
GS3: Scalable Self-configuration and Self-healing in Wireless Networks*

Hongwei Zhang Anish Arora

Department of Computer and Information Science
The Ohio State University
2015 Neil Avenue, DL 395

Columbus, Ohio 43210 USA
{ zhangho, anish} @cis.ohio-state.edu

ABSTRACT

We present GS3, a distributed, scalable, self-configuration and self-healing
algorithm for multi-hop wireless networks. The algorithm enables network nodes in a
2D plane to configure themselves into a cellular hexagonal structure such that cells
have tightly bounded geographic radius and low overlap between neighboring cells.
The structure is self-healing under various perturbations, such as node joins, leaves,
deaths, movements, and state corruptions. For instance, it slides as a whole if nodes
in many cells die at the same rate. Moreover, its configuration and healing are
scalable in three respects: first, local knowledge enables each node to maintain only
limited information with respect to a constant number of nearby nodes; second, local
healing guarantees that all perturbations are contained within a tightly bounded
region with respect to the perturbed area and dealt with in a one-way message
diffusion time across the region; third, only local coordination is needed in both
configuration and self-healing.

Keywords: Multi-hop wireless networks, self-configuration, geography-aware, cellular
hexagons, self-healing, self-stabilization, locality, scalability, dynamics, mobility

* Tel: +1–614–292–1936; Fax: +1–614–292–2911; Web: http://www.cis.ohio-state.edu/
{ ~zhangho, ~anish} . This work was partially sponsored by DARPA grant OSU-RF-01-C-
1901, NSF grant CCR-9972368, and an Ohio State University Fellowship.

1

1. INTRODUCTION
As increasingly small network nodes are becoming
available, many “sense-compute-actuate” networks are
being realized. Several of these networks use
unattended wireless nodes [1,2,4], which communicate
with one another via intermediate node relays due to
limited transmission range or energy [7,8]. The number
of nodes is potentially large (thousands and millions of
nodes are considered in earthquake relief and
unmanned space vehicle scenarios, for instance) [1].
Thus, scalability is a key issue for large-scale multi-hop
wireless networks.

One way to achieve scalability is by “divide and
conquer” , or hierarchical control. Network nodes are
first grouped into a set of clusters by some clustering
criterion. A leader is elected in each cluster to represent
the cluster at higher levels. The same clustering scheme
may be iteratively applied to the cluster leaders to form
a hierarchy. In this hierarchy, local control is applied at
each level to achieve some global objective.

Most previous work on clustering [3,12] treats a
network as a geography-unaware graph. The clustering
criteria adopted are, for instance, the number of nodes
in a cluster and the cluster size. These criteria do not
take the geographic radius of clusters (simply called
radius, henceforth) into account, which we argue is
desirable in wireless networks, especially in large-
scale, resource constrained multi-hop networks: 1)
many multi-hop wireless network applications, such as
environment monitoring and temperature sensing, are
inherently geography-aware and so reflecting
geography in the underlying structure enables
optimization of system performance. 2) Cluster radius
affects energy dissipated for intra cluster coordination
and thus the lifetime of a network. 3) Cluster radius
affects the efficiency of local coordination functions
such as data aggregation and load balancing. 4) Cluster
radius affects the quality of communication over a
shared wireless transmission medium; also, the larger
the cluster radius, the less the frequency reuse. 5)
Cluster radius affects the scalability and availability of
a network, since it affects the number of clusters and
the number of nodes in each cluster (the more the
nodes in a cluster, the more available the cluster is).

Moreover, given that expected multi-hop wireless
networks are of large scale, they are subject to node
failure, node join and leave, mobility, and state
corruption, and they usually cannot be managed
manually [5], self-configuration and self-healing is
necessary in multi-hop wireless networks.

Contributions of the paper In this paper, we
present a distributed algorithm (GS3) for configuring a

wireless locally planar network into clusters (which we
henceforth call cells due to their geographic nature.)
More specifically, the network nodes configure
themselves into a cellular hexagonal structure, in
which the network nodes are partitioned into hexagonal
cells each with a radius that is tightly bounded with
respect to a given value R (an ideal cluster radius) and
zero overlap between neighboring cells. One node in
each cell is distinguished, as the head of the cell, to
represent this cell in the network. All heads in a
network form a directed graph, called head graph, that
is rooted at a “big” node, which is the interface
between the wireless network and external networks
such as Internet.

Our algorithm yields a self-healing system. The
head graph and cellular hexagon structure are self-
healing in the presence of various perturbations, such
as one or more node joins, leaves, deaths, movements,
and state corruptions. More specifically, the self-
healing is such that the head graph and the cellular
hexagon structure remain stable in the following
senses: 1) unanticipated node leaves within a cell are
masked by the cell; 2) in case several cells experience
node deaths at about the same time (due to energy
exhaustion), an independent shift of each cell enables
the head graph as well as the cellular hexagon structure
to slide as a whole yet maintain consistent relative
location among cells and heads; 3) in case the root of
the head graph moves d away from its previous
location, only the part of the head graph that is within

3d/2 radius from the root needs to change
accordingly. Thus, an originally dynamic or mobile
system is turned into a stable infrastructure for other
network services such as routing. The self-healing
capability and the modular design of algorithm GS3
enable different modules to be integrated so as to cater
to different scenarios, in static as well as dynamic
networks, immobile as well as mobile networks, and
networks with just one big node or multiple big nodes.

Our algorithm achieves scalablity in three respects:
1) local knowledge enables each node to maintain the
identities of only a constant number of nearby nodes; 2)
local self-healing guarantees that all perturbations are
dealt within (and the impact is confined to) a tightly
bounded region around the perturbed area; the structure
self-stabilizes within the time to diffuse an one-way
message across the perturbed area; 3) only local
coordination is needed in both the self-configuration
and self-healing processes. (The complexity and
convergence properties of our algorithm are
summarized in Appendix 1.)

The rest of the paper is organized as follows. In
Section 2, we present the system model and problem

2

statement. We then develop algorithm for static
networks, dynamic networks, and dynamic mobile
networks in Section 3, 4, and 5 respectively. We
discuss related work in Section 6. Section 7 concludes
the paper and makes further comments on system
model. For reasons of space, we relegate the discussion
of complexity as well as convergence properties of our
algorithm, description of algorithm modules, and
proofs for theorems of the paper to the Appendix.

2. SYSTEM MODEL AND PROBLEM
STATEMENT

2.1 System Model
The system model consists of two parts: models for
system nodes and perturbations.
System nodes A system consists of a set of nodes on a
2D plane, each having a certain wireless transmission
range.

Node distribution assumption There exists Rt
(called radius tolerance) such that, with high
probability, there are multiple nodes in each
circular area of radius Rt in the plane.

There are two kinds of nodes: big and small.
Intuitively, the big node acts as the initiator as well as
the access point for small nodes. That is, the big node
initiates operations (such as clustering) at small nodes,
and acts as the interface between small nodes and
external systems such as Internet. For convenience, we
assume that the system has one big node, and all other
nodes are small (In Section 7, we discuss the case of
multiple big nodes).

Many wireless networks have some central control
points that control system wide operations. E.g., sensor
networks are used to sample the environment for
sensory information (e.g. temperature) and propagate
this data to a central point [6]. Also, in disaster
recovery or battlefield scenarios, there is usually a
commander for a group of rescue workers or soldiers
that is the central point.

Wireless transmission assumption Nodes can
adjust transmission range, and detect location
relative to other nodes. Destination-aware message
transmission is reliable, but destination-unaware
message transmission (such as broadcast) may be
unreliable.

A network node can detect the strength of a received
signal, and calculate the distance from its
communicating peer [15]. Thus nodes can calculate
relative location among themselves just by local
information exchange in a dense network, even without
GPS support. Moreover, when a node sends a message
to some known node(s), the message transmission can

always be made reliable through mechanisms like
acknowledgement and retransmission.
Perturbations We consider two types of perturbations:
dynamic and mobile. The former consists of node joins,
leaves, deaths, and state corruptions, and the latter
consists of node movements.

Perturbation frequency assumption Node joins,
leaves, and state corruptions are unanticipated and
thus rare. Node death is predictable (e.g. as a
function of its rate of energy consumption). The
probability for a node to move distance d is
proportional to 1/d.

For pedagogical reasons, we classify networks into
three: In a static network, there are neither dynamic nor
mobile nodes. In a dynamic network, there can be
dynamic nodes, but no mobile nodes. In a mobile
dynamic network, both dynamic nodes and mobile
nodes can exist.

2.2 Problem of Self-configuration and Self-
healing

Informally, the self-healing configuration problem is to
partition a system such that the maximum distance
between nodes within a partition is bounded, each
partition, called cell, has a unique distinguished node,
called head, and the heads are organized into a head
graph that is self-healing under various perturbations.
Nodes other than the head in a cell are called
associates, and they communicate with nodes beyond
their cell only through the cell head.

We define:
� Head graph: a tree that is rooted at the big node

and consists of all cell heads.
� Cell radius: the maximum geographic distance

between the head of a cell and its associates.
Formally, the problem is to design an algorithm

that given R (ideal cell radius) where R ≥ Rt,
constructs a set of cells and head graph that meet the
following requirements:

a) Each cell is of radius R± c, where c is a small
bounded value with respect to R, and is a
function of Rt.

b) Each node is in at most one cell.
c) A node is included a cell if and only if it is

connected to the big node.
d) The set of cells and the head graph are self-

healing in the presence of dynamic as well as
mobile nodes. By self-healing, a system can
recover from a perturbed state to its stable state
by itself.

Motivation a) The primary goal of geography aware
self-configuration is to organize nodes into cells with
certain ideal radius R that depends on application

3

scenarios (e.g. data aggregation ratio and node
distribution). In practice, a system may not be able to
organize itself into cells of exactly the ideal radius R,
but the difference between the actual radius and R still
need to be small enough, and is a function of Rt. b) By
guaranteeing that each node belongs to only one cell,
energy can be saved, and the number of cells as well as
control complexity is reduced. c) If a node is able
(unable) to communicate with the big node before
configuration, it should still be able (unable) to do so
after it. d) In large-scale wireless networks, automation
is important. Moreover, node crash can drive a crashing
network protocol into arbitrary state [17]. Thus self-
healing ability of a large-scale system is a must when
the system elements are dynamic, mobile, and under
perturbations from exterior environments. One way to
achieve it is by self-stabilization.

3. STATIC NETWORK
3.1 Concepts
Recall that in static networks, nodes are neither
dynamic nor mobile. So we solve our problem without
considering perturbations (i.e., requirement d) is
ignored). Moreover, we assume there is no Rt-gap in
static networks, where an Rt-gap is a circular area of
radius Rt with no node inside. Rt-gaps are dealt with as
a kind of rare perturbation in dynamic networks
discussed in Section 4.

Let us first consider an ideal case of the problem:
given a plane with a continuous distribution of nodes,
we may divide it into cells of equal radius R with
minimum overlap between neighboring cells to obtain a
cellular hexagon structure as shown in Figure 1. In this
structure, each cell is a hexagon with the maximum
distance between its geometric center and any point in
it being R. Let the geometric center of a cell be the
“head” of all points in the cell. Then the distance
between the heads of any two neighboring cells is R3 .
And each cell that is not on the boundary of the plane is
surrounded by 6 neighboring cells.

R R3
IL1

IL2

IL3

Figure 1: Cellular hexagon structure

Of course, in reality, node distribution is not
continuous, thus there may be no node at the geometric
center of some cell and it may be impossible to divide
the network into exact hexagons as in Figure 1. But in
scenarios where there are multiple nodes in any circular
area of radius Rt, we can still approximate this structure
by letting some node within Rt distance from the

geometric center of a cell be a head, as is allowed in
traditional cellular networks [10].

Our solution is achieved in three steps. First, we
cover a system with a hexagonal virtual structure as in
Figure 1 such that the big node is located at the
geometric center of some cell. Second, for each cell C
in the virtual structure, we choose a node k closest to
the geometric center pc of C as a head, and pc is called
the Ideal Location of k, IL(k); Third, for every non-
head small node j covered by a cell C, we let j be an
associate and chooses the best (e.g. the closest in a
clockwise sense) head as its head, H(j); Thus, a head
together with its associates form a cell, and the IL of
the head is also called the IL of the cell.

We designate the cell where the big node is as the
central cell, and each set of cells of equal minimum
distance from the central cell in terms of the number of
cells in between as a cell band. If cells in a band are of
d-cell distance from the central cell, this band is called
a d-band, and the central cell alone forms the 0-band.

Next, we discuss a scalable distributed algorithm
that implements the above concepts.

3.2 Algorithm
Overview The self-configuration algorithm consists of
a one-way diffusing computation across the network.
The big node H0 initiates the computation by acting as
the head for the 0-band cell (i.e. the cell whose IL is at
H0), and selecting the heads of its neighboring cells in
its search region. Then each newly selected head
selects the heads of its neighboring cells in its search
region, and so on until no new head is selected. Every
node that has participated in the computation but not
been selected as head becomes an associate and
chooses the best head in the system as its head.

If head i is elected by head j, we say that j is the
parent of i, P(i), and i is a child of j, CH(j). P(H0) is H0.
Then the search region of a head i is defined as the area
within (3R+2Rt) distance from i that is between the
two directions: L direction (LD) and R direction (RD)
with respect to direction)()),((iILiPIL (see Figure 3). In
order to guarantee that every node connected to H0 is
covered by the diffusing computation, <LD, RD> is
chosen as <0o, 360o> and <-60o-α, 60o+α> for H0 and
the other heads respectively, where α = Sin-1(Rt/ 3R).

In most cases, a (d+1)-band cell head is selected by
a d-band head (d ≥ 0). But in the case where the speed
of the diffusing computation differs at different
directions with respect to H0, it is also possible that a
(d+1)-band head is selected by a (d+2)-band head (d ≥
1). But this does not affect the correctness of GS3-S,
and it is dealt implicitly in algorithm in Section 4. For
simplicity, we do not discuss this case any further.

4

Algorithm modules The algorithm (GS3-S) consists
of two programs (described in Figure 2): Big_node at
H0 and Small_node at all the small nodes. Underlying
these two programs are modules used for head
organization: HEAD_ORG, used to organize heads, and
HEAD_ORG_ RESP as well as ASSOCIATE_ORG_RESP,
used to respond to a HEAD_ORG.

In HEAD_ORG, a head i (including H0) organizes
neighboring heads in its search region. It first gets the
state (e.g. geographic location) of all the nodes in its
search region by local information exchange; then it
selects the neighboring heads using the low-level
module HEAD_SELECT; last, it broadcasts the selected
set of heads to nodes within (3R+2Rt) distance. In
HEAD_SELECT (described in Figure 3), head i first
calculates the ILs for the neighboring cells in its search
region; then for each IL j that is not the IL of an
existing head, i selects the best node less than Rt away
from j as a head.

In HEAD_ORG_RESP, a head sends its state in
response to a HEAD_ORG at another head at most
(3R+2Rt) away. In ASSOCIATE_ORG_RESP, which is
executed by a small node i in response to a HEAD_ORG
at a head j at most (3R+2Rt) away, if i already has a
head, i sets j as its head only if j is better than its
current head; if i does not have a head, it sends its state
to j, and waits for j’ s decision of whether i is selected
as a head, and sets its status accordingly.
(A more detailed description of these modules is given
in Appendix 2)

3.3 Analysis
In this subsection, we discuss the invariant, fixpoint,
self-stabilization, and other properties of algorithm
GS3-S (proofs are given in Appendix 4).
Notation
Physical network Gp = (Vp, Ep), where Vp = { j: j is a node in the

system} and Ep = { (i, j): i ∈ Vp ∧ j ∈ Vp ∧ (i and j are within
transmission range of each other)} .

Head Graph Gh = (Vh, Eh), where Vh={ i: i∈Vp ∧ i is a cell head}
and Eh ={ (i, j): i ∈ Vh, j ∈ CH(i)} .

Head level structure: the set of heads in a system and the
geographic relation (distance, relative direction) among them.

Geographic coverage: the geographic coverage of a node is the
circular area on a plane that is centered at the node and has a
radius equal to the current transmission range of the node. The
geographic coverage of a system is the union of the geographic
coverage of all the nodes in a system.

Boundary cell: a cell that is on the boundary of the geographic
coverage of a system.

Inner cell: a cell that is not a boundary cell.
Neighboring_heads(i): { j: j is a head ∧ (head i and j’s geographic

coverage adjoins} .
Visible node: a node that is connected to H0 in Vp.
Dist(i, j): cartesian distance between nodes i and j.

Figure 2: Self-configuration algorithm for static networks (GS3-S)

Figure 3: HEAD_SELECT module used in HEAD_ORG

3.3.1 Invariant
We show the correctness of algorithm GS3-S using

an invariant, i.e. a state predicate that is always true in
every system computation. Note that an invariant
depends on the granularity of actions. Here we consider
every algorithm module (e.g. HEAD_ORG) as an atomic
action. Our invariant SI = I1 ∧ I2 ∧ I3, where Ij (j = 1, 2,

Program Big_node
var q: { bootup, work} ; //node status

/* Big node boots up and organizes the 1-band cells * /
q = bootup → HEAD_ORG(0o, 360o, R, R/4) //transit to status work

Program Small_node
var q: { bootup, head, work, associate} ; //node status

/* Small nodes boot up, listen to nearby HEAD_ORG */
q = bootup → ASSOCIATE_ORG_RESP //transit to status head or

associate
[]

/* Heads organize neighboring heads in their search regions * /
q = head → HEAD_ORG(-60o-α, +60o+α, R, R/4) //transit to status

work: α = Sin-1(Rt/ 3 R)

[]
q = work → HEAD_ORG_RESP
[]

/* Associates respond to HEAD_ORG */
q = associate → ASSOCIATE_ORG_RESP //remain status associate

Module HEAD_SELECT (SmallNodes, ExistingHeads, LD, RD, R, Rt)

Step 1: Calculate ILs of neighboring heads, NH, in the search region of i.
Use)()),((iILiPIL as reference direction (RD) (if P(i) =i, RD can be

any direction), IL(i) as origin, and 3 R as radius, go both clockwise and

counterclockwise, the points on the arc that are j×60o (LD/60 ≤j ≤
RD/60) degree from RD are the ILs of neighboring heads.

IL(i)

IL(P(i))

RtLD RDi1
i3

i2

-60o 60o
+2Rt

RD

R3

R3

R3

search region

a a

Step 2: Remove the set of IL that is the IL of some existing head from
NH. I.e. NH ← (NH – EH), where EH = { j : j ∈ NH ∧ (∃ k ∈
ExistingHeads : (dist(j, k) ≤ Rt))} .

Step 3: For each IL j in NH, let CA(j) = { k : k ∈ SmallNodes ∧ dist(k, j)
≤ Rt} . CA(j) is the set of small nodes within Rt distance from IL j.

Step 4: For each IL j in NH, since CA(j) is non-empty, select the highest
ranked node j’ in CA(j) as the cell head corresponding to IL j, and
set CH(i) as (CH(i) ∪ { j’ }).

Every node k in CA(j) is lexicographically ordered by <d, |A|,
A>, where d is the distance between j and k, A stands for the angle
(-180o ≤ A ≤ 180o) formed by GR and kj, (A is negative if kj,
goes clockwise with respect to GR and positive if counter-
clockwise), and d has the highest significance.

i

j
j’A

d
Rt

GR

 �

Time complexity: θ (|SmallNodes|)

5

3) is individually closed under algorithm actions. The
predicates are as follows.
I1 (Connectivity) = I1.1 ∧ I1.2, where

�
I1.1: Every pair of heads that is connected in Gh is
connected in Gp, and vice versa.
(∀ i, j ∈ Vh: there is a path between i and j in Gh ⇔ there is a path

between i and j in Gp) �
I1.2: Gh is a tree rooted at the big node H0.
((P(H0) = H0) ∧ (hops(H0) = 0)) ∧
(∀ i ∈ (Vh – { H0}): hops(H0, i) = hops(H0, P(i))+1) ∧
(∀ i, j ∈ Vh: i and j are connected in Gh) ∧
(∀ i, j∈Vh: there is a path of length ≥ 2 between i and j ⇒

(P(i) ≠ j ∧ P(j) ≠ i)
where hops(i, j) is the path length between i to j in Gh.

I2 (Hexagonal Structure) = I2.1 ∧ I2.2 ∧ I2.3 ∧ I2.4, where
�

I2.1: Each inner cell head has exactly 6 neighboring
heads that form a cellular hexagon centered at head i
and of edge length 3R, with vertices′ location
deviation at most Rt.
(∀ inner cell head i: (| neighboring_heads(i) | = 6)
∧(∀j∈neighboring_heads(i): 3 R-2Rt ≤ dist(i, j) ≤ 3 R+2Rt))

�
I2.2: Each boundary cell head has less than 6
neighboring heads, and the distance among them is
bounded by [3R-2Rt, 3R-2Rt].

(∀ boundary cell head i: | neighboring_heads(i) | < 6)
∧ (∀j∈neighboring_heads(i): 3 R-2Rt ≤ dist(i, j) ≤ 3 R+2Rt))

�
I2.3: Each head, except for H0, has at most 3 children
heads. H0 has 6 children heads if it is an inner cell
head and at most 5 children heads otherwise.

(∀ head i ≠ H0: | CH(i) | ≤ 3) ∧
(H0 is an inner cell head ⇒ (| CH(H0) | = 6)) ∧
(H0 is a boundary cell head ⇒ (| CH(H0) | ≤ 5))

�
I2.4: Each cell is of radius (R+Rrandom), where |Rrandom|
is at most (2Rt/ 3). Each associate is of (R+Rrandom)
distance to its head.

(∀ inner cell C: ∀associate i ∈C: R−(2Rt/ 3) ≤ dist(i,H(i)) ≤ R+(2Rt/ 3))

I3 (Inner Cell Optimality): Each associate in an inner cell
belongs to only one cell and chooses the best (e.g.
closest) head as its head.

(∀ associate i in an inner cell: ∀head j ≠ H(i)⇒H(i) better than j)

Theorem 1: SI is an invariant of algorithm GS3-S.
Theorem 1 and I2 imply

Corollary 1: The distance among neighboring cell
heads is bounded by [3R-2Rt, 3R-2Rt].

(∀head i: (∀j∈neighboring_heads(i): 3 R-2 Rt ≤ dist(i, j) ≤ 3 R+2 Rt)

Corollary 2: The heads and their cells form a cellular
hexagonal structure (shown in Figure 4) with bounded
head location deviation Rt.

3.3.2 Fixpoint
A fixpoint is a set of system states where either no

action is enabled or any enabled action does not change
any system state we are interested in (e.g. Gh). It
therefore characterizes the result of the self-
configuration process. Our fixpoint SF = F1 ∧ F2 ∧ F3 ∧
F4 as follows.

H0

H22

H32

H33

H23

 H12H11

H21

H31

H41

H42

H13

H16

H14H15

H43

H34
GAP

 < dp
Figure 4: Self-configured cellular hexagon structure

F1 (Connectivity) and F2 (Hexagonal Structure) are the
same as I1 and I2 respectively.
F3 (Cell Optimality): Each associate belongs to only one

cell and chooses the best head as its head.
(∀ associate i : ∀ head j ≠ H(i) ⇒ H(i) better than j)

F4 (Coverage): The set of heads and cells covers all the
visible nodes in a system.

(∀ visible node i : ∃ head j: j = H(i))

Theorem 2: SF is a fixpoint of algorithm GS3-S.
Requirement a) and b) are satisfied by Theorem 1

and 2.
Theorem 2, F1 and F4 imply

Corollary 3: At SF, a node is in a cell if and only if it is
connected to the big node in Gp, and vice versa.

(∀ node i : H(i) ≠ NULL ⇔ there is a path between i and H0 in Gp)
Requirement c) is satisfied by Corollary 3.

3.3.3 Self-stabilization
Theorem 3: Starting from any state, every computation
of GS3-S reaches a state where SI holds within a
constant amount of time.
Theorem 4: Starting from any state where SI holds,
every computation of GS3-S reaches a state where SF
holds within time θ(Db), where Db = max{ dist(H0, i): i
is a small node, and dist(H0,i) is the cartesian distance
between H0 and i} .

Theorem 3 and 4 imply
Corollary 4: Starting from any state, every computation
of GS3-S reaches a state where SF holds within time
θ(Db).

Termination of the diffusing computation follows
from Corollary 4.

3.3.4 Scalability
The self-configuration algorithm GS3-S is scalable in
that it only requires local coordination among nodes
within (3R+2Rt) distance from one another, and each
node maintains the identities (e.g. MAC address) of
only a constant number of nodes, 1 for associates and
at most 6 for heads, irrespective of network size.

4. DYNAMIC NETWORK
4.1 Concepts
Recall that in dynamic networks, nodes can join, leave
(e.g. failure), die, and node state can be corrupted.

6

Excluding node death, which is predictable, the other
perturbations are unanticipated and therefore rare.
There may also be Rt-gaps in node distribution. In this
section, we extend GS3-S to GS3-D to deal with these
perturbations.

We propose three mechanisms to deal with node
leave and death: head shift, cell shift, and cell
abandonment. Self-stabilization easily handles the
remaining perturbations, i.e. node joins and state
corruptions.

Head shift In dynamic networks, the associates in a
cell are divided into two categories: candidate and non-
candidate. Associates within Rt distance from the IL of
the cell are head candidates, with the rest being non-
candidates. In the case where only unanticipated head
leaves occur, a new head can be found with high
probability from the set of candidates, due to the low
probability of all candidates in a cell leaving at the
same time. Moreover, the extreme case where all
candidates leave can still be dealt with using cell shift.

Cell shift In case node death occurs, it is possible
that the set of candidates of a cell becomes empty due
to energy exhaustion after long enough system
operation. In this case, the IL of the cell is changed to
another point IL′ within the geographic coverage of the
cell such that the corresponding candidate set is non-
empty, since energy usually exhausts faster at a head
than at an associate. In many envisioned large-scale
wireless networks, the traffic load across a network is
statistically uniform due to in-network processing such
as data aggregation [16], which means statistically
uniform energy dissipation across the network. Given
the fact that statistically there are multiple nodes in any
Rt-radius circular area at the beginning of the self-
configuration, the lifetime of any two sets of candidates
at different cells is statistically the same with low
deviation, especially for cells close by. Therefore, if the
ILs at different cells change (the relative position
between IL and IL′) independently but in the same
deterministic manner, the head graph as well as head
level structure will slide as a whole but maintain
consistent relative location among cells and heads.

Cell abandonment It is possible albeit rarely that a
cell is so heavily perturbed that nodes in a larger than
Rt-radius area die at the same time. Even though cell
shift may be able to change the IL of the cell to IL′, the
distance between IL′ and the ILs of all neighboring
cells may deviate beyond 3R. In this case, we let the
cell to be abandoned in the sense that every node in it
becomes an associate of one of the neighboring cells.
(Note that, because of the sliding of the head level

structure resulted from cell shift, a new head can be
selected within an abandoned cell later.)

4.2 Algorithm
Overview In GS3-D, when a head i tries to select the
heads for its neighboring cells in its search region, it is
possible that there is an Rt-gap at the IL of a
neighboring cell C. Given the low probability of this
case, i does not select head for cell C, and every node
in C becomes an associate of a neighboring cell of C
(this is similar to cell abandonment). However, due to
node join and the sliding of head level structure, new
nodes may show up in the area of C or the IL for C is
changed such that there is a node within Rt distance to
the IL of C later. By periodically checking this case,
head i will select the head for C whenever it shows up
later.

When a node j joins an existing system, it tries to
find the best existing head as its head if there is any
within (3R+2Rt) distance. Otherwise, j tries to find
the best associate as its surrogate head if there is any
associate within its radio transmission range. If both
trials fail, j gives up and retries the above process after
a certain amount of time. In the above process, if a
head k within (3R+2Rt) distance is executing
HEAD_ORG, j responds with ASSOCIATE_ORG_RESP
and becomes either a child head or an associate of k.

Node leave or death is dealt with by intra-cell and
inter-cell maintenance. In intra-cell maintenance, head
shift enables the highest ranked candidate to become
the new head of a cell when the head of the cell fails or
proactively becomes an associate when it is resource
scarce or a candidate better serves as head; when the
candidate set is weak (e.g. empty), cell shift enables the
cell head to strengthen the candidate set by selecting a
better IL for this cell if any such IL exists (described in
figure 5); cell abandonment enables nodes within a
heavily perturbed cell to become an associate in one of
its neighboring cells. In inter-cell maintenance, a
parent head and its children heads monitor one another.
If a head h leaves and the intra-cell maintenance in its
cell fails, the parent of h, P(h), tries to recover it first. If
P(h) fails too, each child of h tries to find a new parent
by themselves; also, a head chooses the neighboring
head closest to H0 as its parent; an optional action is for
a cell to synchronize its IL with that of its neighboring
cells, which affects the tightness of cell radius with
respect to R locally within its one-hop neighborhood.

Node state corruption is dealt with by “sanity
checking” . Periodically (with low frequency) each head
h checks the hexagonal relation with its neighboring
heads, according to the system invariant. If the
invariant is violated, h asks its neighboring heads to

7

check their state. If all its neighboring heads are valid,
the state of h must be corrupted, and h becomes an
associate; if some of its neighboring heads are invalid,
h cannot decide whether it is valid at this moment, and
will check this next time.

Algorithm modules Compared with GS3-S, GS3-D,
as described in Figure 6, has modified head
organization modules, new modules for node join,
intra-cell maintenance, inter-cell maintenance, and
sanity checking (detailed description of these modules
is in given Appendix 2).

Modified head organization modules are as
follows. In HEAD_ORG, executed by a head i, i
maintains not only its children heads set, but also its
neighboring heads set and candidates set. In
HEAD_SELECT executed by a head i, i does not select
head a cell in its search region if there is an Rt-gap at
the IL of the cell. In HEAD_ORG_RESP, executed by a
head i in response to the HEAD_ ORG at a head j, i sets
j as its parent if j is better (e.g. closer to the big node)
than its current parent.

Node join consists of three modules:
SMALL_NODE_BOOT_UP used by a bootup node
trying to find a nearby head or associate;
HEAD_JOIN_RESP and ASSOCIATE_JOIN_RESP used
by a head or an associate respectively in response to the
SMALL_NODE_BOOT_UP at a nearby “bootup” node,
where it sends its state to the bootup node and listens to
its decision to join or not.

Intra-cell maintenance consists of four modules:
HEAD_INTRA_CELL, CANDIDATE_INTRA_CELL,
ASSOCIATE_INTRA_CELL, and BIG_SLIDE.

In HEAD_INTRA_CELL, executed by a head i, it
exchanges heartbeats with associates in its cell. Head i
becomes an associate when it is resource scarce, a
candidate serves better as head, or the big node is in its
cell and resumes its role as head. When the candidate
set is weak, i strengthens it using the low-level module
STRENGTHEN_CELL that implements the concept of
cell shift (description of STRENGTHEN_ CELL is
given in Appendix 2). If its cell is heavily perturbed
such that the hexagonal property within its
neighborhood has deviated too much, i abandons its
cell and transits to status bootup.

In CANDIDATE_INTRA_CELL, executed by a
candidate i, i exchanges heartbeats with its head. When
its head fails or becomes an associate, i coordinates
with other candidates in its cell to elect a new head.
When its head transits to status bootup, i transits to
status bootup too. When a head j that is better than its
current head shows up, i sets j as its new head.
ASSOCIATE_INTRA_CELL executed by a non-
candidate i is almost the same as CANDIDATE_INTRA_

Figure 5: Method to change the IL of a cell

Figure 6: Self-configuration algorithm for dynamic networks (GS3-D)

CELL except that i transits to status bootup when its
head fails.

In BIG_SLIDE executed by the big node H0, H0
keeps the head in the coverage of its original cell as

Program Big_node
GS3-S with modified HEAD_ORG
[]
/* Deal with node join * /
q = work → HEAD_JOIN_RESP //remain status work
[]
/* Deal with node leave: remain status work or transit to status big_slide * /
q = work → [HEAD_INTRA_CELL|HEAD_INTER_CELL]
[]
/* The big node does not act as head * /
q = big_slide → BIG_SLIDE //remain status big_slide, or transit to status

work

Program Small_node
GS3-S with modified HEAD_ORG & HEAD_ORG_RESP
[]
q = bootup → SMALL_NODE_BOOT_UP //remain status bootup, or

transit to status associate or surrogate associate
[]
/* Head node */

/* Deal with node join * /
q = work → HEAD_JOIN_RESP //remain status work
[]
/*Deal with node leave: remain status work, or transit to status associate* /
q = work → [HEAD_INTRA_CELL|HEAD_INTER_CELL]
[]
/* Sanity checking: remain status work, or transit to status associate */
q = work →Ts SANITY_CHECK
[]

/* Associate node */
/* Deal with node join: remain status associate/candidate * /
(q = associate ∨ q = candidate) → ASSOCIATE_JOIN_RESP
[]
/* Deal with node leave: remain status candidate/associate, or transit to

status head or bootup * /
q = candidate → CANDIDATE_INTRA_CELL
[]
q = associate → ASSOCIATE_INTRA_CELL

We call a cell C formed in the initial phase of self-configuration an
original cell, and the IL of C an original ideal location (OIL). To
maximize the lifetime of the hexagonal structure, for any original cell C,
the union of its candidate sets of all the ILs should cover all nodes in C.
Let CA(ILk) be the Rt-radius circular area centered at an ideal location
ILk. Then a cell can be divided into a set of such CAs as shown in the
following figure, which is self-similar to a system being divided into a
set of cells:

OIL
1

2

CIC

ICP

2
1

0
GR

Rt

R

CA(<2,7>)
 Analogous to “bands” , we call each set of CAs of equal minimum

distance to its OIL (in terms of CAs in between) an Intra Cell Cycle
(ICC). The set of CAs on the same ICC is numbered, called Intra Cycle
Postion (ICP), in an increasing order clockwise with respect to GR (for a
certain ICC, the range for ICP is [0, 6×ICP-1]). Then the ILs in a cell can
be lexicographically ordered by tuple <ICC, ICP>, and are considered for
becoming the current IL of a cell in an increasing order.

8

head, and resumes head role when the OIL of its cell
becomes the current IL.

Inter-cell maintenance is implemented by the
module HEAD_INTER_CELL. In HEAD_INTER_CELL,
executed by a head i, i exchanges heartbeats with its
neighboring cell heads. If a neighboring head j is closer
to H0 than its current parent, i sets j as its new parent. If
a child j fails and the intra-cell maintenance at its cell
fails too, i tries to deal with it using HEAD_ORG in the
direction of j. If the parent of i, P(i), fails, and the
failure is not recovered by the intra-cell maintenance at
P(i)’s cell or by P(i)’s parent, i tries to find a new
parent using low-level module PARENT_SEEK. If i is a
boundary cell head, it periodically checks whether new
nodes show up in the direction where it does not have a
child, using HEAD_ORG in that direction. When a
neighboring head, a child, or its parent changes its IL, i
optionally synchronizes its IL using low-level module
SYN_CELL (the description of PARENT_SEEK and
SYN_CELL is given in Appendix 2).

Sanity checking is implemented by the module
SANITY_CHECK whose time complexity is θ(Dc),
where Dc is the diameter of a contiguous state-
corrupted area.

4.3 Analysis
New notation
Head Neighboring Graph Ghn = (Vhn , Ehn), where Vhn = Vh of Gh,

and Ehn = { (i, j): i and j are neighboring heads} .

4.3.1 Invariant
The invariant of GS3-D is the same as that of GS3-S

except for the following three points (formal
descriptions are given in Appendix 3):

	 In I2.1 and I2.2, if the <ICC, ICP> value (see figure 5)
of a head i is different from that of a neighboring
head j, the distance between them is bounded by [d
-2Rt, d +2Rt], where d is the distance between IL(i)
and IL(j) and is bounded by (0, 2 3 R).

 In I2.3, the number of children heads of a head other
than the big node is at most 5 (instead of 3).

� In I2.4, the radius of an inner cell is bounded by (0,
2R+Rt] if its <ICC, ICP> value is different from that
of any of its neighboring cell; and |Rrandom| is at
most ((3 -1)R+2Rt+dp) for boundary cells, with dp
being the diameter of the gap-perturbed area
adjoining the boundary cell (dp is 0 if there is no
gap-perturbed area).

Theorem 5: DI is an invariant of algorithm GS3-D,
where DI = SI (invariant of GS3-S) with I2 relaxed as
above.

4.3.2 Fixpoint
The fixpoint of GS3-D is the same as that of GS3-S

except for the following two points:

� F1.2 is strengthened as: Gh is a minimum-distance
(with respect to the big node H0) spanning tree of
Ghn rooted at H0, i.e. the path between H0 and a
head i in Gh is a minimum distance path between
H0 and i in Ghn.

 F2.4 is relaxed as: (F2.4 of GS3-S) ∧ (|Rrandom| is at
most (2Rt/ 3 + dp) for boundary cells).

Theorem 6: DF is a fixpoint of algorithm GS3-D, where
DF = SF (fixpoint of GS3-S) with F1.2 and F2.4 updated
as above.

F1, F2, F3, and F4 imply
Corollary 5: At DF, Corollary 1, 2, and 3 hold in
dynamic networks.

4.3.3 Self-stabilization
Theorem 7: Starting from any state, every computation
of GS3-D reaches a state where DI holds within time
O(Dc), where Dc is the diameter of a continuous state-
corrupted area.
Theorem 8: Starting from any state where DI holds,
every computation of GS3-D reaches a state where DF
holds within time O(max{ (Dd/c1), Td}), where c1 is the
average speed of message diffusing and Td is the
maximum difference between the lifetime of the
candidate set of two neighboring cells.

Theorem 7 and 8 imply
Corollary 6: Starting from any state, every computation
of GS3-D reaches a state where DF holds within time
O(max{ (Dd/c1), Td}).

Requirement d) is satisfied by Theorem 7 and 8.

4.3.4 Remarks
� Scalable self-healing

The self-healing of the head graph and hexagonal
structure is scalable in three senses: first, local self-
healing enables the system to stabilize from a perturbed
state to its stable state (fixpoint) in a one-way message
diffusing time across the perturbed area through local
coordination among nodes within (3R+2Rt) distance
from one another; second, local knowledge enables
each node to maintain the identities of only a constant
number of nodes within (3R+2Rt) distance,
irrespective of network size; third, the head graph and
hexagonal structure can tolerate multiple simultaneous
perturbations due to the locality property of GS3-D.

� Stable head level structure
In the presence of dynamic nodes, the head level

structure is stable in the following senses: 1) In the case
of node join, the head level structure remains
unchanged except for the possibility that the head of
some cell is replaced by a new node if the new node
better serves as head; 2) Node leave within a cell is
masked within the cell by head shift such that the rest
of the structure remains unchanged; 3) In the case of

9

node death such that candidate sets of many cells die,
independent cell shift at each cell enables the head
level structure to slide as a whole but maintain
consistent relative location among cells and heads,
which lengthens the lifetime of the structure by a factor
of Ω(nc), where nc is the number of nodes in a cell; 4)
In case intra-cell maintenance fails, inter-cell
maintenance enables a system to stabilize to its stable
state within a one-way message diffusing time across
the perturbed area; 5) In case of state corruption, sanity
checking ensures that the erroneous state is corrected
by checking the hexagonal properties among heads.

5. MOBILE DYNAMIC NETWORK
5.1 Concepts
Recall that in mobile dynamic networks not only can
nodes be dynamic, but they can also move. The
probability of movement is inversely related to the
distance of movement. In this section, we extend GS3-
D to GS3-M to deal with node mobility.

Conceptually, node mobility is modeled as a
correlated node join (at the new location) and leave
(from the old location). GS3-D is easily adapted to deal
with the mobility of small nodes (more detailed
description is given in Appendix 2). Thus, we focus on
how to deal with big node movements.

In mobile dynamic networks, the head graph needs
to be maintained such that, in spite of the movement of
the big node H0, it is connected and the path between
H0 and every head is of minimum distance. To achieve
this, the closest head to H0 in the network acts as the
proxy of H0 during the time when H0 itself is not a
head, and the distance from the proxy to H0 is set as 0.
Then, just by algorithm GS3-D, the head graph can be
maintained as a minimum distance tree to the proxy,
and thus every head is of minimum hops to H0.
Moreover, the impact of the movement of H0 on the
head graph is contained within a local range of radius

3d/2, where d is the distance H0 moves.

5.2 Algorithm
Overview In mobile dynamic networks, if the big

node H0 moves more than Rt away from the IL of its
cell, it retreats from the head role, and transits to status
big_move where it moves around and maintains a
proxy-relationship to its proxy. Whenever H0 moves
within Rt distance to the IL of a cell later, it replaces
the existing head of the cell to act as head.

Algorithm modules Compared with GS3-D, GS3-M
has a new module BIG_MOVE, modified big node,
intra-cell maintenance, and inter-cell maintenance, as
shown in Figure 7 (a more detailed description is given
in Appendix 2).

Figure 7: Self-configuration algorithm for dynamic mobile networks
(GS3-M)

5.3 Analysis

5.3.1 Invariant & Fixpoint
The invariant as well as fixpoint of GS3-D is preserved
in GS3-M, except for one more fixpoint predicate F5 for
GS3-M as follows.
F5 (Proxy optimality): The big node H0 chooses the best
neighboring head as its proxy. i.e.

(∀ head i : proxy of H0 better than i)

Theorem 9: MI is an invariant of algorithm GS3-M,
where MI = DI (invariant of GS3-D).
 Theorem 10: MF is a fixpoint of algorithm GS3-M,
where MF = DF (fixpoint of GS3-D) ∧ F5.

5.3.2 Self-stabilization
Theorem 11: When the big node moves from point A
to B on a plane, its impact on the head graph Gh is
contained within a circular area entered at point C and
of radius 3d/2, where C is the midpoint of segment
ABand d is the cartesian distance between A and B.
Theorem 12: Starting from any state, every
computation of GS3-M reaches a state where MI holds
within time O(Dc), where Dc is the diameter of a
continuous state-corrupted area.
Theorem 13: Starting from any state where MI holds,
every computation of GS3-D reaches a state where MF
holds within time O(max{ (Dd/c1), Td}), where c1 is the
average speed of message diffusing and Td is the
maximum difference between the lifetime of the
candidate set of two neighboring cells.

Theorem 12 and 13 imply
Corollary 7: Starting from any state, every computation
of GS3-M reaches a state where MF holds within time
O(max{ (Dd/c1), Td}).

5.3.3 System stability
In mobile dynamic networks, node mobility is dealt

as a special kind of node dynamics. So the stability
property of the head level structure and head graph in
dynamic networks is preserved in mobile dynamic
networks. The invariant and fixpoint of GS3-M only
depend on local coordination, which enables them to
tolerate high degree of node mobility because local
coordination converges fast.

Program Big_node
GS3-D with removed BIG_SLIDE, modified intra-cell as well as inter-cell
maintenance modules
[]
/* During status of “big move” * /
q=big_move→BIG_MOVE //remain status big_move, or transit to status head

Program Small_node
GS3-D with modified intra-cell as well inter-cell maintenance modules

10

6. RELATED WORK
In [18], a distributed algorithm LEACH is proposed,
but it offers no guarantee about placement and the
number of cluster heads in a system. Moreover, the
clustering operation is periodically repeated globally in
the system over its lifetime. In [3], a distributed
algorithm for clustering in wireless networks is
designed, but it only considers logical radius (hops) of
clusters, instead of their geographic radius, which
makes long intra-cluster link possible. Also, its
convergence under perturbations depends on multiple
rounds of message diffusion, instead of the one-way
diffusion within perturbed areas as in our algorithm.
Moreover, given certain node density in a network, the
geographic radius in our algorithm implicitly
guarantees the logical radius of clusters. In [4], an
access-based clustering algorithm is presented that
focuses on the stability of clusters, but the algorithm
does not consider the size of clusters and it requires
GPS at every node.

In [10], a cellular hexagon structure is described
for cellular networks, but it is pre-configured and there
is no self-healing consideration. In [11,12], different
algorithms for topology control in networks are
developed, but they are either centralized or semi-
centralized, and thus not scalable.

In [7−9], algorithms for topology control in
wireless networks for energy saving are developed. In
[13], adaptive fidelity control and routing algorithms
are developed for wireless sensor networks. Our self-
configuration algorithm provides a stable network
infrastructure for tasks such as routing or power
control, and is thus orthogonal to these works.

[19] proposes an algorithm for fault-local mending
in time, but it is not local in space. [20] proposes the
application of local detection paradigm to self-
stabilization, but it is not local in time even though it is
local in space. The self-healing in GS3 is local both in
time and in space.

7. CONCLUSION
In this paper, we have presented an algorithm (GS3)

for self-configuring a network into cells of tightly
bounded geographic radius and low overlap between
cells. GS3 enables network nodes to organize
themselves into a cellular hexagon structure with a set
of proved properties. GS3 is self-healing, and thus
applicable to both static networks and networks with
dynamic as well as mobile nodes. GS3 is also scalable
because of its local knowledge, local self-healing, and
local coordination properties. GS3 yields a stable
structure even in the presence of dynamic and mobile
nodes, which enables a more available infrastructure

for other system services such as routing, power
control, QoS etc.

Our algorithm is readily extended to the following
cases: 1) in a mobile dynamic network where there are
multiple big nodes, by letting each small node maintain
the current big node it chooses, GS3-M enables each
small node to choose the best (e.g. closest) big node to
communicate. 2) Due to its locality property, GS3 is
also applicable to the case where nodes are not
deployed on a 2D plane, but where nodes within each
neighborhood (e.g. a circular area of radius R) are
locally planar. 3) GS3 is also applicable to the case
where the ideal cell radius R is larger than the
maximum transmission range of small nodes, because
R does not affect the correctness of the algorithm.

GS3 is local and its convergence time is low, thus it
is applicable to networks with high degree of dynamics
and mobility. More detailed study of dealing with
different degrees of node dynamics and mobility is
underway.

REFERENCES
[1] Deborah Estrin, Ramesh Govindan, John Heidemann and

Satish Kumar, “Next century challenges: scalable coordination
in sensor networks” , ACM MobiCom 1999.

[2] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, Kristofer Pister, “System architecture directions for
networked sensors” , ASPLOS 2000.

[3] Suman Banerjee, Samir Khuller, “A clustering scheme for
hierarchical control in multi-hop wireless networks” , IEEE
INFOCOM, 2001.

[4] Ting-chao Hou, Tzu-Jane Tsai, “An access-based clustering
protocol for multihop wireless ad hoc networks” , IEEE JSAC,
July 2001.

[5] Computer Science and Telecommunications Board (CSTB),
“Embedded everywhere: a research agenda for networked
systems of embedded computers” , National Academy Press,
Washington, DC, 2001.

[6] Alec Woo, David E. Culler, “A transmission control scheme
for media access in sensor networks” , ACM SIGMOBILE 2001.

[7] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, Roger
Wattenhofer, “Analysis of a cone-based distributed topology
control algorithm for wireless multi-hop networks” , ACM
PODC 2001.

[8] Roger Wattenhofer, Li Li, Paramvir Bahl, Yi-Min Wang,
“Distributed topology control for power efficient operation in
multihop wireless ad hoc networks” , IEEE INFOCOM 2001.

[9] Volkan Rodoplu, Teresa H. Meng, “Minimum Energy Mobile
Wireless Networks” , IEEE JSAC, Aug. 1999.

[10] V. H. Mac Donald, “Advanced mobile phone service: the
cellular concept” , The Bell System Technical Journal, 1979.

[11] Shlomi Dolev, Evangelos Kranakis, Danny Krizanc, David
Peleg, “Bubbles: adaptive routing scheme for high-speed
dynamic networks” , SIAM Journal on Computing, 1999.

[12] Theodoros Salonidis, Pravin Bhagwat, Leandros Tassiulas,
Richard LaMaire, “Distributed topology construction of
Bluetooth personal area networks” , IEEE INFOCOM, 2001.

[13] Ya Xu, John Heidemann, Deborah Estrin, “Geography-
informed energy conservation for ad hoc routing” , ACM
Mobicom, July 2001.

11

[14] Hongwei Zhang, Anish Arora, http://www.cis.ohio-
state.edu/~zhangho/publications/GS3_prog.pdf.

[15] S. R. Saunders, “Antennas and propagation for wireless
communication systems”, Wiley (UK), 1999.

[16] Jerry Zhao, Ramesh Govindan, Deborah Estrin, “Residual
energy scans for monitoring wireless sensor networks” , USC-
CSD-TR-01-745, May 2001.

[17] Mahesh Jayaram, George Varghese, “Crash failures can drive
Protocols to Arbitrary States” , ACM PODC 1996.

[18] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless
Microsensor Networks” , to appear in IEEE Transactions on
Wireless Networking.

[19] Shay Kutten, David Peleg, “Fault-Local Distributed Mending” ,
Journal of Algorithms, Jan. 1999.

[20] Yehuda Afek, Shay Kutten, “The Local Detection Paradigm
and its Applications to Self Stabilization” , 4th International
Workshop on Distributed Algorithms, Sept. 1990.

1

APPENDIX
In this appendix, we present the complexity and
convergence properties of our algorithm, description of
some modules in GS3-S, GS3-D and GS3-M, the
invariant as well as fixpoint of GS3-D, and proofs for
various theorems in this technical report.

Appendix 1: Complexity and convergence
properties of GS3-S/D/M

Information maintained at each node θ(log n)

Factor of lengthened lifetime of head level
structure by intra-cell & inter-cell
maintenance

Ω(nc)

Convergence time under perturbations O(Dp)

Convergence time to the stable state in
static networks

θ(Db)

Convergence time from any state to the
stable state in dynamic/mobile networks

O(Dd)

n: the number of nodes in a system;
nc: the number of nodes in a cell;
Dd: max{ dist(i, j): i and j are small nodes, and dist(i,

j) is the cartesian distance between i and j} ;
Dp: the diameter of a contiguous perturbed area;
Db: max{ dist(H0, i): i is a small node, and dist(H0,i)

is the cartesian distance between the big node H0
and i} .

Appendix 2: Description of modules in GS3-S,
GS3-D and GS3-M

In this subsection, we give more detailed description of
some algorithm modules in GS3-S, GS3-D and GS3-M
as follows. The complete program is presented in [14].

1) Algorithm GS3-S
a) HEAD_ORG (LD, RD, R, Rt)

There are four arguments to HEAD_ORG: 1) L
direction (LD) and R direction (RD) with respect to
direction iiP),((see Figure 3). LD and RD determine
the search region of a head in the process of organizing
its neighboring cell heads. 2) ideal radius R and radius
tolerance Rt.

The function of HEAD_ORG executed by a head i
is for head i to organize the neighboring cell heads in
its search region. HEAD_ORG executed by head i
works as follows: first, head i reserves wireless
channel and broadcasts message org within (3R+2Rt)
distance; second, head i listens to replies (message
org_reply or head_org_reply) from nodes no more
than (3R+2Rt) away and within (LD, RD) search
region for certain amount of time and calculates the set
of small nodes and head nodes (SmallNodes and
ExistingHeads respectively) in the search region;
Third, using the low level module HEAD_SELECT (see
Figure 3), head i selects neighboring cell heads
HeadSet; fourth, head i broadcasts message 〈HeadSet〉
to nodes within (3R+2Rt) distance, revokes channel
reservation, and transits to status work.

In HEAD_SELECT executed by head i, head i
needs to select neighboring cell heads in its search
region. It achieves this in two steps: first, it calculates
the ideal locations for those possible neighboring cell
heads; second, for each possible neighboring cell, if
there is any small node that is in the Rt-radius circular
area centered by the ideal location of the cell, select
the highest ranked such node as the cell head. The
algorithm is described in Figure 3 and its time
complexity is θ(|SmallNodes|).
b) HEAD_ORG_RESP

When a head node i (at status head or work, and
not including the big node) receives a message org
from a head j, it replies with a message
head_org_reply, and waits until head j’s HEAD_ORG
process finishes (by overhearing its message
〈HeadSet〉). No status transition in this module.
c) ASSOCIATE_ORG_RESP

When a small node i is at status bootup or
associate, it will execute ASSOCIATE_ORG_RESP
process upon receiving a message org from a head j. If
node i is at status bootup or status associate but head j
is better (such as closer, with higher remaining energy)
than its current head H(i), node i replies a message
org_reply to head j. Then waits for head j’s message
〈HeadSet〉. If node i is selected as a cell head, it sets
head j as its parent head, and transits to status head;
otherwise, node i sets head j as its head, and transits to
status associate. On the other hand, if node i fails to
hear the message 〈HeadSet〉 from head j after a certain
amount of time, it transits back to its status at the
beginning of the process (i.e. bootup or associate).

2

2) Algorithm GS3-D
Intra-cell maintenance
a) HEAD_INTRA_CELL

In HEAD_INTRA_CELL executed by a head i, head
i executes the following actions:
i. It periodically broadcasts message

head_intra_alive within its cell, and updates its
candidate as well as associate set according to
replies from the associates in its cell.

ii. If head i receives a message associate_ alive or
associate_retreat from an associate, it needs to
update candidate as well as associate set properly.

iii. If i is resource scarce or a candidate better serves
as head, i broadcast a message head_retreat within
its cell and retreats back to be an associate.

iv. If i receives message replacing_head from the big
node H0 or a head candidate j, it retreats to be an
associate, and sets H0 or j as its head.

v. If the candidate set of its cell is weak, i calls
STRENGTHEN_CELL to strengthen it.

vi. If the distance IL of its cell that of all its
neighboring cells deviates too much from 3R,
exceeding certain threshold Td, it abandons the cell
by broadcasting a message cell_abandoned within
its cell and transiting to status bootup.
In STRENGTHEN_CELL, head i first finds the next

ideal location (IL) of its cell whose corresponding
candidate set is not empty, according to the cell’ s
current <ICC, ICP> value and the ordering of all ILs in
its cell (see Figure 5). Then it calculates the new
candidate set with respect to the new IL. Last, it
broadcasts two messages (head_intra_alive containing
the new candidate set, and head_retreat) within its
cell, and retreats to be an associate. Time complexity
is O(nc), where nc is the number of nodes in a cell.
b) CANDIDATE_INTRA_CELL

In CANDIDATE_INTRA_CELL executed by a
candidate i, i executes the following actions:
i. Upon receiving a message head_intra_alive from a

head j: if j is its head, i checks whether it is still in
j’ s candidate set, and transits to status associate if
not; otherwise, replies a head_intra_ack message.
If j is not its head and is better than its current
head, i sends a associate_retreat message to its
current head and associate_alive message to head
j.

ii. If i receives a message head_retreat from or
detects the failure of its current head, it
coordinates with other candidates in this cell to

elect the highest ranked candidate as the new head.
The head candidates in a cell are ranked in the
same way as that in HEAD_SELECT (see Section
3).

iii. If i receives a message cell_abandoned, head_
retreat_corrupted, head_disconnected, or syn_cell
from its head, it transits back to boot up status.

Inter-cell maintenance
a) HEAD_INTER_CELL

In HEAD_INTER_CELL executed by a head i, head
i executes the following actions:
i. Periodically broadcasts message head_inter_alive

as heartbeat to its parent as well children heads.
ii. Upon receiving a message head_inter_alive from

head j, update children set, and neighboring head
set properly. If j is not i’ s parent head but is better
(closer to the big node, for example) than its
current parent head, i sets j as parent head, and
sends a message new_child_head to j.

iii. If i receives a message new_child_head from j,
update children heads set as well neighboring
heads set accordingly.

iv. If a neighboring cell Cn (including child as well as
parent cell) has a new head due to intra-cell
maintenance, i updates neighboring head set,
children head set, or parent head accordingly. If Cn
has a newer <ICC, ICP> value, head i synchronizes
its cell to the new <ICC, ICP> by calling
SYN_CELL process (this is optional).

v. If i receives a syn_cell message from a neighboring
cell’ s head j, it updates (remove j) neighboring
head and child head sets accordingly. If j is i’ s
parent head, i executes PARENT_SEEK to find a
new parent head. If syn_cell message carries a
newer <ICC, ICP> value, i executes SYN_CELL.

vi. If i is a boundary head and there is no head at
certain neighboring cell area in its search region, it
periodically executes HEAD_ORG to check
whether new nodes have shown up in this
direction.

vii. If a child head j fails, i executes HEAD_ORG in j’ s
direction, trying to organize a new head.

viii. If i’ s parent head P(i) fails, and P(i)’s failure has
not been recovered by P(i)’s parent head, i
executes to PARENT_SEEK. If i receives a message
parent_seek from a head j and they don’ t have the
same parent head, it replies a parent_seek_ack
message.

ix. If i receives a message sanity_check_req from a
neighboring head j, it checks its own status. If its

3

status is valid, i replies a message
sanity_check_valid message to j; otherwise, i
executes SANITY_CHECK.

x. If i receives a head_retreat_corrupted message
from a neighboring cell’ s head j, it updates
(remove j) its neighboring head set and children
head sets accordingly. If j is i’ s parent head, i
executes PARENT_SEEK.
In SYN_CELL, head i first calculates the new IL

with respect to the new <ICC, ICP> value. Then it
calculates the candidate set corresponding to this IL. If
the candidate set is not empty, i broadcasts a message
head_retreat within its cell; otherwise, it broadcasts a
message syn_cell to its neighboring heads that includes
the current <ICC, ICP> value. Last, i transits to status
big_slide if it is the big node or status associate
otherwise. Time complexity is O(C), where C is a
constant.

In PARENT_SEEK, let ST denote the sub-tree of Gh
rooted at head i. Head i ranks its neighboring heads in
almost the same way as that in HEAD_SELECT, except
that)(, iPi instead of GR is used as reference direction.
Then i tries to find a neighboring head as parent head
in an increasing order. If it succeeds in finding such a
head j, i sets j as its parent; otherwise i lets its children
heads on the boundary of ST’s geographic coverage try
to find a new parent head in the same way. If any of its
child head j succeeds, i sets j as its parent; otherwise i
broadcasts a message head_disconnected within its
cell, and transits back to boot up status. Its time
complexity is O(|FNH|), where FNH denotes the set of
head in (Gh-ST) that has a neighboring head in ST.
b) ASSOCIATE_INTER_CELL

If an associate (including both candidate and non-
candidate) receives a message org, it calls
ASSOCIATE_ORG_RESP.
Sanity checking

In order to deal with status corruption, every head
periodically executes SANITY_CHECK. In SANITY_
CHECK executed by head i, it first checks if its <ICC,
ICP> value is equal to that of all its neighboring cells.
If yes, it checks whether its status satisfies the
hexagonal relationship of the system invariant. If no, it
broadcasts a message sanity_check_req, and waits for
replies from its neighboring cells’ heads. If all its
neighboring cells’ heads reply a message
sanity_check_valid, head i broadcasts a message
head_retreat_corrupted within its cell. If it has not got
the message sanity_check_valid from any of its

neighboring cells after certain amount of time, head i
exit this module without changing its status. Time
complexity is θ(A), where A denotes the size of the
contiguously affected area.

3) Algorithm GS3-M
BIG_MOVE

In BIG_MOVE, the big node keeps listening to
heartbeats (head_intra_alive message) from all nearby
heads, and always chooses the best (closest, for
example) head as its proxy. When its proxy is replaced
by a candidate hn in the proxy’s cell, the big node reset
its proxy as hn. When the big node moves into the Rt-
radius circular area of a cell, it replaces the existing
head as head, and transits back from status big_move to
status work.
Modified intra-cell and inter-cell maintenance

The modification to the intra-cell as well as inter-
cell maintenance is to maintain the cell head, candidate
set, and big node’s proxy relationship in the presence
of mobile nodes. As for big node, if it retreats from the
head role because of the IL change of any of its
neighboring cells, it transits to status big_move instead
of big_slide in dynamic mobile networks.

Appendix 3: Invariant and fixpoint of GS3-D
(dynamic networks)

1) Invariant
The invariant of GS3-D differs from that of GS3-S

at I2 when a cell and its neighboring cells have
different <ICC, ICP> values.
• I1 (connectivity)

Same as in static networks.
• I2 (Hexagonal structure)

� I2.1: (for inner heads)
I2.1 for static networks
∧
(∀ inner_head i: ∀j ∈ neighboring_heads(i):

<ICC(i),ICP(i)> ≠ <ICC(j),ICP(j)> ⇒
((dist(IL(i),IL(j))-2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt)

∧
 (0 < dist(IL(i), IL(j)) ≤ 2 3 R)
)

)
� I2.2: (for boundary heads)

I2.2 for static networks
∧
(∀ boundary_head i: ∀j ∈ neighboring_heads(i):

<ICC(i),ICP(i)> ≠ <ICC(j),ICP(j)> ⇒
((dist(IL(i),IL(j))-2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt)

∧

4

 (0 < dist(IL(i), IL(j)) ≤ 2 3 R)
)

)
� I2.3: modify I2.3 for static networks by changing (∀

head i: | CH(i) | ≤ 3) to (∀ head i: | CH(i) | ≤ 5)
� I2.4: (cell radius)

I2.2 for static networks
∧
(∀ inner cell C:

(∃j∈neighboring_heads(i):<ICC(i),ICP(i)> ≠ <ICC(j),ICP(j)>)⇒
(∀ associate i ∈ C : dist(i, H(i)) < 2R+Rt)

)
∧
(∀ boundary cell C’ : ∀associate i ∈C’ : dist(i, H(i)) ≤ 3 R+2Rt+dp)

• I3 (Inner cell optimality)
Same as in static networks.

2) Fix Point
The fixpoint of GS3-D differs from that of GS3-S

at F1.2 that is strengthened in GS3-D.
• F 1 (connectivity)

� F1.1: Same as in static networks
� F1.2: Gh is a minimum-distance (with respect to the

big node H0) spanning tree of Ghn, and Gh is rooted at
H0.

F1.2 for static networks ∧
(∀ vi ∈ (Vh – { H0}): hops(H0,vi) = MIN(H0, vi)),
where MIN(v1, v2) is the length (by hops) of the shortest path
between v1 and v2 in Ghn.

• F2 (hexagonal structure)
F2.1, F2.2, and F2.3 are the same as in static networks.

F2.4 is relaxed as:
(F2.4 of GS3-S) ∧ (|Rrandom| is at most ((3 -1)R+2Rt+dp) for

boundary cells).

• F3 (cell optimality): Same as in static networks.
• F4 (coverage): Same as in static networks.

Appendix 4: Proofs for theorems in the report
We present proofs for the critical theorems in this

report. For the complete set of proofs, check [14].

1) Theorem 1: SI is an invariant of algorithm GS3_
S, where SI = I1 ∧ I2 ∧ I3.

• I1: Connectivity (safety property of head level
graph)

� I1.1: Any pair of heads that are connected in Gh are
also connected in Gp, and vice versa.
(∀ vh1, vh2 ∈ Vh: there is a path between vh1 and vh2 in Gh ⇔

there is a path between vh1 and vh2 in Gp)

Proof:
Gp only depends on the nodes in the system and

their communication capability, thus has nothing to do

with the program actions. Gh only depends on the set
of head nodes in the system and the parent-child
relationship among them. Thus the set of actions that
are related to Gh are those of HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP. At
the same time, HEAD_ORG_RESP and ASSOCIATE_
ORG_RESP operate under the control of HEAD_ORG,
so the critical module is HEAD_ORG.

In order to prove this invariant, we only need to
prove it is closed under a round of HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP. The
proof is as follows:

1) Suppose Gh’ (Vh’ , Eh’) is the Gh before a round
of HEAD_ORG, HEAD_ORG_RESP, and
ASSOCIATE_ORG_RESP. Gh’ and Gp satisfy I1.1;

2) After a round of HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_
RESP, Gh becomes Gh2(Vh2, Eh2).
⇒:

Case one: Vh’ is empty
If Vh’ is empty, Gh2 would be such that

Vh2 is the set composed of the big node H0
and its children heads generated in
HEAD_ORG process and Eh2 is the set of
edges that goes from the big node to its
children heads. By the process HEAD_ORG,
the big node and its children heads are within
transmission range of one another and they
are at most (3 R+2Rt) away from each other.
Thus the big node and its children heads must
be directly connected in Gp.

So we only need to prove that any two
different heads h1 and h2 are connected in
Gp. And this is obvious because both h1 and
h2 are connected to H0 in Gp.

So the claim holds in this case.
Case two: Vh’ is not empty

If Vh’ is not empty, there must be a head
h1 in Vh’ such that Vh2 = Vh’ ∪ CH(h1) and
Eh2 = Eh’ ∪ { (h1, j): j ∈ CH(h1)} . By the
proof of case one, we can easily know that
the claim holds for any two nodes that are in
the set of { h1} ∪ CH(h1).

So we only need to prove the claim
between a node h2 ∈ (Vh’ – { h1}) and a node
h3 ∈ CH(h1). If the set (Vh’ – { h1}) is empty,
the claim trivially holds. If the set (Vh’ –
{ h1}) is not empty, then there must be a path
p1 between h2 and h1 in Gp and a path p2

5

(actually just one hope edge) between h3 and
h1. So there must be a path p3 between h2
and h3 and p3 is the concatenation of p1 and
p2 by head node h1.

So the claim holds in this case.
⇐:

By I1.2, Gh is a tree, thus any two heads h1
and h2 are connected in Gh and there would
always be a path between then in Gh. So this
claim trivially holds.

Thus, after a round of a round of
HEAD_ORG, HEAD_ORG_RESP, and
ASSOCIATE_ORG_ RESP, Gh and Gp still satisfy
I1.1. �

� I1.2: Gh is a tree rooted at the big node H0. That is,

(hops(H0) = 0) ∧ (P(H0) = H0) ∧

(∀ vi ∈ (Vh – { H0}): (there is a path between vi and H0) ⇒
(hops(H0, vi) = hops(H0, P(vi))+1) ∧

(∀ vi, vj ∈ Vh: there is a path between vi and vj in Gh) ∧

(∀ vi, vj ∈ Vh: there is a path of length no fewer than 2
between vi and vj ⇒ (P(vi) ≠ vj ∧ P(vj) ≠ vi)),

where hops(v1, v2) denotes the length of the path
from v1 to v2 in Gh.

Proof:

Same as the analysis in the proof of I1.1, the
modules that can affect this invariant are HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP.

3) Suppose Gh’ (Vh’ , Eh’) is the Gh before a round
of HEAD_ORG, HEAD_ORG_RESP, and
ASSOCIATE_ORG_RESP, and Gh’ satisfies
I1.2;

4) After a round of HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_
RESP, Gh becomes Gh2(Vh2, Eh2).

Case one: Vh’ is empty
If Vh’ is empty, Gh2 would be such that

Vh2 is the set composed of the big node H0
and its children heads (CH(H0)) generated in
HEAD_ORG process and Eh2 is the set of
edges that goes from H0 to nodes in CH(H0).
By the way HEAD_ORG works, for any node
h ∈ CH(H0), hops(h) would be 1. For any two
different heads h1, h2 ∈ CH(H0), (P(h1) ≠ h2
∧ P(h2) ≠ h1)) must hold.

So the claim holds in this case.
Case two: Vh’ is not empty

If Vh’ is not empty, there must be a head
h1 in Vh’ such that Vh2 = Vh’ ∪ CH(h1) and
Eh2 = Eh’ ∪ { (h1, j): j ∈ CH(h1)} . By the
proof of case one, we could easily know that
the claim holds for the set of heads of { h1} ∪
CH(h1). So we only need to prove the claim
between a node h2 ∈ (Vh’ – { h1}) and a node
h3 ∈ CH(h1).

If the set (Vh’ – { h1}) is empty, the claim
trivially holds.

If the set (Vh’ – { h1}) is not empty, then
there must be a path p1 between h2 and h1 in
Gh and a path p2 (actually just one hope
edge) between h3 and h1. So there must be a
path p3 between h2 and h3 in Gh and p3 is the
concatenation of p1 and p2 by head h1. At
the same time, h2 must have a parent head
P(h2) ∈ Vh’ , P(h3) is h1 that is different from
h2, and h3 ∉ Vh’ . So (P(h3) ≠ h2 ∧ P(h2) ≠
h3)) must hold.

So the claim holds in this case.
Thus, after a round of a round of HEAD_ORG,

HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP,
Gh and Gp still satisfy I1.2. �

• I2: Hexagonal map of heads and inner cells
� I2.1: Each inner cell head i has exactly 6 neighboring

heads that form a cellular hexagon centered by head
i and of edge length 3R, with vertices’ location
deviation at most Rt.
(∀ inner cell head i:

(| neighboring_heads(i) | = 6) ∧
(∀j∈neighboring_heads(i): 3 R-2Rt ≤ dist(i, j) ≤ 3 R+2Rt)

)

Proof:
Same as the analysis in the proof of I1, the modules

that can affect I2.1 are HEAD_ORG, HEAD_ORG_RESP,
and ASSOCIATE_ORG_RESP.

Suppose I2.1 holds before a round of HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP
execution. We just need to prove that after the
execution of a round of HEAD_ORG, HEAD_ORG_
RESP, and ASSOCIATE_ORG_RESP, initiated by a head
i that executes HEAD_ORG, I2.1 still holds. Because this
round of head organization will only affect head i and
its children heads i1, i2, i3, we only need to prove that
the I2.1 holds for head i, i1, i2, and i3. Let’s first consider
head i.

6

1) head i is an inner_head ⇒ |
neighboring_heads(i) | = 6
a) if head i is the big node, this claim holds

obviously just by the way the process
HEAD_ORG works;

b) if head i is a small head node, we can get the
picture below from the design of HEAD_ORG
and the program of Big Node and Small
Node.

i

P(i)

RT
i1

i3

i2

60o 60o

180o-180o

Pi1

60o 60o
180o-180o

Pi 3

+2RtR3
From the picture above, we can see that

head i has 3 next-band heads (i1, i2, i3), 1
parent head (P(i)), and 2 neighboring heads
(pi1, pi3) at the same band that are under the
care of the same parent head as head i, even
though they might not be generated by P(i).
Thus node i has 6 neighboring heads around

within (3 R+2Rt) radius.
Also it is easy to see that head almost

centers the hexagon formed by its 6
neighboring heads, with possible deviation at
most Rt.

2) head i is an inner_head ⇒ (∀j ∈
neighboring_heads(i): 3R-2Rt) ≤ dist(i, j) ≤

3R+2 Rt)
From HEAD_ORG and the picture above,

we can see that: for all neighboring head j of
node i, dist(IL(i), IL(j)) = 3R. At the same
time “dist(k, IL(k)) ≤ Rt” holds for any head k,
thus “ 3R-2 Rt ≤ dist(i, j) ≤ 3R+2 Rt” holds
too.

As for head i1, i2, and i3, we can prove, in the same
way as above for head i, that I2.1 also holds for them.

Thus I2.1 still holds after a round of a round of
HEAD_ORG, HEAD_ORG_RESP, and ASSOCIATE_
ORG_RESP execution. �

� I2.2: Each boundary head i has less than 6

neighboring heads, and the distance between i and
its neighboring heads is hexagonally bounded. That
is,

(∀ boundary_head i: | neighboring_heads(i) | < 6) ∧

(∀ boundary_head i: (∀j ∈ neighboring_heads(i): 3 R-2 Rt ≤

dist(i, j) ≤ 3 R+2 Rt)

Proof:

Since we have proved that I2.1 is an invariant, we
just need to prove that I2.1 ⇒ I2.2 in proving that I2.2 is
an invariant. The proof of I2.1 ⇒ I2.2 is as follows:

Boundary heads are generated in the same way as
inner heads. The only difference is that their cells are
on the boundary of the system’s geographic coverage
such that there is no neighboring head in certain
(60+2α)o region around itself, where α denotes the
angular deviation corresponding to the Rt head’s
location deviation. Since each inner head has exactly 6

neighboring heads in its (3 R+2Rt) radius, each
boundary head should have less than 6 neighboring

heads in its (3 R+2Rt) radius. And the distance
between boundary head i and its neighboring heads is
bounded in the same way as inner head does. �

� I2.3: Each head, except for the big node, has no more

than 3 children heads. The big node H0 has 6
children heads if it is not on the system’s boundary
and it would have 1~5 children heads if it is on the
boundary of the system but not disconnected from
the small nodes. That is,

(∀ head i: | CH(i) | ≤ 3) ∧

(H0 is not on the boundary of system coverage ⇒ (|CH(H0)| = 6))
∧

(H0 is on the boundary of system coverage but not disconnected ⇒
(1 ≤ | CH(H0) | ≤ 5))

Proof:

The modules that can affect I2.3 are HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP.

Suppose I2.3 holds before a round of HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP
execution. We just need to prove that after the
execution of a round of HEAD_ORG,
HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP,
initiated by a head i that executes HEAD_ORG, I2.3
still holds. Because this round of head organization
will only affect head i and its children heads i1, i2, i3,
and we are only considering a head’s children heads,
we only need to prove that the I2.3 holds for head i.

If head i is not the big node, from the design of
HEAD_ORG, its search region is only 180o. Ideally

7

there would be only one head in 60o, thus at most there
would be no more than three next-band heads (children
heads) initiated by head i. Also, if the default value of
Rt is R/4, the way HEAD_ORG works also guarantees
that no more than three next-band heads initiated by i.

If head i is the big node, its search region is 360o,
thus it would have 6 children heads if the big node is
not at the boundary of the system’s geographic
coverage. If it is at the boundary of the system but not
disconnected, the big node H0 would have 1~5
children heads because there is no neighboring head in
certain (60+2α)o region around the big node, where α
denotes the angular deviation corresponding to the Rt
head’s location deviation.

Thus I2.3 still holds after a round of a round of
HEAD_ORG, HEAD_ORG_RESP, and ASSOCIATE_
ORG_RESP execution. �

 I2.4: Each cell is of radius (R+Rrandom), where |Rrandom|

is at most (2Rt / 3). And each associate is of
(R+Rrandom) distance to its head.
(∀ cell C: ∀associate i ∈ C : R−(2Rt/ 3) ≤ dist(i, H(i)) ≤ R+(2Rt/ 3))

Proof:
The modules that can affect I2.4 are HEAD_ORG,

HEAD_ORG_RESP, and ASSOCIATE_ORG_ RESP.
Suppose I2.4 holds before a round of HEAD_ORG,

HEAD_ORG_RESP, and ASSOCIATE_ORG_RESP
execution. We just need to prove that after this round
of execution of these modules, initiated by a head i
that executes HEAD_ORG, I2.4 still holds. This round of
head organization can affect head i, its possible
children heads i1, i2, i3, its parent head P(i), and the two
neighboring heads (pi1, pi3) at the same band that are
under the care of the same parent head as head i, and
their covered cells, as shown in the picture below. But
we only need to prove that the I2.3 holds for the cell Ci
covered by head i without loss of generality, because
we can prove that I2.3 holds for all other related cells in
the same way as for cell Ci.

i

P(i)

RT
i1

i3

i2

60o 60o

180o-180o

Pi1

60o 60o
180o-180o

Pi 3

+2RtR3
If head i is an inner cell head and thus Ci is an

inner cell, then head i is surrounded by six neighboring

heads as shown above. Then Ci is also surrounded by
six neighboring cells. So, any point in Ci will lie in the
triangle formed by head i and two of its immediately
neighboring heads (i1 and i2, for example), as shown in
the following figure. According to the way
ASSOCIATE_ORG_RESP works, any point in this
triangle chooses the closest head to join. Thus, the
maximum distance between a point in head i’s cell and
head i is (R+2Rt / 3), as shown in the figure. Thus, the
radius for any inner cell is at most (R+2Rt / 3).

tRR 23 +

i

tRR
3

2+

i1 i2

O

Thus I2.4 still holds after a round of a round of

HEAD_ORG, HEAD_ORG_RESP, and ASSOCIATE_
ORG_RESP execution. !

• I3: Inner Cell Optimality (for associate nodes)
" Each associate node in an inner cell chooses the best

(closest, most remaining energy, etc.) neighboring
head to join. That is,

(∀ associate i in any inner cell: ∀ head j ≠ H(i) (H(i) better than j))

Proof:
The modules that can affect I3 are HEAD_ORG

and ASSOCIATE_ORG_RESP.
Suppose I3 holds before a round of HEAD_ORG

and ASSOCIATE_ORG_RESP. We just need to prove
that after this round of execution of these modules,
initiated by a head i that executes HEAD_ORG, I3 still
holds. Because HEAD_ORG only happens at boundary
heads at any moment, any round of HEAD_ORG
execution could only, from the perspective of I3, affect
those associates that was in a boundary cell before the
execution but is in an inner cell after the execution.
For any such associate node j, it must have chosen the
best head around it as its head because the way
ASSOCIATE_ORG_ RESP works. So I3 holds for
every such associate j.

Thus I3 holds after any round of HEAD_ORG and
ASSOCIATE_ORG_RESP execution. #

8

2) Theorem 3: Starting from any state, every
computation of GS3-S reaches a state where SI
holds within a constant amount of time. That is,

$ TRUE leads to Invariant (I1 ∧ I2 ∧ I3)

Proof:
In order to prove “TRUE leads to Invariant” , we

just need to prove “ iantIn var leads to Invariant”
because “ Invariant leads to Invariant” is obvious.

Because Invariant (I1 ∧ I2) is closed under all the
program actions and there is no state corruption in
static networks (according to the definition), the
system will not be able to reach any state where

iantIn var would hold. Thus iantIn var is FALSE

all the time. So “ iantIn var leads to Invariant” is
equal to “FALSE leads to Invariant” that is trivially

true. Therefore, “ iantIn var leads to Invariant” is
true.

According to the analysis above, “TRUE leads to
Invariant” hold. %

3) Theorem 4: Starting from any state where SI
holds, algorithm GS3-S reaches a state where SF
(SF = F1∧ F2∧F3∧F4) holds, and the convergence
time is θ(Db), where Db = max{ dist(H0, i): i is a
small node and dist(H0,i) is the cartesian distance
between H0 and i} . That is,

& Invariant (I1 ∧ I2 ∧ I3) leads to fix point (F1 ∧ F2 ∧
F3 ∧ F4)

Proof:

a) Invariant (I1 ∧ I2 ∧ I3) leads to F3

We only need to prove that I1 ∧ I2 ∧ I3 ∧ 3F leads

to F3, since F3 naturally leads to F3, and I1 as well as I2
is invariant.

For any associate node i, the scenario where 3F

could hold is when some better neighboring head j
around it is still at state qhead and has not carried out the
process HEAD_ORG yet. Because HEAD_ORG and
HEAD_ORG_RESP guarantee that two neighboring

heads within (3 R+2Rt) range cannot initiate
HEAD_ORG in parallel, associate i is able to hear the
ORG messages from all its neighboring heads,
including head j. The way ASSOCIATE_ORG_RESP
works guarantees that associate i will choose the best
(such as closest, highest remaining energy, etc.) head

to associate with after all such better heads js finish

their HEAD_ORG process. So 3F will be false and F3

will be true after all the better neighboring heads
around associate i finish their HEAD_ORG processes.

Suppose the number of better heads around

associate i is BETTER_HEAD when 3F is true. Then

BETTER_HEAD is no less than 0. When 3F is true,

at least one HEAD_ORG process is enabled, and
whenever a HEAD_ORG process finishes, the value of
BETTER_HEAD will decrease by 1. Thus, it only
takes BETTER_HEAD rounds of HEAD_ORG

process for associate i to transfer from state 3F to

state F3, which is a finite procedure. Thus “ I1 ∧ I2 ∧

3F leads to F3” holds.

Since it only takes finite time Chead_org for a
HEAD_ORG process to finish, the state transition

from 3F to F3 would only take BETTER_HEAD ×

(Chead_org + Cgap) (i.e. θ(BETTER_HEAD)) amount of
time, where Cgap denotes the maximum interval
between two neighboring heads’ HEAD_ORG process.

b) Invariant (I1 ∧ I2 ∧ I3) leads to F1 ∧ F2

If we could prove that I1 ∧ I2 ∧ I3 ⇒ F2.4, then “ I1 ∧
I2 ∧ I3 leads to F2.4” holds, which also means “ Invariant
(I1 ∧ I2 ∧ I3) leads to F1 ∧ F2” since I1 is the same as F1
and F2 is equal to I2 ∧ F2.4.

Now let’s prove I1 ∧ I2 ∧ I3 ⇒ F2.4. Because I2.4 ≡
F2.4 ∧ (There is no Rt -radius gap in the system ⇒ R’ ≤

R+
3

2
 Rt), we only need to prove that I1 ∧ I2 ∧ I3 ⇒

(There is no Rt -radius gap in the system ⇒ R’ ≤

R+
3

2
Rt). According to the way HEAD_ORG works,

the boundary cell would be no bigger than the inner
cell, if there is no Rt -radius gap. Otherwise, the
HEAD_ORG process will be continuously initiated.
Thus the boundary cell’ s radius is still no more than

(R+
3

2
Rt) according to I2.4 that says any inner cell’ s

radius is no more than (R+
3

2
Rt).

c) Invariant (I1 ∧ I2 ∧ I3) leads to F4

9

We only need to prove that I1 ∧ I2 ∧ I3 ∧ ¬F4 leads
to F4, since it is obvious that I1 ∧ I2 ∧ I3 ∧ F4 leads to
F4.

Since the way HEAD_ORG works guarantees that
all the visible areas of the system can be covered by
the HEAD_ORG process in the end (see the proof of
this claim later), there will be a HEAD_ORG process
waiting to take place whenever ¬F4 holds. Because the
system’s coverage is finite and every HEAD_ORG
process is able to cover another (3 R+2Rt)-radius
circular area, the number of possible HEAD_ORG
process occurrence is finite. Therefore, “ I1 ∧ I2 ∧ I3 ∧
¬F4 leads to F4” holds.

Now, let us prove that all the visible areas of the
system can be covered by the HEAD_ORG process in
the end. We prove it by induction on the area encircled
by heads of i-band away from the big node, denoted
Round Area RA(i) (i.e. area of radius (3R × i + Rt +
R) and i is the number of hexagons away from the big
node).

Base: when i = 0, 1, clearly holds
Hypothesis: the claim holds when i = k
Induction: when i = (k+1),

H(k+1)5

H(k+1)6BIG

NODE

Hk2

H(k+1)2

H(k+1)3

Hk3

Hk1

H(k+1)1

Hk4

H(k+1)4

As we can see from the picture, any point that is in

RA(k+1) but not in RA(k) will be covered by some
(k+1)-band head. And each (k+1)-band head can be
taken care of by some k-band head, either directly or
indirectly, even though some of them might not be
generated directly by a k-band head due to different
progress speeds of the self-configuration process at
different directions spreading from the big node. Thus
the claim holds when i is (k+1).

'

4) Theorem 5: DI is an invariant of algorithm GS3-D,
where DI = SI (invariant of GS3-S) with I2 relaxed
as above.

• I1: Connectivity (safety property of head level
graph)

(I1.1: Any pair of heads that are connected in Gh are
also connected in Gp, and vice versa. That is,
(∀ vh1, vh2 ∈ Vh: there is a path between vh1 and vh2 in Gh ⇔
there is a path between vh1 and vh2 in Gp)

Proof:
Gp only depends on the nodes in the system and

their communication capability, thus has nothing to do
with the program actions. Gh only depends on the set
of head nodes in the system and the parent-child
relationship among them. Thus the set of actions that
are related to Gh are those of HEAD_ORG,
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP,
intra-cell maintenance, inter-cell maintenance, and
system state sanity check. New node join does not
affect this claim, because it does not affect the head
level structure directly.

At the same time, starting from a state where the
Invariant holds, system state sanity check will not be
enabled. So, in proving I1.1, we only need to prove that
it is closed under a round of HEAD_ORG,
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP,
intra-cell maintenance and inter-cell maintenance.

⇒:

In dynamic immobile networks, the only
modifications to processes HEAD_ORG, HEAD_
ORG_RESP and ASSOCIATE_ORG_RESP that could
affect the claim differently from that of the static
networks is the case where an existing head i selects a
better parent head j. In this case, there is an edge (i, j)
added to Gh. According to HEAD_ORG and
HEAD_ORG_RESP, head i and j are no more than

(3 R+2Rt) away from each other and within
transmission range of each other. Thus edge (i, j) must
exist in Gp too. Therefore the claim is still closed
under the modified HEAD_ORG, HEAD_
ORG_RESP and ASSOCIATE_ORG_RESP processes
in dynamic immobile networks.

In intra-cell maintenance, the sub-modules that
could affect Gh is STRENGTHEN_CELL and
REPLACING_HEAD. STRENGTHEN_CELL itself
does not affect Gh, because it just demotes the current
head to associate and promotes another associate to be
head. The result of STRENGTHEN_CELL is a
REPLACING_HEAD process. So we only need to
prove that the claim is closed under
REPLACING_HEAD. The way REPLACING_HEAD
works guarantees that the newly elected head i is no

more than 2 3 R away from its children head as well

10

as neighboring heads and is within transmission range
of one another. Therefore, they must be an edge
between head i and each of its children heads in Gp.
Thus, the claim is closed under REPLACING_HEAD.

In inter-cell maintenance, the sub-modules that can
affect Gh is HEAD_ORG, SYN_CELL and PARENT_
SEEK. Since the claim is closed under HEAD_ORG,
we only need to prove that it is closed under
SYN_CELL and PARENT_SEEK. SYN_CELL does
not affect the claim directly because the head is just
removed from Gh. Instead only SYN_CELL’s result,
REPLACING_ HEAD, could affect the claim. Since
the claim is closed under REPLACING_HEAD, it is
also closed under SYN_CELL. In PARENT_SEEK
initiated by a head j, if head j succeeds in finding a
neighboring head as parent, j must be no more than

2 3 R away from its parent and they are within
transmission range of each other. Thus there must be
an edge between head j and its new parent in Gp.
Therefore, the claim is closed under PARENT_SEEK.

⇐:

By I1.2, Gh is a tree, thus any two heads h1 and h2
are connected in Gh and there would always be a path
between then in Gh. So this claim trivially holds.

Therefore, after a round of a round of
HEAD_ORG, HEAD_ORG_RESP, ASSOCIATE_
ORG_RESP, intra-cell maintenance, inter-cell
maintenance and system state sanity check execution,
Gh and Gp still satisfy I1.1.)

* I1.2: Gh is a tree rooted at the big node H0. That is,

(hops(H0) = 0) ∧ (P(H0) = H0) ∧

(∀ vi ∈ (Vh – { H0}): (there is a path between vi and H0)
⇒ (hops(H0, vi) = hops(H0, P(vi))+1) ∧

(∀ vi, vj ∈ Vh: there is a path between vi and vj in Gh) ∧

(∀ vi, vj ∈ Vh: there is a path of length no fewer than 2
between vi and vj ⇒ (P(vi) ≠ vj ∧ P(vj) ≠ vi)),
where hops(v1, v2) denotes the length of the path from v1
to v2 in Gh.

Proof:
The set of actions that are enabled at an Invariant

state and that can affect Gh are those of HEAD_ORG,
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP,
intra-cell maintenance, and inter-cell maintenance.
New node join does not affect this claim, because it
does not affect the head level structure directly.

In order to prove I1.2, we only need to prove that it
is closed under a round of HEAD_ORG,
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP,
intra-cell maintenance, and inter-cell maintenance.

In dynamic immobile networks, the only
modifications to processes HEAD_ORG, HEAD_
ORG_RESP and ASSOCIATE_ORG_RESP that could
affect the claim differently from that of the static
networks is the case where an existing head j selects a
better parent head k. In this case, Gh is still a tree
because, even though the edge between j and its
previous head in Gh is removed, the added edge (j, k)
guarantees that the sub-tree rooted at head j in Gh is
still connected to other nodes in Gh through head k.

In intra-cell maintenance, the sub-modules that
could affect Gh is STRENGTHEN_CELL and
REPLACING_HEAD. The result of STRENGTHEN_
CELL and REPLACING_HEAD is that one head j in
Gh is replaced by an associate k in j’ s cell that is not in
Gh previously. The way STRENGTHEN_CELL and
REPLACING_HEAD work guarantees that j’ s
relationship with its parent head as well as children
heads are transferred to node k. Thus, the structure of
Gh is maintained after any STRENGTHEN_CELL or
REPLACING_HEAD operation, except that node j is
replaced by node k. So, the claim is closed under intra-
cell maintenance.

In inter-cell maintenance, the sub-modules that can
affect Gh is HEAD_ORG, SYN_CELL and PARENT_
SEEK. Since the claim is closed under HEAD_ORG,
we only need to prove that it is closed under
SYN_CELL and PARENT_SEEK. The result of
SYN_CELL is that one head j in Gh is replaced by an
associate k in j’ s cell that is not in Gh previously, if
such k exists. If such k really exists, the way
SYN_CELL and its resulting REPLACING_HEAD
work guarantees that j’ s relationship with its parent
head as well as children heads are transferred to node
k. Thus, the structure of Gh is maintained after the
SY_CELL and REPLACING_HEAD operation. If
such k does not exist, process PARENT_SEEK will be
initiated, which guarantees that the sub-tree previously
rooted at head j in Gh will be connected to the
remaining part of Gh if it is not completely separated
from the system. So I1.2 is still closed in this case. As
for PARENT_SEEK, it will be initiated at head j only
if the sub-tree rooted at j is disconnected from the
other part of Gh because of the removal of edge (j,
P(j)). The result of PARENT_SEEK is that this sub-
tree gets re-connected to the remaining Gh if the sub-

11

tree is not disconnected from the remaining Gh, or this
sub-tree disappears (i.e. all heads in this sub-tree go to
boot-up state) if it is completely disconnected from the
remaining Gh. Thus I1.2 is closed under
PARENT_SEEK. Therefore, I1.2 is closed under inter-
cell maintenance.

Therefore, after a round of HEAD_ORG,
HEAD_ORG_RESP, ASSOCIATE_ORG_ RESP,
intra-cell maintenance, and inter-cell maintenance
execution, I1.2 still holds if it held before the execution
of these modules. +

• I2: Hexagonal map of heads and inner cells
, I2.1: Each inner head i has exactly 6 neighboring

heads, and the 6 neighboring heads of head i forms a
cellular hexagon that is centered by head i, with
bounded vertices’ location deviation. That is,
(∀ inner_head i: | neighboring_heads(i) | = 6) ∧

(∀ inner_head i (∀j ∈ neighboring_heads(i):

(<CIC(i),ICP(i)> = <CIC(j),ICP(j)>) ⇒ (3 R-2Rt ≤

dist(i, j) ≤ 3 R+2Rt) ∧

(<CIC(i),ICP(i)> ≠ <CIC(j),ICP(j)>) ⇒ (dist(IL(i),IL(j))-
2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt) ∧ (0 < dist(IL(i),

IL(j)) ≤ 2 3 R)

)

Proof:
The set of actions that are enabled at an Invariant

state and that can affect I2.1 are those of HEAD_ORG,
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP,
intra-cell maintenance, and inter-cell maintenance.
New node join does not affect this claim, because it
does not affect the head level structure directly.

In order to prove I2.1, we only need to prove that it
is closed under a round of HEAD_ORG,
HEAD_ORG_RESP, ASSOCIATE_ORG_RESP,
intra-cell maintenance, and inter-cell maintenance.

In dynamic immobile networks, the only
modifications to processes HEAD_ORG, HEAD_
ORG_RESP and ASSOCIATE_ORG_RESP that could
affect the claim differently from that of the static
networks is the case where an existing head j selects a
better parent head k. Even in this case, I2.1 should still
be closed under a round of head organization process,
because it affects neither j’ s nor k’s geographical
location. Also, in dynamic immobile networks, a
HEAD_ORG process will be initiated by a head j only

if j and its parent head P(j) are at the same <CIC, ICP>
point within their respective cells. Under this premise,
the next band head organization process acts
essentially the same as that in static networks in terms
of head level’s hexagonal feature. So, I2.1 is closed
under a round of HEAD_ORG, HEAD_ORG_RESP
and ASSOCIATE_ORG_RESP execution in dynamic
immobile networks.

In intra-cell maintenance, the sub-modules that can
affect head level structure are REPLACING_HEAD
and STRENGTHEN_CELL. The result of
REPLACING_HEAD is that one head j in a cell is
replaced by a head candidate k in j’ s cell that is no
more than Rt away from the ideal location of this cell.
The way REPLACING_HEAD works guarantees that
j’ s relationship with its neighboring heads is
transferred to node k. Thus, I2.1 is closed under any
round of REPLACING_HEAD. The result of
STRENGTHEN_ CELL initiated by a head j is that j
retreats to be an associate node and another associate
node k previously in j’ s cell become the head of this
cell. If the newly elected head k is at the same <CIC,
ICP> point as its neighboring cell’ s head m, they are at
the same relative location to their respective OIL, with
on more than Rt location deviation. According to the
HEAD_ORG, HEAD_ORG_RESP and
ASSOCIATE_ORG_RESP, the original ideal location

(OIL) of any two neighboring cells is exactly 3 R.
Therefore, the distance between k and m should be

3 R with no more than 2Rt deviation, the same as
that in static networks. However, if k and m are at
different <CIC, ICP> points, this regularity does not
hold any more. But the distance between k and m is

still no more than 2 3 R, because the way
STRENGTHEN_CELL works guarantees that the
maximum distance between any possible ILs of two

neighboring cells is no more than 2 3 R. So, the I2.1 is
closed STRENGTHEN_CELL too. In a word, I2.1 is
closed under intra-cell maintenance.

In inter-cell maintenance, the sub-modules that can
affect head level structure are HEAD_ORG,
SYN_CELL and PARENT_ SEEK. Since the claim is
closed under HEAD_ORG, we only need to prove that
it is closed under SYN_CELL and PARENT_SEEK.
The result of SYN_CELL is that one head j is replaced
by an associate k in j’ s cell, if such k exists. If such k
really exists, the way SYN_CELL and its resulting
REPLACING_HEAD work guarantees that j’ s

12

relationship with its neighboring heads is transferred to
node k. Thus, I2.1 closed under SY_CELL and its
resulting REPLACING_HEAD operations. If such k
does not exist, process PARENT_SEEK will be
initiated. As for PARENT_SEEK, it will be initiated at
head j only if the sub-tree rooted at j is disconnected
from the other part of Gh because of the removal of
edge (j, P(j)) in Gh. The result of PARENT_SEEK will
not add any new head to the system or change the
location of any existing heads, even though it might
remove some existing heads from the head level graph.
Thus I1.2 must be closed under PARENT_SEEK.
Therefore, I2.1 is closed under inter-cell maintenance.

Based upon the analysis above, after a round of
HEAD_ORG, HEAD_ORG_RESP, ASSOCIATE_
ORG_RESP, intra-cell maintenance, and inter-cell
maintenance execution, I2.1 still holds if it held before
the execution of these modules. -

. I2.2: Each boundary head i has less than 6

neighboring heads, and the distance between i and its
neighboring heads is hexagonally bounded. That is,
(∀ boundary_head i: | neighboring_heads(i) | < 6) ∧

(∀ boundary_head i (∀j ∈ neighboring_heads(i):

(<CIC(i),ICP(i)> = <CIC(j),ICP(j)>) ⇒ (3 R-2Rt ≤

dist(i, j) ≤ 3 R+2Rt) ∧

(<CIC(i),ICP(i)> ≠ <CIC(j),ICP(j)>) ⇒ (dist(IL(i),IL(j))-
2Rt ≤ dist(i, j) ≤ dist(IL(i),IL(j))+2Rt) ∧ (0 <

dist(IL(i), IL(j)) ≤ 2 3 R)

)

Proof:

Since we have proved that I2.1 is an invariant, we
just need to prove that I2.1 ⇒ I2.2 in proving that I2.2 is
an invariant. The proof of I2.1 ⇒ I2.2 is as follows:

Boundary heads are generated and maintained (by
intra-cell as well as inter-cell maintenance procedure)
in the same way as inner heads. The only difference is
that their cells are on the boundary of the system’s
geographic coverage such that there is no neighboring
head in certain (60+2α)o region around itself, where α
denotes the angular deviation corresponding to the Rt
head’s location deviation. Since each inner head has

exactly 6 neighboring heads in its (3 R+2Rt) radius,
each boundary head should have less than 6

neighboring heads in its (3 R+2Rt) radius. And the

distance between boundary head i and its neighboring
heads is bounded in the same way as inner head does.

/
0 I2.3: Each head, except for the big node, has no more

than 5 children heads. The big node H0 has 6
children heads if it is not on the system’s boundary
and it would have 1~5 children heads if it is on the
boundary of the system but not disconnected from
the small nodes. That is,
(∀ head i: | CH(i) | ≤ 5) ∧

(H0 is not on the boundary of system coverage ⇒ (|CH(H0)| = 6
)) ∧

(H0 is on the boundary of system coverage but not disconnected
⇒ (1 ≤ | CH(H0) | ≤ 5))

Proof:

Since both I2.1 and I2.2 are invariants, and I2.1 ∧ I2.2
⇒ I2.3, I2.3 is an invariant too. 1

2 I2.4: Each cell is of radius (R+Rrandom). When a cell i

and all its neighboring cells are at the same <CIC,

ICP> point, |Rrandom| is no more than
3

2
Rt for inner

cell i and no more than ((3 -1)R+2Rt+dp) for
boundary cells, with dp being the diameter of the
gap-perturbed area adjoining a boundary cell (dp is 0
if there is no gap-perturbed area).; Otherwise,
|Rrandom| is less than (2R+Rt) for inner cell i. This
also means that each associate node is of (R+Rrandom)
distance to its head. That is,

(∀ inner cell C(i):

(∀j∈neighboring_heads(i): (<CIC(i),ICP(i)> = <CIC(j),ICP(j)>)

⇒ (∀ associate i ∈ C : dist(i, H(i)) ≤ R+
3

2
 Rt))

∧

(∃ j∈neighboring_heads(i): (<CIC(i),ICP(i)> ≠ <CIC(j),ICP(j)>)
⇒ (∀ associate i ∈ C : dist(i, H(i)) < 2R+Rt)

)

∧

(∀ boundary cell C(i): (∀ associate i ∈ C(i) : dist(i, H(i)) ≤ R’)) ∧
(R’ ≤ 3 R+2Rt+dp))

Proof:
As for inner cell C(i), we could prove the claim is

closed under program actions by proving that I2.1 ∧ I2.2
∧ I3 ⇒ (I2.4 for inner cell). The proof is as follows:

13

Case one: ∀j∈ neighboring_heads(i): <CIC(i),
ICP(i)> = <CIC(j),ICP(j)>

The proof is the same as that for static networks,
we neglect it here for simplicity.

Case two: ∃ j∈neighboring_heads(i): <CIC(i),
ICP(i)> ≠ <CIC(j),ICP(j)>

In this case, the worst scenario for an associate
node j in an inner cell is as the following figure
shows:

j H0

H2

H1

2R

That is, the three heads (H0, H1 and H2) are

farthest away from one another (2 3 R). But the
maximum distance between j and any of these
three heads is still no more than 2R with possible
Rt location deviation by geometry calculation.

As for boundary cells, the set of actions that are
possibly enabled at invariant state and that can affect
I2.4 for boundary cells are those of HEAD_ORG,
ASSOCIATE_ORG_RESP, new node joins, intra-cell
maintenance and inter-cell maintenance.

As proved in static networks, I2.4 for boundary cells
is closed under HEAD_ORG and
ASSOCIATE_ORG_RESP operations.

I2.4 for boundary cells is closed under new node
join operation too, because new node join does not
creat new heads, and the way
SMALL_NODE_BOOT_UP and
SMALL_NODE_JOIN work guarantees that the
distance between the new node and its selected head is

no more than MAX+(3 R+2Rt).

In intra-cell maintenance, the sub-modules that can
affect I2.4 for boundary cells are REPLACING_HEAD
and STRENGTHEN_CELL. The result of
REPLACING_HEAD is that one head j in a cell is
replaced by a head candidate k in j’ s cell that is no
more than Rt away from the ideal location of this cell.
Thus, I2.4 for boundary cells is closed under any round
of REPLACING_HEAD. The result of
STRENGTHEN_ CELL initiated by a head j is that j
retreats to be an associate node and another associate

node k previously in j’ s cell become the head of this
cell. Before the execution of STRENGTHEN_CELL,
the maximum distance between j’s cell’ s original ideal
location and any associate in this cell is no more than

MAX+(3 R+2Rt). after the STRENGTHEN_CELL
operation, the distance between k and this cell’ s
original ideal location is no more than R. So after the
STRENGTHEN_CELL operation, the maximum
distance between k and any associate in its cell is no

more than MAX+(3 R+2Rt)+R. So I2.4 for boundary
cells is closed under STRENGTHEN_CELL. In a
word, I2.4 for boundary cells is closed under intra-cell
maintenance.

In inter-cell maintenance, the sub-modules that can
affect I2.4 for boundary cells are HEAD_ORG,
SYN_CELL and PARENT_ SEEK. Since the claim is
closed under HEAD_ORG, we only need to prove that
it is closed under SYN_CELL and PARENT_SEEK.
The result of SYN_CELL is that one head j is replaced
by an associate k in j’ s cell, if such k exists. If such k
really exists, the way SYN_CELL and its resulting
REPLACING_HEAD work guarantees that I2.4 for
boundary cells still holds after the execution, in the
same way as STRENGTHEN_CELL. Thus, I2.4 for
boundary cells is closed under SY_CELL and its
resulting REPLACING_HEAD operations. If such k
does not exist, any associate in j’ s cell goes back to
boot-up state and acts as a new node joining the
system, where I2.4 for boundary cells is also closed. So
I2.4 for boundary cells is closed under SYN_CELL. As
for PARENT_SEEK, it will be initiated at head j only
if the sub-tree rooted at j is disconnected from the
other part of Gh because of the removal of edge (j,
P(j)) in Gh. The result of PARENT_SEEK will not add
any new head to the system or change the location of
any existing heads, even though it might remove some
existing heads from the head level graph, which will
initiate new node joins operation. But all this does not
violate I2.4 for boundary cells. Thus I2.4 for boundary
cells must be closed under PARENT_SEEK.
Therefore, I2.4 for boundary cells is closed under inter-
cell maintenance.

3

• I3: Inner Cell Optimality (for associate nodes)
4 Each associate node in an inner cell chooses the best

(closest, most remaining energy, etc.) neighboring
head to join. That is,

(∀ associate i in any inner cell: ∀ head j ≠ H(i) (H(i) better than j))

14

Proof:
The set of actions that are possibly enabled at

invariant state and that can affect I3 are those of
HEAD_ORG, ASSOCIATE_ORG_RESP, new node
join, intra-cell maintenance, and inter-cell
maintenance.

As proved for static networks, I3 is closed under
HEAD_ORG and ASSOCIATE_ORG_RESP.

I3 is closed under new node join operation because
in SMALL_NODE_BOOT_UP and SMALL_NODE_
JOIN, a new node always choose the best neighboring
head to associate. In SMALL_NODE_BOOT_UP and
SMALL_NODE_JOIN, a new node might join a
neighboring head’s HEAD_ORG process, but in this
case, the new node is in a boundary cell, either at an
inner gap or at real system boundary. Therefore, I3 is
closed under new node join scenario.

In intra-cell maintenance, the sub-modules that can
affect I3 are REPLACING_HEAD and
STRENGTHEN_CELL. The result of REPLACING_
HEAD is that one head j in a cell is replaced by a head
candidate k in j’ s cell. At the moment k assumes the
head role, it will broadcast a Head_intra_alive message
that guarantees that any associate that k can serve as a
better head will choose k as the new better head. Thus,
I3 is closed under any round of REPLACING_HEAD.
The result of STRENGTHEN_ CELL initiated by a
head j is the same as REPLACING_HEAD from the
point of view of I3. So I3 is closed under
STRENGTHEN_CELL. In a word, I3 is closed under
intra-cell maintenance.

In inter-cell maintenance, the sub-modules that can
affect I3 are HEAD_ORG, SYN_CELL and PARENT_
SEEK. Since I3 is closed under HEAD_ORG, we only
need to prove that it is closed under SYN_CELL and
PARENT_SEEK. The result of SYN_CELL is that one
head j is replaced by an associate k in j’ s cell, if such k
exists. If such k really exists, the result of SYN_CELL
and its resulting REPLACING_HEAD is the same as
that of REPLACING_HEAD from the I3’ s point of
view. Thus, I3 is closed under SYN_CELL and its
resulting REPLACING_HEAD operations. If such k
does not exist, any associate in j’ s cell goes back to
boot-up state and acts as a new node joining the
system, where I3 is also closed. So I3 is closed under
SYN_CELL. As for PARENT_SEEK, it will be
initiated at head j only if the sub-tree rooted at j is
disconnected from the other part of Gh because of the

removal of edge (j, P(j)) in Gh. The result of
PARENT_SEEK will not add any new head to the
system or change the location of any existing heads,
even though it might remove some existing heads from
the head level graph, which will initiate new node
joins operation. But all this does not violate I3. Thus I3

must be closed under PARENT_SEEK. Therefore, I3 is
closed under inter-cell maintenance.

5

5) Theorem 7: Starting from any state, every
computation of GS3-D reaches a state where DI
holds within time O(Dc), where Dc is the diameter
of a continuous state-corrupted area.. That is,

TRUE leads to Invariant (I1 ∧ I2 ∧ I3)

Proof:

In order to prove “TRUE leads to Invariant” , we

just need to prove “ iantIn var leads to Invariant”
because “ Invariant leads to Invariant” is obvious. The
proof is as follows.

There are two cases where iantIn var could be
reached due to node failure, even though it cannot be
reached just program actions.

a) A head j dies without following proper head
retreat procedure

This kind of failure may make Gh disconnected
temporarily, thus affects connectivity (I1.2). This
could be dealt with by inter-cell maintenance
procedures. By inter-cell maintenance procedure,
the parent head P(j) of head j will first initiate
another round of HEAD_ORG process, trying to
recover the failure of head j. If there is any node in
head j’s original Rt-radius range, the HEAD_ORG
process will succeed in finding a replacing head k
to play the role head j previously did. Thus this
will make Gh connected again. If it fails, the sub-
trees previously rooted at head j will initiate
PARENT_SEEK. This will make these sub-trees
connected to the remaining Gh if they are not
completely disconnected from the remaining Gh. If
they are really disconnected from the remaining
Gh, all heads in the sub-tree will retreat to boot-up
state, which also makes I1.2 true again. Time
complexity is θ(A), where A stands for the size of
the contiguously affected area.

This failure can also make all the associates
originally in its cell live without a head, even

15

though they still have their head pointer point to
node j. So the inner cell optimality (I3) is violated
here too. This could be dealt with by intra-cell
maintenance. Any associate k previously in head
j’s cell will go back to boot-up state after detecting
that their head has died. Then
SMALL_NODE_BOOT_UP process will be
initiated at node k, which makes I3 hold for node k
again. On the other hand, before node k goes back
to boot-up state, if it hears Head_intra_alive
message from another head m other than j and k
considers m being better than j, node k will choose
head m as its head. Thus still makes I3 holds again.
The time complexity of this process is θ(C1),
where C1 is a small constant related to the purely
one-hop message exchange.

b) State corruption at existing head node or
associate node j

This can affect connectivity (I1.1) because the
corrupted head j might choose a random number as
P(j) and P(j) is the ID of another head, but P(j) and
j are beyond the transmission range of one another.
This could be dealt with by inter-cell maintenance.
Since j cannot hear Head_inter_alive message
from P(j), it will initiate PARENT_SEEK to find
another head to associate, which will make I1.1 true
again. The time complexity of this process is
θ(C2), where C2 is a small constant related to Tphbt
and the purely one-hop message exchange in
PARENT_SEEK (we assume head j’s original
parent is still there and j has heard
Head_inter_alive message from it).

This can affect hexagonal head level structure
(I2) because head j’s CH(j) might be corrupted,
because head j will not hear Head_inter_alive
message from its mistakenly-elected child head,
which will make head j initiate a HEAD_ORG
process even though it should not be. This will
generate a head that should not be a head indeed. It
could be dealt with by system state sanity check,
as discussed in c). Time complexity is θ(A), where
A stands for the size of the contiguously affected
area.

This can affect inner cell optimality (I3)
because an associate j’ s H(j) could be corrupted
such that H(j) is either not the best or is beyond
transmission range. This could be dealt with by
intra-cell maintenance at the moment associate j

hears its neighboring heads’ Head_intra_alive
messages. The time complexity of this process is
θ(C3), where C3 is a small constant related to the
purely one-hop message exchange.

c) A new head j shows up due to state
corruption, or due to HEAD_ORG initiated by a
corrupted head, even though it should not be a
head

It can affect the hexagonal head level structure
(I2), because an extra head shows up in the
previously hexagonal head map, which corrupts
the hexagon feature. This could be dealt with by
system state sanity check. Time complexity is
θ(A), where A stands for the size of the
contiguously affected area.

d) Intra-cell maintenance at cell j fails to find a
replacing head for this cell

The effect and the recovery process is the
same as case a).

According to the analysis above, “TRUE leads to
Invariant” hold.

6

6) Theorem 8: Starting from any state where DI
holds, every computation of GS3-D reaches a state
where DF holds within time O(max{ (Dd/c1), Td}),
where c1 is the average speed of message diffusing
and Td is the maximum difference between the
lifetime of the candidate set of two neighboring
cells. That is,

Invariant (I1 ∧ I2 ∧ I3) leads to Fix Point (F1 ∧
F2 ∧ F3 ∧ F4)

Proof:

a) Invariant (I1 ∧ I2 ∧ I3) leads to F3

We only need to prove that I1 ∧ I2 ∧ I3 ∧

3F leads to “F3 for boundary cell” , since F3 naturally

leads to F3, I1 as well as I2 is invariant, and I3 ⇒ “F3
for inner cell” .

Same as that in static networks, for any associate

node i in a coundary cell, the scenario where 3F

could hold is when some better neighboring head j
around it is still at state qhead and has not carried out
the process HEAD_ORG yet. Because HEAD_ORG
and HEAD_ORG_RESP guarantee that two

neighboring heads within (3 R+2Rt) range cannot

16

initiate HEAD_ORG in parallel, associate i is able to
hear the ORG messages from all its neighboring
heads, including head j. The way
ASSOCIATE_ORG_RESP works guarantees that
associate i will choose the best (such as closest,
highest remaining energy, etc.) head to associate
with after all such better heads js finish their

HEAD_ORG process. So 3F will be false and F3

will be true after all the better neighboring heads
around associate i finish their HEAD_ORG
processes.

Suppose the number of better heads around

associate i is BETTER_HEAD when 3F is true.

Then BETTER_HEAD is no less than 0. When 3F

is true, at least one HEAD_ORG process is enabled,
and whenever a HEAD_ORG process finishes, the
value of BETTER_HEAD will decrease by 1. Thus,
it only takes BETTER_HEAD rounds of
HEAD_ORG process for associate i to transfer from

state 3F to state F3, which is a finite procedure.

Thus “ I1 ∧ I2 ∧ 3F leads to F3” holds.

Since it only takes finite time Chead_org for a
HEAD_ORG process to finish, the state transition

from 3F to F3 would only take BETTER_HEAD ×

(Chead_org + Cgap) (i.e. θ(BETTER_HEAD)) amount
of time, where Cgap denotes the maximum interval
between two neighboring heads’ HEAD_ORG
process.

b) Invariant (I1 ∧ I2 ∧ I3) leads to F1 ∧ F2

If we could prove that I1 leads to F1, I2 leads to
(F2.1 ∧ F2.2 ∧ F2.4) and I2 ∧ F1.2 ⇒ F2.3, then “ Invariant
(I1 ∧ I2 ∧ I3) leads to F1 ∧ F2” would hold too.

First, let us prove “ I1 leads to F1” .

Because F1 is equal to (I1 ∧ (∀ vi ∈ (Vh – { H0}):
D(vi) = MIN(H0, vi))) and I1 is an invariant, we just
need to prove that “ I1 leads to (∀ vi ∈ (Vh – { H0}):
D(vi) = MIN(H0, vi))” .

This is proved by induction on MIN(H0, vi).

Base: when MIN(H0, vi) = 0, vi is the big node
H0. It is trivially true the D(H0) = 0.

Hypothesis: the claim holds when MIN(H0, vi)
= d

Induction: when MIN(H0, vi) = (d+1)

We only need to prove that for any head vi,
if MIN(H0, vi) = (d+1), then D(vi) = (d+1). From
HEAD_ORG_RESP and HEAD_INTER_CELL,
a head vi will choose the a head with lowest
distance to H0 as parent head, by listening to
their Head_org or Head_inter_alive message.
For any head vi, if MIN(H0, vi) = (d+1), then the
closest neighboring head j must have a MIN(H0,
j) value of d, which also means that D(j) = d by
the hypothesis. Thus D(vi) must be (d+1) since j
is vi’ s parent head.

Then, let us prove “ I2 leads to (F2.1 ∧ F2.2 ∧
F2.4)” .

Let’s first prove that I2 leads to F2.1 ∧ F2.2.
Because of SYN_CELL, all heads in the system will
have the same <CIC, ICP> value at fix point (stable
system state), that is, I2 leads to (∀ head i (∀j ∈
neighboring_heads(i): (<CIC(i),ICP(i)> =
<CIC(j),ICP(j)>). At the same time (I2.1 ∧ I2.2 ∧ (∀
head i (∀j ∈ neighboring_heads(i): (<CIC(i),ICP(i)>
= <CIC(j),ICP(j)>)) ⇒ F2.1 ∧ F2.2, and I2 is an
invariant. So “ I2 leads to F2.1 ∧ F2.2” naturally holds
due to transitivity of leads to operation.

Now let’s prove I2 leads to F2.4. We achieve this
by proving I2 ⇒ F2.4. Because I2.4 ≡ F2.4 ∧ (There is

no Rt -radius gap in the system ⇒ R’ ≤ R+
3

2
 Rt),

we only need to prove that I1 ∧ I2 ∧ I3 ⇒ (There is no

Rt -radius gap in the system ⇒ R’ ≤ R+
3

2
Rt).

According to the way HEAD_ORG works, the
boundary cell would be no bigger than the inner cell,
if there is no Rt -radius gap. Otherwise, the
HEAD_ORG process will be continuously initiated.
Thus the boundary cell’ s radius is still no more than

(R+
3

2
Rt) according to I2.4 that says any inner cell’ s

radius is no more than (R+
3

2
Rt).

Finally, let us prove “ I2 ∧ F1.2 ⇒ F2.3” .

Since F2.3 = (I2.3 ∧ (∀ head i: | CH(i) | ≤ 3)), we
only need to prove that “ I2 ∧ F1.2 ⇒ (∀ head i: |
CH(i) | ≤ 3)” .

Let us consider any head (not big node) i without
loss of generality. By I2, there could be at most 6

17

neighboring heads around head i, its possible
children heads i1, i2, i3, its parent head P(i), and the
two neighboring heads (pi1, pi3) at the same band that
are also under the care of P(i) as shown in the
picture below.

i

P(i)

RT
i1

i3

i2

60o 60o

180o-180o

Pi1

60o 60o
180o-180o

Pi 3

2(R+RT)
By F1.2, pi1, pi3 certainly will not choose head i as

parent because of the existence of head P(i) that is
closer to H0 than head i. It is also trivially true that
P(i) cannot be the child of head i. Therefore, there
could be at most three heads (i1, i2, i3) that could
serve as head i’s children heads. Thus I2 ∧ F1.2 ⇒ (∀
head i: | CH(i) | ≤ 3).

c) Invariant (I1 ∧ I2 ∧ I3) leads to F4

We only need to prove that I1 ∧ I2 ∧ I3 ∧ 4F

leads to F4, since it is obvious that I1 ∧ I2 ∧ I3 ∧ F4

leads to F4. We need to prove that “ I1 ∧ I2 ∧ I3 ∧ 4F
leads to F4” holds both in the initial phase of head
organization diffusion and in later new node joins.

In the case of new node j joining the system,
SMALL_NODE_BOOT_UP and SMALL_
NODE_JOIN guarantee that node j will find an
existing node as head or surrogate head if it is not
completely disconnected from the system, i.e. being
a visible node. Thus F4 will be reached within θ(C)
amount of time, where C is a small constant related
to the purely one-hop message exchange.

In the initial phase of head organization process,
since the way HEAD_ORG works guarantees that all
the visible areas of the system could be covered by
the HEAD_ORG process in the end (see the proof of
this claim later), there will be a HEAD_ORG

process waiting to take place whenever 4F holds.
Because the system’s coverage is finite and every
HEAD_ORG process is able to cover another

(3 R+2Rt)-radius circular area, the number of
possible HEAD_ORG process occurrence is finite.

Therefore, “ I1 ∧ I2 ∧ I3 ∧ 4F leads to F4” holds.

Now, let us prove that all the visible areas of the
system could be covered by the HEAD_ORG
process in the end. We prove it by induction on the
area encircled by heads of i-band away from the big
node, denoted Round Area RA(i) (i.e. area of radius

(3 R × i + Rt + R) and i is the number of hexagons
away from the big node).

Case one: when there is no Rt circular region gap
in node deployment

Base: when i = 0, 1, clearly holds

Hypothesis: the claim holds when i = k

Induction: when i = (k+1),

H(k+1)5

H(k+1)6BIG

NODE

Hk2

H(k+1)2

H(k+1)3

Hk3

Hk1

H(k+1)1

Hk4

H(k+1)4

As we could see from the picture, any
point that is in RA(k+1) but not in RA(k) will
be covered by some (k+1)-band head. And
each (k+1)-band head could be taken care of
by some k-band head, either directly or
indirectly, even though some of them might
not be generated directly by a k-band head due
to different progress speeds of the self-
configuration process at different directions
spreading from the big node. Thus the claim
holds when i is (k+1).

Case two: when there is some Rt circular region
gap in node deployment

Base: when i = 0, 1, clearly holds

Hypothesis: the claim holds when i = k

Induction: when i = (k+1),

When there is only one Rt circular
region gap at k-band, we could see that the
three next-band heads, i.e. H(k+1)1, H(k+1)2 and
H’

(k+1), could be taken care of by the help of
the two k-band heads that are neighboring the
gap. Thus the claim still holds in this case.

18

H(k+1)1

H(k+1)5

H(k+1)6BIG

NODE

Hk2

H(k+1)2

H(k+1)3

Hk3
Hk1

Hk4

H(k+1)4

H’
(k+1)

gap

When there are multiple Rt circular

region gaps at k-band, we could see the same
results just in the same way as above, and no
matter whether these gaps are contiguous or
not. For simplicity reason, we do not detail it
here.

According to the proof in a), b), c), and d), the
claim that Invariant (I1 ∧ I2 ∧ I3) leads to the fix point
(F1 ∧ F2 ∧ F3 ∧ F4) holds.

7

