otherwise. Time complexity is O(C), where C is a 
constant.  

In PARENT_SEEK, let ST denote the sub-tree of Gh 
rooted at head i. Head i ranks its neighboring heads in 
almost the same way as that in HEAD_SELECT, except 
that )(, iPi  instead of GR  is used as reference direction. 
Then i tries to find a neighboring head as parent head 
in an increasing order. If it succeeds in finding such a 
head j, i sets j as its parent; otherwise i lets its children 
heads on the boundary of ST’s geographic coverage try 
to find a new parent head in the same way. If any of its 
child head j succeeds, i sets j as its parent; otherwise i 
broadcasts a message head_disconnected within its 
cell, and transits back to boot up status. Its time 
complexity is O(|FNH|), where FNH denotes the set of 
head in (Gh-ST) that has a neighboring head in ST.  
b) ASSOCIATE_INTER_CELL 

If an associate (including both candidate and non-
candidate) receives a message org, it calls 
ASSOCIATE_ORG_RESP.  
Sanity checking 

In order to deal with status corruption, every head 
periodically executes SANITY_CHECK. In SANITY_ 
CHECK executed by head i, it first checks if its <ICC, 
ICP> value is equal to that of all its neighboring cells. 
If yes, it checks whether its status satisfies the 
hexagonal relationship of the system invariant. If no, it 
broadcasts a message sanity_check_req, and waits for 
replies from its neighboring cells’  heads. If all its 
neighboring cells’  heads reply a message 
sanity_check_valid, head i broadcasts a message 
head_retreat_corrupted within its cell. If it has not got 
the message sanity_check_valid from any of its 

neighboring cells after certain amount of time, head i 
exit this module without changing its status. Time 
complexity is θ(A), where A denotes the size of the 
contiguously affected area.  

3) Algorithm GS3-M 
BIG_MOVE 

In BIG_MOVE, the big node keeps listening to 
heartbeats (head_intra_alive message) from all nearby 
heads, and always chooses the best (closest, for 
example) head as its proxy. When its proxy is replaced 
by a candidate hn in the proxy’s cell, the big node reset 
its proxy as hn. When the big node moves into the Rt-
radius circular area of a cell, it replaces the existing 
head as head, and transits back from status big_move to 
status work.  
Modified intra-cell and inter-cell maintenance 

The modification to the intra-cell as well as inter-
cell maintenance is to maintain the cell head, candidate 
set, and big node’s proxy relationship in the presence 
of mobile nodes. As for big node, if it retreats from the 
head role because of the IL change of any of its 
neighboring cells, it transits to status big_move instead 
of big_slide in dynamic mobile networks. 

Appendix 3: Invariant and fixpoint of GS3-D 
(dynamic networks) 

1) Invariant 
The invariant of GS3-D differs from that of GS3-S 

at I2 when a cell and its neighboring cells have 
different <ICC, ICP> values.  
• I1  (connectivity) 

Same as in static networks. 
• I2 (Hexagonal structure) 

� I2.1: (for inner heads) 
I2.1 for static networks 
∧  
(∀ inner_head i: ∀j ∈ neighboring_heads(i):  

<ICC(i),ICP(i)> ≠ <ICC(j),ICP(j)> ⇒  
( (dist(IL(i),IL(j))-2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt)  

∧  
  (0 < dist(IL(i), IL(j)) ≤ 2 3 R ) 
) 

) 
� I2.2: (for boundary heads) 

I2.2 for static networks 
∧  
(∀ boundary_head i: ∀j ∈ neighboring_heads(i):  

<ICC(i),ICP(i)> ≠ <ICC(j),ICP(j)> ⇒  
( (dist(IL(i),IL(j))-2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt)  

∧  
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  (0 < dist(IL(i), IL(j)) ≤ 2 3 R ) 
) 

) 
� I2.3: modify I2.3 for static networks by changing (∀ 

head i: | CH(i) | ≤ 3 ) to (∀ head i: | CH(i) | ≤ 5 )  
� I2.4: (cell radius) 

I2.2 for static networks 
∧  
(∀ inner cell C:  

(∃j∈neighboring_heads(i):<ICC(i),ICP(i)> ≠ <ICC(j),ICP(j)>)⇒  
(∀ associate i ∈ C : dist(i, H(i)) < 2R+Rt) 

) 
∧   
(∀ boundary cell C’ : ∀associate i ∈C’ : dist(i, H(i)) ≤ 3 R+2Rt+dp) 

• I3 (Inner cell optimality)  
Same as in static networks. 

2) Fix Point 
The fixpoint of GS3-D differs from that of GS3-S 

at F1.2 that is strengthened in GS3-D.  
• F  1 (connectivity) 

� F1.1: Same as in static networks 
� F1.2: Gh is a minimum-distance (with respect to the 

big node H0) spanning tree of Ghn, and Gh is rooted at 
H0. 

F1.2 for static networks ∧  
(∀ vi ∈ (Vh – { H0} ): hops(H0,vi) = MIN(H0, vi) ),  
where MIN(v1, v2) is the length (by hops) of the shortest path 
between v1 and v2 in Ghn.  

• F2 (hexagonal structure) 
F2.1, F2.2, and F2.3 are the same as in static networks. 

F2.4 is relaxed as:  
(F2.4 of GS3-S) ∧ (|Rrandom| is at most (( 3 -1)R+2Rt+dp) for 

boundary cells). 

• F3 (cell optimality): Same as in static networks.  
• F4 (coverage): Same as in static networks.  

Appendix 4:  Proofs for theorems in the report 
We present proofs for the critical theorems in this 

report. For the complete set of proofs, check [14].  

1) Theorem 1: SI is an invariant of algorithm GS3_ 
S, where SI = I1 ∧ I2 ∧ I3.  

• I1: Connectivity (safety property of head level 
graph)  

� I1.1: Any pair of heads that are connected in Gh are 
also connected in Gp, and vice versa.   
(∀ vh1, vh2 ∈ Vh: there is a path between vh1 and vh2 in Gh ⇔ 

there is a path between vh1 and vh2 in Gp)  

Proof: 
Gp only depends on the nodes in the system and 

their communication capability, thus has nothing to do 

with the program actions. Gh only depends on the set 
of head nodes in the system and the parent-child 
relationship among them. Thus the set of actions that 
are related to Gh are those of HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP. At 
the same time, HEAD_ORG_RESP and ASSOCIATE_ 
ORG_RESP operate under the control of HEAD_ORG, 
so the critical module is HEAD_ORG.  

In order to prove this invariant, we only need to 
prove it is closed under a round of HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP. The 
proof is as follows: 

1) Suppose Gh’ (Vh’ , Eh’ ) is the Gh before a round 
of HEAD_ORG, HEAD_ORG_RESP, and 
ASSOCIATE_ORG_RESP. Gh’  and Gp satisfy I1.1; 

2) After a round of HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_ 
RESP, Gh becomes Gh2(Vh2, Eh2).  
⇒: 

Case one: Vh’  is empty 
If Vh’  is empty, Gh2 would be such that 

Vh2 is the set composed of the big node H0 
and its children heads generated in 
HEAD_ORG process and Eh2 is the set of 
edges that goes from the big node to its 
children heads. By the process HEAD_ORG, 
the big node and its children heads are within 
transmission range of one another and they 
are at most ( 3 R+2Rt) away from each other. 
Thus the big node and its children heads must 
be directly connected in Gp.  

So we only need to prove that any two 
different heads h1 and h2 are connected in 
Gp. And this is obvious because both h1 and 
h2 are connected to H0 in Gp.  

So the claim holds in this case. 
Case two: Vh’  is not empty 

If Vh’  is not empty, there must be a head 
h1 in Vh’  such that Vh2 = Vh’  ∪ CH(h1) and 
Eh2 = Eh’  ∪ { (h1, j): j ∈ CH(h1)} . By the 
proof of case one, we can easily know that 
the claim holds for any two nodes that are in 
the set of { h1}  ∪ CH(h1).  

So we only need to prove the claim 
between a node h2 ∈ (Vh’  – { h1} ) and a node 
h3 ∈ CH(h1). If the set (Vh’  – { h1} ) is empty, 
the claim trivially holds. If the set (Vh’  – 
{ h1} ) is not empty, then there must be a path 
p1 between h2 and h1 in Gp and a path p2 
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(actually just one hope edge) between h3 and 
h1. So there must be a path p3 between h2 
and h3 and p3 is the concatenation of p1 and 
p2 by head node h1.  

So the claim holds in this case. 
⇐: 

By I1.2, Gh is a tree, thus any two heads h1 
and h2 are connected in Gh and there would 
always be a path between then in Gh. So this 
claim trivially holds.  

Thus, after a round of a round of 
HEAD_ORG, HEAD_ORG_RESP, and 
ASSOCIATE_ORG_ RESP, Gh and Gp still satisfy 
I1.1. �

 
� I1.2: Gh is a tree rooted at the big node H0. That is, 

(hops(H0) = 0) ∧ (P(H0) = H0) ∧ 

(∀ vi ∈ (Vh – { H0} ): (there is a path between vi and H0) ⇒ 
(hops(H0, vi) = hops(H0, P(vi))+1) ∧ 

(∀ vi, vj ∈ Vh: there is a path between vi and vj in Gh) ∧  

(∀ vi, vj ∈ Vh: there is a path of length no fewer than 2 
between vi and vj ⇒ (P(vi) ≠ vj ∧ P(vj) ≠ vi)),  

where hops(v1, v2) denotes the length of the path 
from v1 to v2 in Gh.  

Proof: 

Same as the analysis in the proof of I1.1, the 
modules that can affect this invariant are HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP.  

3) Suppose Gh’ (Vh’ , Eh’ ) is the Gh before a round 
of HEAD_ORG, HEAD_ORG_RESP, and 
ASSOCIATE_ORG_RESP, and Gh’  satisfies 
I1.2;  

4) After a round of HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_ 
RESP, Gh becomes Gh2(Vh2, Eh2).  

Case one: Vh’  is empty 
If Vh’  is empty, Gh2 would be such that 

Vh2 is the set composed of the big node H0 
and its children heads (CH(H0)) generated in 
HEAD_ORG process and Eh2 is the set of 
edges that goes from H0 to nodes in CH(H0). 
By the way HEAD_ORG works, for any node 
h ∈ CH(H0), hops(h) would be 1. For any two 
different heads h1, h2 ∈ CH(H0), (P(h1) ≠ h2 
∧ P(h2) ≠ h1)) must hold.  

So the claim holds in this case. 
Case two: Vh’  is not empty 

If Vh’  is not empty, there must be a head 
h1 in Vh’  such that Vh2 = Vh’  ∪ CH(h1) and 
Eh2 = Eh’  ∪ { (h1, j): j ∈ CH(h1)} . By the 
proof of case one, we could easily know that 
the claim holds for the set of heads of { h1}  ∪ 
CH(h1). So we only need to prove the claim 
between a node h2 ∈ (Vh’  – { h1} ) and a node 
h3 ∈ CH(h1).  

If the set (Vh’  – { h1} ) is empty, the claim 
trivially holds.  

If the set (Vh’  – { h1} ) is not empty, then 
there must be a path p1 between h2 and h1 in 
Gh and a path p2 (actually just one hope 
edge) between h3 and h1. So there must be a 
path p3 between h2 and h3 in Gh and p3 is the 
concatenation of p1 and p2 by head h1. At 
the same time, h2 must have a parent head 
P(h2) ∈ Vh’ , P(h3) is h1 that is different from 
h2, and h3 ∉ Vh’ . So (P(h3) ≠ h2 ∧ P(h2) ≠ 
h3)) must hold.  

So the claim holds in this case. 
Thus, after a round of a round of HEAD_ORG, 

HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP, 
Gh and Gp still satisfy I1.2. �

 

• I2: Hexagonal map of heads and inner cells  
� I2.1: Each inner cell head i has exactly 6 neighboring 

heads that form a cellular hexagon centered by head 
i and of edge length 3R, with vertices’  location 
deviation at most Rt.   
(∀ inner cell head i:  

(| neighboring_heads(i) | = 6) ∧  
(∀j∈neighboring_heads(i): 3 R-2Rt ≤ dist(i, j) ≤ 3 R+2Rt ) 

)  

Proof: 
Same as the analysis in the proof of I1, the modules 

that can affect I2.1 are HEAD_ORG, HEAD_ORG_RESP, 
and ASSOCIATE_ORG_RESP.  

Suppose I2.1 holds before a round of HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP 
execution. We just need to prove that after the 
execution of a round of HEAD_ORG, HEAD_ORG_ 
RESP, and ASSOCIATE_ORG_RESP, initiated by a head 
i that executes HEAD_ORG, I2.1 still holds. Because this 
round of head organization will only affect head i and 
its children heads i1, i2, i3, we only need to prove that 
the I2.1 holds for head i, i1, i2, and i3. Let’s first consider 
head i. 
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1) head i is an inner_head ⇒ | 
neighboring_heads(i) | = 6  
a) if head i is the big node,  this claim holds 

obviously just by the way the process 
HEAD_ORG works; 

b) if head i is a small head node, we can get the 
picture below from the design of HEAD_ORG 
and the program of Big Node and Small 
Node. 

i

P(i)

RT
i1

i3

i2

60o 60o

180o-180o

Pi1

60o 60o
180o-180o

Pi 3

+2RtR3  
From the picture above, we can see that 

head i has 3 next-band heads (i1, i2, i3), 1 
parent head (P(i)), and 2 neighboring heads 
(pi1, pi3) at the same band that are under the 
care of the same parent head as head i, even 
though they might not be generated by P(i). 
Thus node i has 6 neighboring heads around 

within ( 3 R+2Rt) radius.  
Also it is easy to see that head almost 

centers the hexagon formed by its 6 
neighboring heads, with possible deviation at 
most Rt.  

2) head i is an inner_head ⇒ (∀j ∈ 
neighboring_heads(i): 3R-2Rt) ≤ dist(i, j) ≤ 

3R+2 Rt ) 
From HEAD_ORG and the picture above, 

we can see that: for all neighboring head j of 
node i, dist(IL(i), IL(j)) = 3R. At the same 
time “dist(k, IL(k)) ≤ Rt”  holds for any head k, 
thus “ 3R-2 Rt ≤ dist(i, j) ≤ 3R+2 Rt”  holds 
too. 

As for head i1, i2, and i3, we can prove, in the same 
way as above for head i, that I2.1 also holds for them.  

Thus I2.1 still holds after a round of a round of 
HEAD_ORG, HEAD_ORG_RESP, and ASSOCIATE_ 
ORG_RESP execution. �

 
� I2.2: Each boundary head i has less than 6 

neighboring heads, and the distance between i and 
its neighboring heads is hexagonally bounded. That 
is, 

(∀ boundary_head i: | neighboring_heads(i) | < 6) ∧  

(∀ boundary_head i: (∀j ∈ neighboring_heads(i): 3 R-2 Rt ≤ 

dist(i, j) ≤ 3 R+2 Rt ) 

Proof: 

Since we have proved that I2.1 is an invariant, we 
just need to prove that I2.1 ⇒ I2.2 in proving that I2.2 is 
an invariant. The proof of I2.1 ⇒ I2.2 is as follows: 

Boundary heads are generated in the same way as 
inner heads. The only difference is that their cells are 
on the boundary of the system’s geographic coverage 
such that there is no neighboring head in certain 
(60+2α)o region around itself, where α denotes the 
angular deviation corresponding to the Rt head’s 
location deviation. Since each inner head has exactly 6 

neighboring heads in its ( 3 R+2Rt) radius, each 
boundary head should have less than 6 neighboring 

heads in its ( 3 R+2Rt) radius. And the distance 
between boundary head i and its neighboring heads is 
bounded in the same way as inner head does. �

 
� I2.3: Each head, except for the big node, has no more 

than 3 children heads. The big node H0 has 6 
children heads if it is not on the system’s boundary 
and it would have 1~5 children heads if it is on the 
boundary of the system but not disconnected from 
the small nodes. That is,  

(∀ head i: | CH(i) | ≤ 3 ) ∧  

(H0 is not on the boundary of system coverage ⇒ ( |CH(H0)| = 6 )) 
∧ 

(H0 is on the boundary of system coverage but not disconnected ⇒ 
( 1 ≤ | CH(H0) | ≤ 5 )) 

Proof: 

The modules that can affect I2.3 are HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP.  

Suppose I2.3 holds before a round of HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP 
execution. We just need to prove that after the 
execution of a round of HEAD_ORG, 
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP, 
initiated by a head i that executes HEAD_ORG, I2.3 
still holds. Because this round of head organization 
will only affect head i and its children heads i1, i2, i3, 
and we are only considering a head’s children heads, 
we only need to prove that the I2.3 holds for head i.  

If head i is not the big node, from the design of 
HEAD_ORG, its search region is only 180o. Ideally 
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there would be only one head in 60o, thus at most there 
would be no more than three next-band heads (children 
heads) initiated by head i. Also, if the default value of 
Rt is R/4, the way HEAD_ORG works also guarantees 
that no more than three next-band heads initiated by i.  

If head i is the big node, its search region is 360o, 
thus it would have 6 children heads if the big node is 
not at the boundary of the system’s geographic 
coverage. If it is at the boundary of the system but not 
disconnected, the big node H0 would have 1~5 
children heads because there is no neighboring head in 
certain (60+2α)o region around the big node, where α 
denotes the angular deviation corresponding to the Rt 
head’s location deviation. 

Thus I2.3 still holds after a round of a round of 
HEAD_ORG, HEAD_ORG_RESP, and ASSOCIATE_ 
ORG_RESP execution. �

 
 I2.4: Each cell is of radius (R+Rrandom), where |Rrandom| 

is at most (2Rt / 3 ). And each associate is of 
(R+Rrandom) distance to its head.   
(∀ cell C: ∀associate i ∈ C : R−(2Rt/ 3 ) ≤ dist(i, H(i)) ≤ R+(2Rt/ 3 ))  

Proof: 
The modules that can affect I2.4 are HEAD_ORG, 

HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP.  
Suppose I2.4 holds before a round of HEAD_ORG, 

HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP 
execution. We just need to prove that after this round 
of execution of these modules, initiated by a head i 
that executes HEAD_ORG, I2.4 still holds. This round of 
head organization can affect head i, its possible 
children heads i1, i2, i3, its parent head P(i), and the two 
neighboring heads (pi1, pi3) at the same band that are 
under the care of the same parent head as head i, and 
their covered cells, as shown in the picture below. But 
we only need to prove that the I2.3 holds for the cell Ci 
covered by head i without loss of generality, because 
we can prove that I2.3 holds for all other related cells in 
the same way as for cell Ci. 

i

P(i)

RT
i1

i3

i2

60o 60o

180o-180o

Pi1

60o 60o
180o-180o

Pi 3

+2RtR3  
If head i is an inner cell head and thus Ci is an 

inner cell, then head i is surrounded by six neighboring 

heads as shown above. Then Ci is also surrounded by 
six neighboring cells. So, any point in Ci will lie in the 
triangle formed by head i and two of its immediately 
neighboring heads (i1 and i2, for example), as shown in 
the following figure. According to the way 
ASSOCIATE_ORG_RESP works, any point in this 
triangle chooses the closest head to join. Thus, the 
maximum distance between a point in head i’s cell and 
head i is (R+2Rt / 3 ), as shown in the figure. Thus, the 
radius for any inner cell is at most (R+2Rt / 3 ).  

tRR 23 +

i

tRR
3

2+

i1 i2

O

 
Thus I2.4 still holds after a round of a round of 

HEAD_ORG, HEAD_ORG_RESP, and ASSOCIATE_ 
ORG_RESP execution. !

 

• I3: Inner Cell Optimality (for associate nodes) 
" Each associate node in an inner cell chooses the best 

(closest, most remaining energy, etc.) neighboring 
head to join. That is,  

(∀ associate i in any inner cell: ∀ head j ≠ H(i) (H(i) better than j))  

Proof: 
The modules that can affect I3 are HEAD_ORG 

and ASSOCIATE_ORG_RESP.  
Suppose I3 holds before a round of HEAD_ORG 

and ASSOCIATE_ORG_RESP. We just need to prove 
that after this round of execution of these modules, 
initiated by a head i that executes HEAD_ORG, I3 still 
holds. Because HEAD_ORG only happens at boundary 
heads at any moment, any round of HEAD_ORG 
execution could only, from the perspective of I3, affect 
those associates that was in a boundary cell before the 
execution but is in an inner cell after the execution. 
For any such associate node j, it must have chosen the 
best head around it as its head because the way 
ASSOCIATE_ORG_ RESP works. So I3 holds for 
every such associate j.  

Thus I3 holds after any round of HEAD_ORG and 
ASSOCIATE_ORG_RESP execution. #
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2) Theorem 3: Starting from any state, every 
computation of GS3-S reaches a state where SI 
holds within a constant amount of time. That is, 

$ TRUE leads to Invariant (I1 ∧ I2 ∧ I3) 

Proof: 
In order to prove “TRUE leads to Invariant” , we 

just need to prove “ iantIn var  leads to Invariant”  
because “ Invariant leads to Invariant”  is obvious.  

Because Invariant (I1 ∧ I2) is closed under all the 
program actions and there is no state corruption in 
static networks (according to the definition), the 
system will not be able to reach any state where 

iantIn var  would hold. Thus iantIn var  is FALSE 

all the time. So “ iantIn var  leads to Invariant”  is 
equal to “FALSE leads to Invariant”  that is trivially 

true. Therefore, “ iantIn var  leads to Invariant”  is 
true. 

According to the analysis above, “TRUE leads to 
Invariant”  hold. %

 

3) Theorem 4: Starting from any state where SI 
holds, algorithm GS3-S reaches a state where SF 
(SF = F1∧ F2∧F3∧F4) holds, and the convergence 
time is θ(Db), where Db = max{ dist(H0, i): i is a 
small node and dist(H0,i) is the cartesian distance 
between H0 and i} . That is, 

& Invariant (I1 ∧ I2 ∧ I3) leads to fix point (F1 ∧ F2 ∧ 
F3 ∧ F4) 

Proof: 

a) Invariant (I1 ∧ I2 ∧ I3) leads to F3 

We only need to prove that I1 ∧ I2 ∧ I3 ∧ 3F leads 

to F3, since F3 naturally leads to F3, and I1 as well as I2 
is invariant.  

For any associate node i, the scenario where 3F  

could hold is when some better neighboring head j 
around it is still at state qhead and has not carried out the 
process HEAD_ORG yet. Because HEAD_ORG and 
HEAD_ORG_RESP guarantee that two neighboring 

heads within ( 3 R+2Rt) range cannot initiate 
HEAD_ORG in parallel, associate i is able to hear the 
ORG messages from all its neighboring heads, 
including head j. The way ASSOCIATE_ORG_RESP 
works guarantees that associate i will choose the best 
(such as closest, highest remaining energy, etc.) head 

to associate with after all such better heads js finish 

their HEAD_ORG process. So 3F  will be false and F3 

will be true after all the better neighboring heads 
around associate i finish their HEAD_ORG processes.  

Suppose the number of better heads around 

associate i is BETTER_HEAD when 3F  is true. Then 

BETTER_HEAD is no less than 0. When 3F  is true, 

at least one HEAD_ORG process is enabled, and 
whenever a HEAD_ORG process finishes, the value of 
BETTER_HEAD will decrease by 1. Thus, it only 
takes BETTER_HEAD rounds of HEAD_ORG 

process for associate i to transfer from state 3F  to 

state F3, which is a finite procedure. Thus “ I1 ∧ I2 ∧ 

3F leads to F3”  holds.  

Since it only takes finite time Chead_org for a 
HEAD_ORG process to finish, the state transition 

from 3F  to F3 would only take BETTER_HEAD × 

(Chead_org + Cgap) (i.e. θ(BETTER_HEAD)) amount of 
time, where Cgap denotes the maximum interval 
between two neighboring heads’  HEAD_ORG process.  

 

b) Invariant (I1 ∧ I2 ∧ I3) leads to F1 ∧ F2 

If we could prove that I1 ∧ I2 ∧ I3 ⇒ F2.4, then “ I1 ∧ 
I2 ∧ I3 leads to F2.4”  holds, which also means “ Invariant 
(I1 ∧ I2 ∧ I3) leads to F1 ∧ F2”  since I1 is the same as F1 
and F2 is equal to I2 ∧ F2.4. 

Now let’s prove I1 ∧ I2 ∧ I3 ⇒ F2.4. Because I2.4 ≡ 
F2.4 ∧ (There is no Rt -radius gap in the system ⇒ R’  ≤ 

R+
3

2
 Rt), we only need to prove that I1 ∧ I2 ∧ I3 ⇒ 

(There is no Rt -radius gap in the system ⇒ R’  ≤ 

R+
3

2
Rt). According to the way HEAD_ORG works, 

the boundary cell would be no bigger than the inner 
cell, if there is no Rt -radius gap. Otherwise, the 
HEAD_ORG process will be continuously initiated. 
Thus the boundary cell’ s radius is still no more than 

(R+
3

2
Rt) according to I2.4 that says any inner cell’ s 

radius is no more than (R+
3

2
Rt).  

c) Invariant (I1 ∧ I2 ∧ I3) leads to F4  
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We only need to prove that I1 ∧ I2 ∧ I3 ∧ ¬F4 leads 
to F4, since it is obvious that I1 ∧ I2 ∧ I3 ∧ F4 leads to 
F4.  

Since the way HEAD_ORG works guarantees that 
all the visible areas of the system can be covered by 
the HEAD_ORG process in the end (see the proof of 
this claim later), there will be a HEAD_ORG process 
waiting to take place whenever ¬F4 holds. Because the 
system’s coverage is finite and every HEAD_ORG 
process is able to cover another ( 3 R+2Rt)-radius 
circular area, the number of possible HEAD_ORG 
process occurrence is finite. Therefore, “ I1 ∧ I2 ∧ I3 ∧ 
¬F4 leads to F4”  holds.  

Now, let us prove that all the visible areas of the 
system can be covered by the HEAD_ORG process in 
the end. We prove it by induction on the area encircled 
by heads of i-band away from the big node, denoted 
Round Area RA(i) (i.e. area of radius ( 3R × i + Rt + 
R) and i is the number of hexagons away from the big 
node).  

Base: when i = 0, 1, clearly holds  
Hypothesis: the claim holds when i = k 
Induction: when i = (k+1), 

H(k+1)5

H(k+1)6BIG

NODE

Hk2

H(k+1)2

H(k+1)3

Hk3

Hk1

H(k+1)1

Hk4

H(k+1)4

 
As we can see from the picture, any point that is in 

RA(k+1) but not in RA(k) will be covered by some 
(k+1)-band head. And each  (k+1)-band head can be 
taken care of by some k-band head, either directly or 
indirectly, even though some of them might not be 
generated directly by a k-band head due to different 
progress speeds of the self-configuration process at 
different directions spreading from the big node. Thus 
the claim holds when i is (k+1). 

'  

4) Theorem 5: DI is an invariant of algorithm GS3-D, 
where DI = SI (invariant of GS3-S) with I2 relaxed 
as above. 

• I1: Connectivity (safety property of head level 
graph)  

( I1.1: Any pair of heads that are connected in Gh are 
also connected in Gp, and vice versa. That is,  
(∀ vh1, vh2 ∈ Vh: there is a path between vh1 and vh2 in Gh ⇔ 
there is a path between vh1 and vh2 in Gp) 

Proof: 
Gp only depends on the nodes in the system and 

their communication capability, thus has nothing to do 
with the program actions. Gh only depends on the set 
of head nodes in the system and the parent-child 
relationship among them. Thus the set of actions that 
are related to Gh are those of HEAD_ORG, 
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP, 
intra-cell maintenance, inter-cell maintenance, and 
system state sanity check. New node join does not 
affect this claim, because it does not affect the head 
level structure directly.  

At the same time, starting from a state where the 
Invariant holds, system state sanity check will not be 
enabled. So, in proving I1.1, we only need to prove that 
it is closed under a round of HEAD_ORG, 
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP, 
intra-cell maintenance and inter-cell maintenance.  

⇒: 

In dynamic immobile networks, the only 
modifications to processes HEAD_ORG, HEAD_ 
ORG_RESP and ASSOCIATE_ORG_RESP that could 
affect the claim differently from that of the static 
networks is the case where an existing head i selects a 
better parent head j. In this case, there is an edge (i, j) 
added to Gh. According to HEAD_ORG and 
HEAD_ORG_RESP, head i and j are no more than 

( 3 R+2Rt) away from each other and within 
transmission range of each other. Thus edge (i, j) must 
exist in Gp too. Therefore the claim is still closed 
under the modified HEAD_ORG, HEAD_ 
ORG_RESP and ASSOCIATE_ORG_RESP processes 
in dynamic immobile networks.  

In intra-cell maintenance, the sub-modules that 
could affect Gh is STRENGTHEN_CELL and 
REPLACING_HEAD. STRENGTHEN_CELL itself 
does not affect Gh, because it just demotes the current 
head to associate and promotes another associate to be 
head. The result of STRENGTHEN_CELL is a 
REPLACING_HEAD process. So we only need to 
prove that the claim is closed under 
REPLACING_HEAD. The way REPLACING_HEAD 
works guarantees that the newly elected head i is no 

more than 2 3 R away from its children head as well 
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as neighboring heads and is within transmission range 
of one another. Therefore, they must be an edge 
between head i and each of its children heads in Gp. 
Thus, the claim is closed under REPLACING_HEAD.  

In inter-cell maintenance, the sub-modules that can 
affect Gh is HEAD_ORG, SYN_CELL and PARENT_ 
SEEK. Since the claim is closed under HEAD_ORG, 
we only need to prove that it is closed under 
SYN_CELL and PARENT_SEEK. SYN_CELL does 
not affect the claim directly because the head is just 
removed from Gh. Instead only SYN_CELL’s result, 
REPLACING_ HEAD, could affect the claim. Since 
the claim is closed under REPLACING_HEAD, it is 
also closed under SYN_CELL. In PARENT_SEEK 
initiated by a head j, if head j succeeds in finding a 
neighboring head as parent, j must be no more than 

2 3 R away from its parent and they are within 
transmission range of each other. Thus there must be 
an edge between head j and its new parent in Gp. 
Therefore, the claim is closed under PARENT_SEEK.  

 

⇐: 

By I1.2, Gh is a tree, thus any two heads h1 and h2 
are connected in Gh and there would always be a path 
between then in Gh. So this claim trivially holds.  

Therefore, after a round of a round of 
HEAD_ORG, HEAD_ORG_RESP, ASSOCIATE_ 
ORG_RESP, intra-cell maintenance, inter-cell 
maintenance and system state sanity check execution, 
Gh and Gp still satisfy I1.1. )

 
* I1.2: Gh is a tree rooted at the big node H0. That is, 

(hops(H0) = 0) ∧ (P(H0) = H0) ∧ 

(∀ vi ∈ (Vh – { H0} ): (there is a path between vi and H0) 
⇒ (hops(H0, vi) = hops(H0, P(vi))+1) ∧ 

(∀ vi, vj ∈ Vh: there is a path between vi and vj in Gh) ∧  

(∀ vi, vj ∈ Vh: there is a path of length no fewer than 2 
between vi and vj ⇒ (P(vi) ≠ vj ∧ P(vj) ≠ vi)),  
where hops(v1, v2) denotes the length of the path from v1 
to v2 in Gh.  

Proof: 
The set of actions that are enabled at an Invariant 

state and that can affect Gh are those of HEAD_ORG, 
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP, 
intra-cell maintenance, and inter-cell maintenance. 
New node join does not affect this claim, because it 
does not affect the head level structure directly.  

In order to prove I1.2, we only need to prove that it 
is closed under a round of HEAD_ORG, 
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP, 
intra-cell maintenance, and inter-cell maintenance.  

In dynamic immobile networks, the only 
modifications to processes HEAD_ORG, HEAD_ 
ORG_RESP and ASSOCIATE_ORG_RESP that could 
affect the claim differently from that of the static 
networks is the case where an existing head j selects a 
better parent head k. In this case, Gh is still a tree 
because, even though the edge between j and its 
previous head in Gh is removed, the added edge (j, k) 
guarantees that the sub-tree rooted at head j in Gh is 
still connected to other nodes in Gh through head k.  

In intra-cell maintenance, the sub-modules that 
could affect Gh is STRENGTHEN_CELL and 
REPLACING_HEAD. The result of STRENGTHEN_ 
CELL and REPLACING_HEAD is that one head j in 
Gh is replaced by an associate k in j’ s cell that is not in 
Gh previously. The way STRENGTHEN_CELL and 
REPLACING_HEAD work guarantees that j’ s 
relationship with its parent head as well as children 
heads are transferred to node k. Thus, the structure of 
Gh is maintained after any STRENGTHEN_CELL or 
REPLACING_HEAD operation, except that node j is 
replaced by node k. So, the claim is closed under intra-
cell maintenance.  

In inter-cell maintenance, the sub-modules that can 
affect Gh is HEAD_ORG, SYN_CELL and PARENT_ 
SEEK. Since the claim is closed under HEAD_ORG, 
we only need to prove that it is closed under 
SYN_CELL and PARENT_SEEK. The result of 
SYN_CELL is that one head j in Gh is replaced by an 
associate k in j’ s cell that is not in Gh previously, if 
such k exists. If such k really exists, the way 
SYN_CELL and its resulting REPLACING_HEAD 
work guarantees that j’ s relationship with its parent 
head as well as children heads are transferred to node 
k. Thus, the structure of Gh is maintained after the 
SY_CELL and REPLACING_HEAD operation. If 
such k does not exist, process PARENT_SEEK will be 
initiated, which guarantees that the sub-tree previously 
rooted at head j in Gh will be connected to the 
remaining part of Gh if it is not completely separated 
from the system. So I1.2 is still closed in this case. As 
for PARENT_SEEK, it will be initiated at head j only 
if the sub-tree rooted at j is disconnected from the 
other part of Gh because of the removal of edge (j, 
P(j)). The result of PARENT_SEEK is that this sub-
tree gets re-connected to the remaining Gh if the sub-
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tree is not disconnected from the remaining Gh, or this 
sub-tree disappears (i.e. all heads in this sub-tree go to 
boot-up state) if it is completely disconnected from the 
remaining Gh. Thus I1.2 is closed under 
PARENT_SEEK. Therefore, I1.2 is closed under inter-
cell maintenance.  

Therefore, after a round of HEAD_ORG, 
HEAD_ORG_RESP, ASSOCIATE_ORG_ RESP, 
intra-cell maintenance, and inter-cell maintenance 
execution, I1.2 still holds if it held before the execution 
of these modules. +

 

• I2: Hexagonal map of heads and inner cells  
, I2.1: Each inner head i has exactly 6 neighboring 

heads, and the 6 neighboring heads of head i forms a 
cellular hexagon that is centered by head i, with 
bounded vertices’  location deviation. That is,  
(∀ inner_head i: | neighboring_heads(i) | = 6) ∧  

(∀ inner_head i (∀j ∈ neighboring_heads(i):  

(<CIC(i),ICP(i)> = <CIC(j),ICP(j)>) ⇒ ( 3 R-2Rt ≤ 

dist(i, j) ≤ 3 R+2Rt ) ∧ 

(<CIC(i),ICP(i)> ≠ <CIC(j),ICP(j)>) ⇒ (dist(IL(i),IL(j))-
2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt ) ∧ (0 < dist(IL(i), 

IL(j)) ≤ 2 3 R ) 

) 

Proof: 
The set of actions that are enabled at an Invariant 

state and that can affect I2.1 are those of HEAD_ORG, 
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP, 
intra-cell maintenance, and inter-cell maintenance. 
New node join does not affect this claim, because it 
does not affect the head level structure directly.  

In order to prove I2.1, we only need to prove that it 
is closed under a round of HEAD_ORG, 
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP, 
intra-cell maintenance, and inter-cell maintenance.  

In dynamic immobile networks, the only 
modifications to processes HEAD_ORG, HEAD_ 
ORG_RESP and ASSOCIATE_ORG_RESP that could 
affect the claim differently from that of the static 
networks is the case where an existing head j selects a 
better parent head k. Even in this case, I2.1 should still 
be closed under a round of head organization process, 
because it affects neither j’ s nor k’s geographical 
location. Also, in dynamic immobile networks, a 
HEAD_ORG process will be initiated by a head j only 

if j and its parent head P(j) are at the same <CIC, ICP> 
point within their respective cells. Under this premise, 
the next band head organization process acts 
essentially the same as that in static networks in terms 
of head level’s hexagonal feature. So, I2.1 is closed 
under a round of HEAD_ORG, HEAD_ORG_RESP 
and ASSOCIATE_ORG_RESP execution in dynamic 
immobile networks.  

In intra-cell maintenance, the sub-modules that can 
affect head level structure are REPLACING_HEAD 
and STRENGTHEN_CELL. The result of 
REPLACING_HEAD is that one head j in a cell is 
replaced by a head candidate k in j’ s cell that is no 
more than Rt away from the ideal location of this cell. 
The way REPLACING_HEAD works guarantees that 
j’ s relationship with its neighboring heads is 
transferred to node k. Thus, I2.1 is closed under any 
round of REPLACING_HEAD. The result of 
STRENGTHEN_ CELL initiated by a head j is that j 
retreats to be an associate node and another associate 
node k previously in j’ s cell become the head of this 
cell. If the newly elected head k is at the same <CIC, 
ICP> point as its neighboring cell’ s head m, they are at 
the same relative location to their respective OIL, with 
on more than Rt location deviation. According to the 
HEAD_ORG, HEAD_ORG_RESP and 
ASSOCIATE_ORG_RESP, the original ideal location 

(OIL) of any two neighboring cells is exactly 3 R. 
Therefore, the distance between k and m should be 

3 R with no more than 2Rt deviation, the same as 
that in static networks. However, if k and m are at 
different <CIC, ICP> points, this regularity does not 
hold any more. But the distance between k and m is 

still no more than 2 3 R, because the way 
STRENGTHEN_CELL works guarantees that the 
maximum distance between any possible ILs of two 

neighboring cells is no more than 2 3 R. So, the I2.1 is 
closed STRENGTHEN_CELL too. In a word, I2.1 is 
closed under intra-cell maintenance.  

In inter-cell maintenance, the sub-modules that can 
affect head level structure are HEAD_ORG, 
SYN_CELL and PARENT_ SEEK. Since the claim is 
closed under HEAD_ORG, we only need to prove that 
it is closed under SYN_CELL and PARENT_SEEK. 
The result of SYN_CELL is that one head j is replaced 
by an associate k in j’ s cell, if such k exists. If such k 
really exists, the way SYN_CELL and its resulting 
REPLACING_HEAD work guarantees that j’ s 
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relationship with its neighboring heads is transferred to 
node k. Thus, I2.1 closed under SY_CELL and its 
resulting REPLACING_HEAD operations. If such k 
does not exist, process PARENT_SEEK will be 
initiated. As for PARENT_SEEK, it will be initiated at 
head j only if the sub-tree rooted at j is disconnected 
from the other part of Gh because of the removal of 
edge (j, P(j)) in Gh. The result of PARENT_SEEK will 
not add any new head to the system or change the 
location of any existing heads, even though it might 
remove some existing heads from the head level graph. 
Thus I1.2 must be closed under PARENT_SEEK. 
Therefore, I2.1 is closed under inter-cell maintenance.  

Based upon the analysis above, after a round of 
HEAD_ORG, HEAD_ORG_RESP, ASSOCIATE_ 
ORG_RESP, intra-cell maintenance, and inter-cell 
maintenance execution, I2.1 still holds if it held before 
the execution of these modules. -

 
. I2.2: Each boundary head i has less than 6 

neighboring heads, and the distance between i and its 
neighboring heads is hexagonally bounded. That is, 
(∀ boundary_head i: | neighboring_heads(i) | < 6) ∧  

(∀ boundary_head i (∀j ∈ neighboring_heads(i):  

(<CIC(i),ICP(i)> = <CIC(j),ICP(j)>) ⇒ ( 3 R-2Rt ≤ 

dist(i, j) ≤ 3 R+2Rt ) ∧ 

(<CIC(i),ICP(i)> ≠ <CIC(j),ICP(j)>) ⇒ (dist(IL(i),IL(j))-
2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt ) ∧ (0 < 

dist(IL(i), IL(j)) ≤ 2 3 R ) 

) 

Proof: 

Since we have proved that I2.1 is an invariant, we 
just need to prove that I2.1 ⇒ I2.2 in proving that I2.2 is 
an invariant. The proof of I2.1 ⇒ I2.2 is as follows: 

Boundary heads are generated and maintained (by 
intra-cell as well as inter-cell maintenance procedure) 
in the same way as inner heads. The only difference is 
that their cells are on the boundary of the system’s 
geographic coverage such that there is no neighboring 
head in certain (60+2α)o region around itself, where α 
denotes the angular deviation corresponding to the Rt 
head’s location deviation. Since each inner head has 

exactly 6 neighboring heads in its ( 3 R+2Rt) radius, 
each boundary head should have less than 6 

neighboring heads in its ( 3 R+2Rt) radius. And the 

distance between boundary head i and its neighboring 
heads is bounded in the same way as inner head does. 

/  
0 I2.3: Each head, except for the big node, has no more 

than 5 children heads. The big node H0 has 6 
children heads if it is not on the system’s boundary 
and it would have 1~5 children heads if it is on the 
boundary of the system but not disconnected from 
the small nodes. That is,  
(∀ head i: | CH(i) | ≤ 5 ) ∧  

(H0 is not on the boundary of system coverage ⇒ ( |CH(H0)| = 6 
)) ∧ 

(H0 is on the boundary of system coverage but not disconnected 
⇒ ( 1 ≤ | CH(H0) | ≤ 5 )) 

Proof: 

Since both I2.1 and I2.2 are invariants, and I2.1 ∧ I2.2 
⇒ I2.3, I2.3 is an invariant too.  1

 
2 I2.4: Each cell is of radius (R+Rrandom). When a cell i 

and all its neighboring cells are at the same <CIC, 

ICP> point, |Rrandom| is no more than 
3

2
Rt for inner 

cell i and no more than (( 3 -1)R+2Rt+dp) for 
boundary cells, with dp being the diameter of the 
gap-perturbed area adjoining a boundary cell (dp is 0 
if there is no gap-perturbed area).; Otherwise, 
|Rrandom| is less than (2R+Rt) for inner cell i. This 
also means that each associate node is of (R+Rrandom) 
distance to its head. That is,  

(∀ inner cell C(i):  

(∀j∈neighboring_heads(i): (<CIC(i),ICP(i)> = <CIC(j),ICP(j)>) 

⇒ (∀ associate i ∈ C : dist(i, H(i)) ≤ R+
3

2
 Rt))  

∧ 

(∃ j∈neighboring_heads(i): (<CIC(i),ICP(i)> ≠ <CIC(j),ICP(j)>) 
⇒ (∀ associate i ∈ C : dist(i, H(i)) < 2R+Rt)  

)  

∧  

(∀ boundary cell C(i): (∀ associate i ∈ C(i) : dist(i, H(i)) ≤ R’ )) ∧ 
(R’  ≤ 3 R+2Rt+dp))  

Proof: 
As for inner cell C(i), we could prove the claim is 

closed under program actions by proving that I2.1 ∧ I2.2 
∧ I3  ⇒ (I2.4 for inner cell). The proof is as follows: 
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Case one: ∀j∈ neighboring_heads(i): <CIC(i), 
ICP(i)> = <CIC(j),ICP(j)> 

The proof is the same as that for static networks, 
we neglect it here for simplicity. 

Case two: ∃ j∈neighboring_heads(i): <CIC(i), 
ICP(i)> ≠ <CIC(j),ICP(j)> 

In this case, the worst scenario for an associate 
node j in an inner cell is as the following figure 
shows: 

j H0

H2

H1

2R

 
That is, the three heads (H0, H1 and H2) are 

farthest away from one another (2 3 R). But the 
maximum distance between j and any of these 
three heads is still no more than 2R with possible 
Rt location deviation by geometry calculation.  

As for boundary cells, the set of actions that are 
possibly enabled at invariant state and that can affect 
I2.4 for boundary cells are those of HEAD_ORG, 
ASSOCIATE_ORG_RESP, new node joins, intra-cell 
maintenance and inter-cell maintenance.  

As proved in static networks, I2.4 for boundary cells 
is closed under HEAD_ORG and 
ASSOCIATE_ORG_RESP operations.  

I2.4 for boundary cells is closed under new node 
join operation too, because new node join does not 
creat new heads, and the way 
SMALL_NODE_BOOT_UP and 
SMALL_NODE_JOIN work guarantees that the 
distance between the new node and its selected head is 

no more than MAX+( 3 R+2Rt).  

In intra-cell maintenance, the sub-modules that can 
affect I2.4 for boundary cells are REPLACING_HEAD 
and STRENGTHEN_CELL. The result of 
REPLACING_HEAD is that one head j in a cell is 
replaced by a head candidate k in j’ s cell that is no 
more than Rt away from the ideal location of this cell. 
Thus, I2.4 for boundary cells is closed under any round 
of REPLACING_HEAD. The result of 
STRENGTHEN_ CELL initiated by a head j is that j 
retreats to be an associate node and another associate 

node k previously in j’ s cell become the head of this 
cell. Before the execution of STRENGTHEN_CELL, 
the maximum distance between j’s cell’ s original ideal 
location and any associate in this cell is no more than 

MAX+( 3 R+2Rt). after the STRENGTHEN_CELL 
operation, the distance between k and this cell’ s 
original ideal location is no more than R. So after the 
STRENGTHEN_CELL operation, the maximum 
distance between k and any associate in its cell is no 

more than MAX+( 3 R+2Rt)+R. So I2.4 for boundary 
cells is closed under STRENGTHEN_CELL. In a 
word, I2.4 for boundary cells is closed under intra-cell 
maintenance.  

In inter-cell maintenance, the sub-modules that can 
affect I2.4 for boundary cells are HEAD_ORG, 
SYN_CELL and PARENT_ SEEK. Since the claim is 
closed under HEAD_ORG, we only need to prove that 
it is closed under SYN_CELL and PARENT_SEEK. 
The result of SYN_CELL is that one head j is replaced 
by an associate k in j’ s cell, if such k exists. If such k 
really exists, the way SYN_CELL and its resulting 
REPLACING_HEAD work guarantees that I2.4 for 
boundary cells still holds after the execution, in the 
same way as STRENGTHEN_CELL. Thus, I2.4 for 
boundary cells is closed under SY_CELL and its 
resulting REPLACING_HEAD operations. If such k 
does not exist, any associate in j’ s cell goes back to 
boot-up state and acts as a new node joining the 
system, where I2.4 for boundary cells is also closed. So 
I2.4 for boundary cells is closed under SYN_CELL. As 
for PARENT_SEEK, it will be initiated at head j only 
if the sub-tree rooted at j is disconnected from the 
other part of Gh because of the removal of edge (j, 
P(j)) in Gh. The result of PARENT_SEEK will not add 
any new head to the system or change the location of 
any existing heads, even though it might remove some 
existing heads from the head level graph, which will 
initiate new node joins operation. But all this does not 
violate I2.4 for boundary cells. Thus I2.4 for boundary 
cells must be closed under PARENT_SEEK. 
Therefore, I2.4 for boundary cells is closed under inter-
cell maintenance.  

3  

• I3: Inner Cell Optimality (for associate nodes) 
4 Each associate node in an inner cell chooses the best 

(closest, most remaining energy, etc.) neighboring 
head to join. That is,  

(∀ associate i in any inner cell: ∀ head j ≠ H(i) (H(i) better than j))  
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Proof: 
The set of actions that are possibly enabled at 

invariant state and that can affect I3 are those of 
HEAD_ORG, ASSOCIATE_ORG_RESP, new node 
join, intra-cell maintenance, and inter-cell 
maintenance.  

As proved for static networks, I3 is closed under 
HEAD_ORG and ASSOCIATE_ORG_RESP. 

I3 is closed under new node join operation because 
in SMALL_NODE_BOOT_UP and SMALL_NODE_ 
JOIN, a new node always choose the best neighboring 
head to associate. In SMALL_NODE_BOOT_UP and 
SMALL_NODE_JOIN, a new node might join a 
neighboring head’s HEAD_ORG process, but in this 
case, the new node is in a boundary cell, either at an 
inner gap or at real system boundary. Therefore, I3 is 
closed under new node join scenario. 

In intra-cell maintenance, the sub-modules that can 
affect I3 are REPLACING_HEAD and 
STRENGTHEN_CELL. The result of REPLACING_ 
HEAD is that one head j in a cell is replaced by a head 
candidate k in j’ s cell. At the moment k assumes the 
head role, it will broadcast a Head_intra_alive message 
that guarantees that any associate that k can serve as a 
better head will choose k as the new better head. Thus, 
I3 is closed under any round of REPLACING_HEAD. 
The result of STRENGTHEN_ CELL initiated by a 
head j is the same as REPLACING_HEAD from the 
point of view of I3. So I3 is closed under 
STRENGTHEN_CELL. In a word, I3 is closed under 
intra-cell maintenance.  

In inter-cell maintenance, the sub-modules that can 
affect I3 are HEAD_ORG, SYN_CELL and PARENT_ 
SEEK. Since I3 is closed under HEAD_ORG, we only 
need to prove that it is closed under SYN_CELL and 
PARENT_SEEK. The result of SYN_CELL is that one 
head j is replaced by an associate k in j’ s cell, if such k 
exists. If such k really exists, the result of SYN_CELL 
and its resulting REPLACING_HEAD is the same as 
that of REPLACING_HEAD from the I3’ s point of 
view. Thus, I3 is closed under SYN_CELL and its 
resulting REPLACING_HEAD operations. If such k 
does not exist, any associate in j’ s cell goes back to 
boot-up state and acts as a new node joining the 
system, where I3 is also closed. So I3 is closed under 
SYN_CELL. As for PARENT_SEEK, it will be 
initiated at head j only if the sub-tree rooted at j is 
disconnected from the other part of Gh because of the 

removal of edge (j, P(j)) in Gh. The result of 
PARENT_SEEK will not add any new head to the 
system or change the location of any existing heads, 
even though it might remove some existing heads from 
the head level graph, which will initiate new node 
joins operation. But all this does not violate I3. Thus I3 

must be closed under PARENT_SEEK. Therefore, I3 is 
closed under inter-cell maintenance.  

5  

5) Theorem 7: Starting from any state, every 
computation of GS3-D reaches a state where DI 
holds within time O(Dc), where Dc is the diameter 
of a continuous state-corrupted area.. That is, 

TRUE leads to Invariant (I1 ∧ I2 ∧ I3) 

Proof: 

In order to prove “TRUE leads to Invariant” , we 

just need to prove “ iantIn var  leads to Invariant”  
because “ Invariant leads to Invariant”  is obvious. The 
proof is as follows.  

There are two cases where iantIn var  could be 
reached due to node failure, even though it cannot be 
reached just program actions.  

a) A head j dies without following proper head 
retreat procedure 

This kind of failure may make Gh disconnected 
temporarily, thus affects connectivity (I1.2). This 
could be dealt with by inter-cell maintenance 
procedures. By inter-cell maintenance procedure, 
the parent head P(j) of head j will first initiate 
another round of HEAD_ORG process, trying to 
recover the failure of head j. If there is any node in 
head j’s original Rt-radius range, the HEAD_ORG 
process will succeed in finding a replacing head k 
to play the role head j previously did. Thus this 
will make Gh connected again. If it fails, the sub-
trees previously rooted at head j will initiate 
PARENT_SEEK. This will make these sub-trees 
connected to the remaining Gh if they are not 
completely disconnected from the remaining Gh. If 
they are really disconnected from the remaining 
Gh, all heads in the sub-tree will retreat to boot-up 
state, which also makes I1.2 true again. Time 
complexity is θ(A), where A stands for the size of 
the contiguously affected area. 

This failure can also make all the associates 
originally in its cell live without a head, even 
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though they still have their head pointer point to 
node j. So the inner cell optimality (I3) is violated 
here too. This could be dealt with by intra-cell 
maintenance. Any associate k previously in head 
j’s cell will go back to boot-up state after detecting 
that their head has died. Then 
SMALL_NODE_BOOT_UP process will be 
initiated at node k, which makes I3 hold for node k 
again. On the other hand, before node k goes back 
to boot-up state, if it hears Head_intra_alive 
message from another head m other than j and k 
considers m being better than j, node k will choose 
head m as its head. Thus still makes I3 holds again. 
The time complexity of this process is θ(C1), 
where C1 is a small constant related to the purely 
one-hop message exchange.  

b) State corruption at existing head node or 
associate node j  

This can affect connectivity (I1.1) because the 
corrupted head j might choose a random number as 
P(j) and P(j) is the ID of another head, but P(j) and 
j are beyond the transmission range of one another. 
This could be dealt with by inter-cell maintenance. 
Since j cannot hear Head_inter_alive message 
from P(j), it will initiate PARENT_SEEK to find 
another head to associate, which will make I1.1 true 
again. The time complexity of this process is 
θ(C2), where C2 is a small constant related to Tphbt 
and the purely one-hop message exchange in 
PARENT_SEEK (we assume head j’s original 
parent is still there and j has heard 
Head_inter_alive message from it). 

This can affect hexagonal head level structure 
(I2) because head j’s CH(j) might be corrupted, 
because head j will not hear Head_inter_alive 
message from its mistakenly-elected child head, 
which will make head j initiate a HEAD_ORG 
process even though it should not be. This will 
generate a head that should not be a head indeed. It 
could be dealt with by system state sanity check, 
as discussed in c). Time complexity is θ(A), where 
A stands for the size of the contiguously affected 
area. 

This can affect inner cell optimality (I3) 
because an associate j’ s H(j) could be corrupted 
such that H(j) is either not the best or is beyond 
transmission range. This could be dealt with by 
intra-cell maintenance at the moment associate j 

hears its neighboring heads’  Head_intra_alive 
messages. The time complexity of this process is 
θ(C3), where C3 is a small constant related to the 
purely one-hop message exchange. 

c) A new head j shows up due to state 
corruption, or due to HEAD_ORG initiated by a 
corrupted head, even though it should not be a 
head 

It can affect the hexagonal head level structure 
(I2), because an extra head shows up in the 
previously hexagonal head map, which corrupts 
the hexagon feature. This could be dealt with by 
system state sanity check. Time complexity is 
θ(A), where A stands for the size of the 
contiguously affected area. 

d) Intra-cell maintenance at cell j fails to find a 
replacing head for this cell 

The effect and the recovery process is the 
same as case a).  

According to the analysis above, “TRUE leads to 
Invariant”  hold. 

6  

6) Theorem 8: Starting from any state where DI 
holds, every computation of GS3-D reaches a state 
where DF holds within time O(max{ (Dd/c1), Td} ), 
where c1 is the average speed of message diffusing 
and Td is the maximum difference between the 
lifetime of the candidate set of two neighboring 
cells. That is, 

Invariant (I1 ∧ I2 ∧ I3) leads to Fix Point (F1 ∧ 
F2 ∧ F3 ∧ F4) 

Proof: 

a) Invariant (I1 ∧ I2 ∧ I3) leads to F3 

We only need to prove that I1 ∧ I2 ∧ I3 ∧ 

3F leads to “F3 for boundary cell” , since F3 naturally 

leads to F3, I1 as well as I2 is invariant, and I3 ⇒ “F3 
for inner cell” .  

Same as that in static networks, for any associate 

node i in a coundary cell, the scenario where 3F  

could hold is when some better neighboring head j 
around it is still at state qhead and has not carried out 
the process HEAD_ORG yet. Because HEAD_ORG 
and HEAD_ORG_RESP guarantee that two 

neighboring heads within ( 3 R+2Rt) range cannot 
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initiate HEAD_ORG in parallel, associate i is able to 
hear the ORG messages from all its neighboring 
heads, including head j. The way 
ASSOCIATE_ORG_RESP works guarantees that 
associate i will choose the best (such as closest, 
highest remaining energy, etc.) head to associate 
with after all such better heads js finish their 

HEAD_ORG process. So 3F  will be false and F3 

will be true after all the better neighboring heads 
around associate i finish their HEAD_ORG 
processes.  

Suppose the number of better heads around 

associate i is BETTER_HEAD when 3F  is true. 

Then BETTER_HEAD is no less than 0. When 3F  

is true, at least one HEAD_ORG process is enabled, 
and whenever a HEAD_ORG process finishes, the 
value of BETTER_HEAD will decrease by 1. Thus, 
it only takes BETTER_HEAD rounds of 
HEAD_ORG process for associate i to transfer from 

state 3F  to state F3, which is a finite procedure. 

Thus “ I1 ∧ I2 ∧ 3F leads to F3”  holds.  

Since it only takes finite time Chead_org for a 
HEAD_ORG process to finish, the state transition 

from 3F  to F3 would only take BETTER_HEAD × 

(Chead_org + Cgap) (i.e. θ(BETTER_HEAD)) amount 
of time, where Cgap denotes the maximum interval 
between two neighboring heads’  HEAD_ORG 
process.  

b) Invariant (I1 ∧ I2 ∧ I3) leads to F1 ∧ F2 

If we could prove that I1 leads to F1, I2 leads to 
(F2.1 ∧ F2.2 ∧ F2.4) and I2 ∧ F1.2 ⇒ F2.3, then “ Invariant 
(I1 ∧ I2 ∧ I3) leads to F1 ∧ F2”  would hold too.  

First, let us prove “ I1 leads to F1” . 

Because F1 is equal to (I1 ∧ (∀ vi ∈ (Vh – { H0} ): 
D(vi) = MIN(H0, vi))) and I1 is an invariant, we just 
need to prove that “ I1 leads to (∀ vi ∈ (Vh – { H0} ): 
D(vi) = MIN(H0, vi))” .  

This is proved by induction on MIN(H0, vi).  

Base: when MIN(H0, vi) = 0, vi is the big node 
H0. It is trivially true the D(H0) = 0. 

Hypothesis: the claim holds when MIN(H0, vi) 
= d 

Induction: when MIN(H0, vi) = (d+1) 

We only need to prove that for any head vi, 
if MIN(H0, vi) = (d+1), then D(vi) = (d+1). From 
HEAD_ORG_RESP and HEAD_INTER_CELL, 
a head vi will choose the a head with lowest 
distance to H0 as parent head, by listening to 
their Head_org or Head_inter_alive message. 
For any head vi, if MIN(H0, vi) = (d+1), then the 
closest neighboring head j must have a MIN(H0, 
j) value of d, which also means that D(j) = d by 
the hypothesis. Thus D(vi) must be (d+1) since j 
is vi’ s parent head. 

Then, let us prove “ I2 leads to (F2.1 ∧ F2.2 ∧ 
F2.4)” . 

Let’s first prove that I2 leads to F2.1 ∧ F2.2. 
Because of SYN_CELL, all heads in the system will 
have the same <CIC, ICP> value at fix point (stable 
system state), that is, I2 leads to (∀ head i (∀j ∈ 
neighboring_heads(i): (<CIC(i),ICP(i)> = 
<CIC(j),ICP(j)>). At the same time (I2.1 ∧ I2.2 ∧ (∀ 
head i (∀j ∈ neighboring_heads(i): (<CIC(i),ICP(i)> 
= <CIC(j),ICP(j)>)) ⇒ F2.1 ∧ F2.2, and I2 is an 
invariant. So “ I2 leads to F2.1 ∧ F2.2”  naturally holds 
due to transitivity of leads to operation.  

Now let’s prove I2 leads to F2.4. We achieve this 
by proving I2 ⇒ F2.4. Because I2.4 ≡ F2.4 ∧ (There is 

no Rt -radius gap in the system ⇒ R’  ≤ R+
3

2
 Rt), 

we only need to prove that I1 ∧ I2 ∧ I3 ⇒ (There is no 

Rt -radius gap in the system ⇒ R’  ≤ R+
3

2
Rt). 

According to the way HEAD_ORG works, the 
boundary cell would be no bigger than the inner cell, 
if there is no Rt -radius gap. Otherwise, the 
HEAD_ORG process will be continuously initiated. 
Thus the boundary cell’ s radius is still no more than 

(R+
3

2
Rt) according to I2.4 that says any inner cell’ s 

radius is no more than (R+
3

2
Rt).  

Finally, let us prove “ I2 ∧ F1.2 ⇒ F2.3” .  

Since F2.3 = (I2.3 ∧ (∀ head i: | CH(i) | ≤ 3 )), we 
only need to prove that “ I2 ∧ F1.2 ⇒ (∀ head i: | 
CH(i) | ≤ 3)” .  

Let us consider any head (not big node) i without 
loss of generality. By I2, there could be at most 6 
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neighboring heads around head i, its possible 
children heads i1, i2, i3, its parent head P(i), and the 
two neighboring heads (pi1, pi3) at the same band that 
are also under the care of P(i) as shown in the 
picture below.  

i

P(i)

RT
i1

i3

i2

60o 60o

180o-180o

Pi1

60o 60o
180o-180o

Pi 3

2(R+RT)  
By F1.2, pi1, pi3 certainly will not choose head i as 

parent because of the existence of head P(i) that is 
closer to H0 than head i. It is also trivially true that 
P(i) cannot be the child of head i. Therefore, there 
could be at most three heads (i1, i2, i3) that could 
serve as head i’s children heads. Thus I2 ∧ F1.2 ⇒ (∀ 
head i: | CH(i) | ≤ 3). 

c) Invariant (I1 ∧ I2 ∧ I3) leads to F4  

We only need to prove that I1 ∧ I2 ∧ I3 ∧ 4F  

leads to F4, since it is obvious that I1 ∧ I2 ∧ I3 ∧ F4 

leads to F4. We need to prove that “ I1 ∧ I2 ∧ I3 ∧ 4F  
leads to F4”  holds both in the initial phase of head 
organization diffusion and in later new node joins.  

In the case of new node j joining the system, 
SMALL_NODE_BOOT_UP and SMALL_ 
NODE_JOIN guarantee that node j will find an 
existing node as head or surrogate head if it is not 
completely disconnected from the system, i.e. being 
a visible node. Thus F4 will be reached within θ(C) 
amount of time, where C is a small constant related 
to the purely one-hop message exchange.  

In the initial phase of head organization process, 
since the way HEAD_ORG works guarantees that all 
the visible areas of the system could be covered by 
the HEAD_ORG process in the end (see the proof of 
this claim later), there will be a HEAD_ORG 

process waiting to take place whenever 4F  holds. 
Because the system’s coverage is finite and every 
HEAD_ORG process is able to cover another 

( 3 R+2Rt)-radius circular area, the number of 
possible HEAD_ORG process occurrence is finite. 

Therefore, “ I1 ∧ I2 ∧ I3 ∧ 4F  leads to F4”  holds.  

Now, let us prove that all the visible areas of the 
system could be covered by the HEAD_ORG 
process in the end. We prove it by induction on the 
area encircled by heads of i-band away from the big 
node, denoted Round Area RA(i) (i.e. area of radius 

( 3 R × i + Rt + R) and i is the number of hexagons 
away from the big node).  

Case one: when there is no Rt circular region gap 
in node deployment 

Base: when i = 0, 1, clearly holds  

Hypothesis: the claim holds when i = k 

Induction: when i = (k+1), 

H(k+1)5

H(k+1)6BIG

NODE

Hk2

H(k+1)2

H(k+1)3

Hk3

Hk1

H(k+1)1

Hk4

H(k+1)4

 

As we could see from the picture, any 
point that is in RA(k+1) but not in RA(k) will 
be covered by some (k+1)-band head. And 
each  (k+1)-band head could be taken care of 
by some k-band head, either directly or 
indirectly, even though some of them might 
not be generated directly by a k-band head due 
to different progress speeds of the self-
configuration process at different directions 
spreading from the big node. Thus the claim 
holds when i is (k+1).  

Case two: when there is some Rt circular region 
gap in node deployment 

Base: when i = 0, 1, clearly holds  

Hypothesis: the claim holds when i = k 

Induction: when i = (k+1), 

When there is only one Rt circular 
region gap at k-band, we could see that the 
three next-band heads, i.e. H(k+1)1, H(k+1)2 and 
H’

(k+1), could be taken care of by the help of 
the two k-band heads that are neighboring the 
gap. Thus the claim still holds in this case.  
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When there are multiple Rt circular 

region gaps at k-band, we could see the same 
results just in the same way as above, and no 
matter whether these gaps are contiguous or 
not. For simplicity reason, we do not detail it 
here. 

According to the proof in a), b), c), and d), the 
claim that Invariant (I1 ∧ I2 ∧ I3) leads to the fix point 
(F1 ∧ F2 ∧ F3 ∧ F4) holds. 

7  

 


