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Abstract—An effective multipitch tracking algor ithm for  

noisy speech is cr itical for  acoustic signal processing. However , 
the per formance of existing algor ithms is not satisfactory. In 
this paper , we present a robust algor ithm for  multipitch 
tracking of noisy speech. Our  approach integrates an improved 
channel and peak selection method, a new method for  extracting 
per iodicity information across different channels, and a hidden 
Markov model (HMM) for  forming continuous pitch tracks. The 
resulting algor ithm can reliably track single and double pitch 
tracks in a noisy environment. We suggest a pitch er ror  measure 
for  the multipitch situation. The proposed algor ithm is 
evaluated on a database of speech utterances mixed with var ious 
types of inter ference. Quantitative compar isons show that our  
algor ithm significantly outper forms existing ones. 
 

Index Terms— Channel selection, cor relogram, hidden 
Markov model (HMM), multipitch tracking, noisy speech, and 
pitch detection.  

I. INTRODUCTION 

ETERMINATION of pitch is a fundamental problem in 
acoustic signal processing. A reliable algorithm for 

multipitch tracking is critical for many applications, 
including computational auditory scene analysis (CASA), 
prosody analysis, speech enhancement, speech recognition, 
and speaker identification (for example, see [9] [26] [38] 
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[40]). However, due to the difficulty of dealing with noise 
intrusions and mutual interference among multiple harmonic 
structures, the design of such an algorithm has proven to be 
very challenging and most existing pitch determination 
algorithms (PDAs) are limited to clean speech or a single 
pitch track in modest noise. 

Numerous PDAs have been proposed [13] and are 
generally classified into three categories: time-domain, 
frequency-domain and time-frequency domain algorithms. 
Time-domain PDAs directly examine the temporal structure 
of a signal waveform. Typically, peak and valley positions, 
zero-crossings, autocorrelations and residues of comb-filtered 
signals (for example, see [6]) are analyzed for detecting the 
pitch period. Frequency-domain PDAs distinguish the 
fundamental frequency by utilizing the harmonic structure in 
the short-term spectrum. Time-frequency domain algorithms 
perform time-domain analysis on band-filtered signals 
obtained via a multi-channel front-end. 

Many PDAs have been specifically designed for detecting a 
single pitch track with voiced/unvoiced decisions in noisy 
speech. The majority of these algorithms were tested on clean 
speech and speech mixed with different levels of white noise 
(for example, see [1] [3] [18] [19] [23] [24] [33]). Some 
systems also have been tested in other speech and noise 
conditions. For example, Wang and Seneff [39] showed that 
their algorithm is particularly robust for telephone speech 
without a voiced/unvoiced decision. The system by Rouat et 
al. [31] was tested on telephone speech, vehicle speech, and 
speech mixed with white noise. Takagi et al. [34] tested their 
single pitch track PDA on speech mixed with pink noise, 
music, and a male voice. In their study, multiple pitches in 
the mixtures are ignored and a single pitch decision is given. 
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An ideal PDA should perform robustly in a variety of 
acoustic environments. However, the restriction of a single 
pitch track puts limitations on the background noise in which 
PDAs are able to perform. For example, if the background 
contains harmonic structures such as background music or 
voiced speech, a multipitch tracker would be required for 
providing meaningful pitch tracks. 

The tracking of multiple pitches has also been investigated. 
For example, Gu and van Bokhoven [11] and Chazan et al. 
[4] proposed algorithms for detecting up to two pitch periods 
for co-channel speech separation. A recent model by Tolonen 
and Karjalainen [36] was tested on musical chords and a 
mixture of two vowels. Kwon et al. [20] proposed a system to 
segregate mixtures of two single pitch signals. Pern

�
ndez-Cid 

and Casaj � s-Quir � s [29] presented an algorithm to deal with 
polyphonic musical signals. However, these multipitch 
trackers were designed for and tested on clean music signals 
or mixtures of single-pitch signals with little or no 
background noise. Their performance on tracking speech 
mixed with broadband interference (e.g. white noise) is not 
clear. 

In this paper, we propose a robust algorithm for multipitch 
tracking of noisy speech. By using a statistical approach, the 
algorithm can maintain multiple hypotheses with different 
probabilities, making the model more robust in the presence 
of acoustic noise. Moreover, the modeling process 
incorporates the statistics extracted from a corpus of natural 
sound sources. Finally, a hidden Markov model (HMM) is 
incorporated for detecting continuous pitch tracks. A database 
consisting of mixtures of speech and a variety of interfering 
sounds is used to evaluate the proposed algorithm, and very 
good performance is obtained. In addition, we have carried 
out quantitative comparisons with related algorithms and the 
results show that our model performs significantly better. 

The article is organized as follows. In the next section, we 
give an overview of our model. Detailed explanations of the 
model are presented in Section III-VII. Section VIII and IX 
discuss model parameters and computationally efficient 
implementation of the proposed model. In Section X, we 
present the evaluation experiments and show the results. 
Finally, we discuss related issues in Section XI.   

II. MODEL OVERVIEW 

In this section, we first give an overview of the algorithm 
and stages of processing. As shown in Fig. 1, the proposed 
algorithm consists of four stages. In the first stage, the front-
end, the signals are filtered into channels by an auditory 
peripheral model and the envelopes in high-frequency 
channels are extracted. Then, normalized correlograms [2] 
[38] are computed. Section III gives the details of this stage. 

Channel and peak selection comprises the second stage. In 
noisy speech, some channels are significantly corrupted by 
noise. By selecting the less corrupted channels, the robustness 
of the system is improved. Hunt and Lef � bvre [14] first 
suggested this idea, and it was implemented on mid- and 
high-frequency channels (with center frequencies greater than 
1400 Hz) by Rouat et al. [31]. We extend the channel 
selection idea to low-frequency channels and propose an 
improved method that applies to all channels. Furthermore, 
we employ the idea for peak selection as well. Generally 
speaking, peaks in normalized correlograms indicate 
periodicity of the signals. However, some peaks give 
misleading information and should be removed. Section IV 
gives the detail of this stage. 

The third stage integrates periodicity information across all 
channels. Most time-frequency domain PDAs stem from 
Licklider’s duplex model for pitch perception [22], which 
extracts periodicity in two steps. First, the contribution of 
each frequency channel to a pitch hypothesis is calculated. 
Then, the contributions from all channels are combined into a 
single score. In the multi-band autocorrelation method, the 
conventional approach for integrating the periodicity 
information in a time frame is to summate the (normalized) 
autocorrelations across all channels. Though simple, the 
periodicity information contained in each channel is under-
utilized in the summary. By studying the statistical 
relationship between the true pitch periods and the time lags 
of selected peaks obtained in the previous stage, we first 
formulate the probability of a channel supporting a pitch 
hypothesis and then employ a statistical integration method 
for producing the conditional probability of observing the 
signal in a time frame given the hypothesized pitch. The 
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Fig. 1. Schematic diagram of the proposed model. A mixture of speech and interference is processed in four main stages. In the first stage, the normalized correlogram 
is obtained within each channel after the mixture is decomposed into a multi-channel representation by cochlear filtering. Channel/peak selection is performed in the 
second stage. In the third stage, the periodicity information is integrated across different channels using a statistical method. Finally, an HMM is utilized to form 
continuous pitch tracks. 
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relationship between true pitch periods and time lags of 
selected peaks is obtained in Section V and the integration 
method is described in Section VI. 

The last stage of the algorithm is to form continuous pitch 
tracks using an HMM. In several previous studies, HMMs 
have been employed to model pitch track continuity. 
Weintraub [40] utilized a Markov model to determine 
whether zero, one or two pitches were present. Gu and van 
Bokhoven [11] used an HMM to group pitch candidates 
proposed by a bottom-up PDA and form continuous pitch 
tracks. Tokuda et al. [35] modeled pitch patterns using an 
HMM based on a multi-space probability distribution. In 
these studies, pitch is treated as an observation and both 
transition and observation probabilities of the HMM must be 
trained. In our formulation, pitch is explicitly modeled as 
hidden states and hence only transition probabilities need to 
be specified by extracting pitch statistics from natural speech. 
Finally, optimal pitch tracks are obtained by using the Viterbi 

algorithm. This stage is described in Section VII. 

III. MULTI-CHANNEL FRONT-END 

The input signal is sampled at a rate of 16 kHz and then 
passed through a bank of fourth-order gammatone filters [28], 
which is a standard model for cochlear filtering. The 
bandwidth of each filter is set according to its equivalent 
rectangular bandwidth (ERB) and we use a bank of 128 
gammatone filters with center frequencies equally distributed 
on the ERB scale between 80 Hz and 5 kHz [5] [38]. After the 
filtering, the signals are re-aligned according to the delay of 
each filter. 

The rest of the front-end is similar to that described by 
Rouat et al. [31]. The channels are classified into two 
categories. Channels with center frequencies lower than 
800 Hz (channels 1-55) are called low-frequency channels. 
Others are called high-frequency channels (channels 56-128). 
The Teager energy operator [16] and a low-pass filter are 
used to extract the envelopes in high-frequency channels. The 

Teager energy operator is defined as 11
2

−+−= nnnn sssE  for a 

digital signal ns . Then, the signals are low-pass filtered at 

800 Hz using the 3rd order Butterworth filter. 
In order to remove the distortion due to very low 

frequencies, the outputs of all channels are further high-pass 
filtered to 64 Hz (FIR, window length of 16 ms). Then, at a 
given time step j, which indicates the center step of a 16 ms 
long time frame, the normalized correlogram ),,( τjcA  for 

channel c with a time lag τ  is computed by running the 
following normalized autocorrelation in every 10-ms interval: 
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where r  is the filter output. Here, 256=N  corresponds to 
the 16 ms window size (one frame) and the normalized 
correlograms are computed for 200,,0 �=τ . 

IV. CHANNEL AND PEAK SELECTION 

In low-frequency channels, the normalized correlograms 
are computed directly from filter outputs, while in high-
frequency channels, they are computed from envelopes. Due 
to their distinct properties, separate methods are employed for 
channel and peak selection in the two categories of frequency 
channels. 

A. Low-frequency Channels 

Fig. 2a and 2b show the normalized correlograms in the 
low-frequency range for a clean and noisy channel 
respectively. As can be seen, normalized correlograms are 
range limited ( 1),,(1 ≤≤− τjcA ) and set to 1 at the zero time 

lag. A value of 1 at a non-zero time lag implies a perfect 
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Fig. 2. Examples of normalized correlograms: (a) normalized correlogram of a 
clean low-frequency channel, (b) that of a noisy low-frequency channel, (c) 
that of a clean high-frequency channel, and (d) that of a noisy high-frequency 
channel. Solid lines represent the correlogram using the original time window 
of 16 ms and dashed lines represent the correlogram using a longer time 
window of 30 ms. Dotted lines indicate the maximum height of non-zero 
peaks. All correlograms are computed from the mixture of two simultaneous 
utterances of a male and a female speaker. The utterances are “Why are you 
all weary”  and “Don’ t ask me to carry an oily rag like that.”  
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repetition of the signal with a certain scale factor. For a 
quasi-periodic signal with period T, the greater the 
normalized correlogram is at time lag T, the stronger the 
periodicity of the signal. Therefore, the maximum value of all 
peaks at non-zero lags indicates the noise level of this 
channel. If the maximum value is greater than a threshold 

945.01 =θ , the channel is considered clean and thus selected. 

Only the time lags of peaks in selected channels are included 
in the set of selected peaks, which is denoted as Φ. 

B. High-frequency Channels 

As suggested by Rouat et al. [31], if a channel is not 
severely corrupted by noise, the original normalized 
correlogram computed using a window size of 16 ms and the 
normalized correlogram ),,( τjcA′  using a longer window 

size of 30 ms should have similar shapes. This is illustrated 
in Fig. 2c and 2d which show the normalized correlograms of 

a clean and a noisy channel in the high-frequency range 
respectively. For every local peak of ),,( τjcA , we search for 

the closest local peak in ),,( τjcA′ . If the difference between 

the two corresponding time lags is greater than 22 =θ  lag 

steps, the channel is removed.  
Two methods are employed to select peaks in a selected 

channel. The first method is motivated by the observation 
that, for a peak suggesting true periodicity in the signal, a 
peak that is around the double of the time lag of the first one 
should be found. This second peak is thus checked and if it is 
outside 53 ±=θ  lag steps around the predicted double time 

lag of the first peak, the first peak is removed. 
It is well known that a high-frequency channel responds to 

multiple harmonics, and the nature of beats and 
combinational tones dictates that the response envelope 
fluctuates at the fundamental frequency [12]. Therefore, the 
occurrence of strong peaks at time lag T and its multiples in a 
high-frequency channel suggests a fundamental period of T. 
In the second method of peak selection, if the value of the 
peak at the smallest non-zero time lag is greater than 

6.04 =θ , all of its multiple peaks are removed. The second 

method is critical for reducing the errors caused by multiple 
and sub-multiple pitch peaks in autocorrelation functions. 

The selected peaks in all high-frequency channels are 
added to Φ.  

 
To demonstrate the effects of channel selection, Fig. 3a 

shows the summary normalized correlograms of a speech 
utterance mixed with white noise from all channels, and 
Fig. 3b from only selected channels. As can be seen, selected 
channels are much less noisy and their summary correlogram 
reveals the most prominent peak near the true pitch period 
whereas the summary correlogram of all channels fails to 
indicate the true pitch period. To further demonstrate the 
effects of peak selection, Fig. 3c shows the summary 
normalized correlogram of a speech utterance from selected 
channels, and Fig. 3d that from selected channels where 
removed peaks are excluded. To exclude a removed peak 
means that the segment of the correlogram between the two 
adjacent minima surrounding the peak is not considered. As 
can be seen, without peak selection, the height of the peak 
that is around double the time lag of the true pitch period is 
comparable or even slightly greater than the height of the 
peak that is around the true pitch period. With peak selection, 
the height of the peak at the double of the true pitch period 
has been significantly reduced. 

V. PITCH PERIOD AND TIME LAGS OF SELECTED PEAKS 

The alignment of peaks in the normalized correlograms 
across different channels signals a pitch period. By studying 
the difference between the true pitch period and the time lag 
from the closest selected peaks, we can derive the evidence of 
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Fig. 3. (a) Summary normalized correlogram of all channels in a time frame 
from a speech utterance mixed with white noise. The utterance is “Why are 
you all weary.”  (b) Summary normalized correlogram of only selected 
channels in the same time frame as shown in (a). (c) Summary normalized 
correlogram of selected channels in a time frame from the speech utterance 
“Don’ t ask me to carry an oily rag like that.”  (d) Summary normalized 
correlogram of selected channels where the removed peaks are excluded in the 
same time frame as shown in (c). To exclude a removed peak means that the 
segment of correlogram between the two adjacent minima surrounding the 
peak is not considered. Dashed lines represent the delay corresponding to the 
true pitch periods. Dotted lines indicate the peak heights at pitch periods. 
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the normalized correlogram in a particular channel 
supporting a pitch period hypothesis.  

More specifically, consider channel c. We denote the true 
pitch period as d, and the relative time lag δ  is defined as 

dl −=δ ,              (2) 

where l  denotes the time lag of the closest peak. 
The statistics of the relative time lag δ  are extracted from 

a corpus of 5 clean utterances of male and female speech, 
which is part of the sound mixture database collected by 
Cooke [5]. A true pitch track is estimated by running a 
correlogram-based PDA on clean speech before mixing, 
followed by manual correction. The speech signals are passed 
through the front-end and the channel/peak selection method 
described in Section III and IV. The statistics are collected for 
every channel separately from the selected channels across all 
voiced frames.  

As an example, the histogram of relative time lags for 
channel 22 (center frequency: 264 Hz) is shown in Fig. 4. As 
can be seen, the distribution is sharply centered at zero, and 
can be modeled by a mixture of a Laplacian and a uniform 
distribution. The Laplacian represents the majority of 
channels “supporting”  the pitch period and the uniform 
distribution models the “background noise”  channels, whose 
peaks distribute uniformly in the background. The 
distribution in channel c is defined as 

);();()1()( ccc qULqp ηδλδδ +−= ,          (3) 

where 10 << q  is a partition coefficient of the mixture 

model. The Laplacian distribution with parameter cλ  has the 

formula 

)exp(
2

1
);(

cc
cL

λ
δ

λ
λδ −= .  

The uniform distribution );( cU ηδ  with range cη  is fixed 

in a channel according to the possible range of the peak. In a 
low-frequency channel, multiple peaks may be selected and 
the average distance between the neighboring peaks is 
approximately the wavelength of the center frequency. As a 
result, we set the length of the range in the uniform 
distribution to this wavelength, that is, 

( ))2/(),2/( cscsc FFFF−=η , where sF  is the sampling 

frequency and cF  is the center frequency of channel c. In a 

high-frequency channel, however, ideally only one peak is 
selected. Therefore, );( cU ηδ  is the uniform distribution over 

all possible pitch periods. In other words, it is between 2 ms 
to 12.5 ms, or 32 to 200 lag steps, in our system. 

The Laplacian distribution parameter cλ  and the partition 

parameter q  can be estimated independently for each 

channel. However, some channels have too few data points to 
have accurate estimations. We observe that cλ  estimated this 

way decreases slowly as the channel center frequency 
increases. In order to have more robust and smooth 
estimations across all channels, we assume q  to be constant 

across channels and a linear relationship between the 
frequency channel index and the Laplacian distribution 
parameter cλ , 

caac 10 +=λ .              (4) 

A maximum likelihood method is utilized to estimate the 
three parameters 0a , 1a , and q . Due to the different 

properties for low- and high-frequency channels, the 
parameters were estimated on each set of channels separately 
and the resulting parameters are shown in the upper half of 
Table I, where LF and HF indicate low- and high-frequency 
channels respectively. The estimated distribution of channel 
22 is shown in Fig. 4. As can be seen, the distribution fits the 
histogram very well. 

Similar statistics are extracted for time frames with two 
pitch periods. For a selected channel with signals coming 
from two different harmonic sources, we assume that the 
energy from one of the sources is dominant. This assumption 
holds because otherwise, the channel is likely to be noisy and 
rejected by the selection method in Section IV. In this case, 
we define the relative time lags as relative to the pitch period 
of the dominant source. The statistics are extracted from the 
mixtures of the 5 speech utterances used earlier. For a 
particular time frame and channel, the dominant source is 
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Fig. 4. Histogram and estimated distribution of relative time lags for a single 
pitch in channel 22. The bar graph represents the histogram and the solid line 
represents the estimated distribution. 

 

TABLE  I 
FOUR SETS OF ESTIMATED MODEL PARAMETERS 

Model parameters  

0a  1a  q  

One pitch (LF) 1.21 −0.011 0.016 
One pitch (HF) 2.60 −0.008 0.063 
Two pitches (LF)  1.56 −0.018 0.016 
Two pitches (HF) 3.58 −0.016 0.108 
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decided by comparing the energy of the two speech utterances 
before mixing. The probability distribution of relative time 
lags with two pitch periods is denoted as )(δcp′  and has the 

same formulation as in Equations 3-4. Likewise, the 
parameters are estimated for low- and high-frequency 
channels separately and shown in the lower half of Table I. 
Likewise, LF and HF indicate low- and high-frequency 
channels respectively. 

VI. INTEGRATION OF PERIODICITY INFORMATION 

As noted in Tokuda et al. [35], the state space of pitch is 
not a discrete or continuous state space in a conventional 
sense. Rather, it is a union space Ω consisting of three spaces: 

210 Ω∪Ω∪Ω=Ω ,           (5) 

where 0Ω , 1Ω , 2Ω  are zero, one, and two dimensional 

spaces representing zero, one, and two pitches, respectively. 
A state in the union space is represented as a pair ),( Yyx = , 

where YRy∈  and Y is the space index. This section derives 

the conditional probability )|( xp Φ  of observing the set of 

selected peaks given a pitch state x. 
The hypothesis of a single pitch period d is considered first. 

For a selected channel, the closest selected peak relative to the 
period d is identified and the relative time lag is denoted 
as ),( dcΦδ , where cΦ  is the set of selected peaks in 

channel c.  
The channel conditional probability is derived as 

( )
( )�� � Φ

=Φ
otherwiseUcq

selectedcchannelifdp
xp

c

cc
c ,;0)(

,),(
)|(

1
1 η

δ
,    (6) 

where 11 )1,( Ω∈= dx  and )(1 cq  is the parameter q  of 

channel c estimated from one-pitch frames as shown in 
Table I. Note that, if a channel has not been selected, the 
probability of background noise is assigned.  

The channel conditional probability can be easily combined 
into the frame conditional probability if the mutual 
independence of the responses of all channels is assumed. 
However, the responses are usually correlated due to the 
wideband nature of speech signals and the independence 
assumption produces very “spiky”  distributions. Hence, we 
propose the following formula with a smoothing operation to 
combine the information across the channels: 

b

C

c
c xpkxp ∏

=

Φ=Φ
1

11 )|()|( ,          (7) 

where 128=C  is the number of all channels, the parameter 
6=b  is the smoothing factor (see Section VIII for more 

discussion), and k  is a normalization constant for probability 
definition. 

Then we consider the hypothesis of two pitch periods, 1d  

and 2d , corresponding to two different harmonic sources. Let 

1d  correspond to the stronger source. The channels are 

labeled as the 1d  source if the relative time lags are small. 

More specifically, channel c belongs to the 1d  source if 

cc d βλδ <Φ ),( 1 , where 0.5=β  and cλ  denotes the 

Laplacian parameter for channel c calculated from Equation 
4. The combined probability is defined as 

b

C

c
c ddpddp ∏

=

Φ′=Φ
1

212212 ),,(),,( ,                  (8) 

where 
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Fig. 5. Schematic diagram of an HMM for forming continuous pitch tracks. 
The hidden nodes represent possible pitch states in each time frame. The 
observation nodes represent the set of selected peaks in each frame. The 
temporal links in the Markov model represent the probabilistic pitch dynamics. 
The link between a hidden node and an observation node is called observation 
probability. 
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Fig. 6. Histogram and estimated distribution of pitch period changes in 
consecutive time frames. The bar graph represents the histogram and the solid line 
represents the estimated distribution. 
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=Φ′ ),,( 212 ddp c  

( )
( ) ( )( )

� �
��
�

Φ∆′Φ∆′
Φ∆′

otherwisedpdp

dtobelongscchannelifdp

selectednotcchannelifUcq

cccc

cc

c

,),(,),(max

,),(

);0()(

21

11

2 η
,    (9) 

with )(2 cq  denotes the parameter q  of channel c estimated 

from two-pitch frames as shown in Table I. 
The conditional probability for the time frame is the larger 

of assuming either 1d  or 2d  to be the stronger source: 

)],,(),,,(max[)|( 12221222 ddpddpkxp ΦΦ=Φ α ,  (10) 

where ( ) 2212 2),,( Ω∈= ddx  and 5
2 107.1 −×=α . 

Finally, we fix the probability of zero pitch, 

00 )|( αkxp =Φ ,             (11) 

where 00 Ω∈x  and 33
0 103.2 −×=α . 

VII. PITCH TRACKING USING AN HMM 

We propose to use a hidden Markov model for 
approximating the generation process of harmonic structure 
in natural environments. The model is illustrated in Fig. 5. In 
each time frame, the hidden node indicates the pitch state 
space, and the observation node the observed signal. The 
temporal links between neighboring hidden nodes represent 
the probabilistic pitch dynamics. The link between a hidden 
node and an observation node describes observation 
probabilities, which have been formulated in the previous 
section (bottom-up pitch estimation). 

Pitch dynamics have two aspects. The first is the dynamics 
of a continuous pitch track. The statistics of the changes of 
the pitch periods in consecutive time frames can be extracted 
from the true pitch contours of 5 speech utterances extracted 
earlier and their histogram is shown in Fig. 6. This is once 
again indicative of a Laplacian distribution. Thus, we model 
it by the following Laplacian distribution 

)exp(
2

1
)(

λλ
m

p
−∆

−=∆ ,           (12) 

where ∆  represents pitch period changes, and m  and λ  
are distribution parameters. Using a maximum likelihood 
method, we have estimated that 4.2=λ  lag steps and 

4.0=m  lag steps. A positive m  indicates that, in natural 

speech, speech utterances have a tendency for pitch periods to 
increase; conversely, pitch frequencies tend to decrease. This 
is consistent with the declination phenomenon [27] that in 
natural speech pitch frequencies slowly drift down where no 
abrupt change in pitch occurs, which has been observed in 
many languages including English. The distribution is also 
shown in Fig. 6 and it fits the histogram very well. 

The second aspect concerns jump probabilities between the 
state spaces of zero pitch, one pitch, and two pitches. We 
assume that a single speech utterance is present in the 
mixtures approximately half of the time and two speech 
utterances are present in the remaining time. The jump 
probabilities are estimated from the pitch tracks of the same 5 
speech utterances analyzed above and the values are given in 
Table II. 

Finally, the state spaces of one and two pitch are 
discretized and the standard Viterbi algorithm [15] is 
employed for finding the optimal sequence of states. Note that 
the sequence can be a mixture of zero, one, or two pitch 
states. 

VIII. PARAMETER DETERMINATION 

The frequency separating the low- and high-frequency 
channels is chosen according to several criteria. First, the 
separation frequency should be greater than possible pitch 
frequencies of speech, and the bandwidth of any high-
frequency channels should be large enough to contain at least 
two harmonics of a certain harmonic structure so that 
amplitude modulation due to beating at the fundamental 
frequency is possible. Second, as long as such envelopes can 
be extracted, the normalized correlograms calculated from the 
envelopes give better indication of pitch periods than those 
calculated from the filtered signals directly. That is because 
envelope correlograms reveal pitch periods around the first 
peaks, whereas direct correlograms have many peaks in the 
range of possible pitch periods. Therefore, the separation 
frequency should be as low as possible so long as reliable 
envelopes can be extracted. By considering these criteria, we 
choose the separation frequency of 800 Hz. 

In our model, there are a total of eight free parameters: four 
for channel/peak selection and four for bottom-up estimation 
of observation probability (their values are given). The 
parameters 1θ , 2θ , 3θ , and 4θ  are introduced in 

channel/peak selection method and they are chosen by 
examining the statistics from sample utterances mixed with 
interferences. The true pitch tracks are known for these 
mixtures. In every channel, the closest correlogram peak 
relative to the true pitch period is identified. If this peak is off 
from the true pitch period by more than 7 lag steps, we label 
this channel “noisy” . Otherwise, the channel is labeled 
“clean” . Parameter 1θ  is selected so that more than half of the 

noisy channels in low-frequency channels are rejected. 
Parameters 2θ  and 3θ  are chosen so that majority of the 

TABLE  II 
TRANSITION PROBABILITIES BETWEEN STATE SPACES OF PITCH 

 0Ω→  1Ω→  2Ω→  

0Ω  0.9250 0.0750 0.0000 

1Ω  0.0079 0.9737 0.0184 

2Ω  0.0000 0.0323 0.9677 
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noisy channels are rejected while minimizing the chance that 
a clean channel is rejected. Finally, parameter 4θ  is chosen 

so that, for almost all selected channels in high-frequency 
channels, the multiple peaks are removed. 

Parameters β , 0α , 2α , and b  are employed for bottom-

up estimation of observation probability. Parameter β  is used 

to specify the criterion for identifying the channels that 
belong to the dominant pitch period. It is chosen so that, in 
clean speech samples, almost all selected channels belong to 
the true pitch periods. Parameters 0α  and 2α  are employed 

to tune the relative strengths of the hypotheses of zero, one or 
two pitch periods. The smoothing factor b  can be understood 
as tuning the relative influence of bottom-up and top-down 
processes. 0α , 2α , and b  are optimized with respect to the 

combined total detection error for the training mixtures. We 
find that b  can be chosen in a considerable range without 
influencing the outcome. 

We note that in the preliminary version of this model [41], 
a different set of parameters has been employed and good 
results were obtained. In fact, there is a considerable range of 
appropriate values for these parameters, and overall system 
performance is not very sensitive to the specific parameter 
values used. 

IX. EFFICIENT IMPLEMENTATION 

The computational expense of the proposed algorithm can 
be improved significantly by employing several efficient 
implementations. First, a logarithm can be taken on both 
sides of Equation 6-11 and in the Viterbi algorithm [15]. 
Instead of computing multiplications and roots, which are 
time-consuming, only summations and divisions need to be 
calculated. Moreover, the number of pitch states is quite large 
and checking all of them using the Viterbi algorithm requires 
an extensive use of computational resources. Several 
techniques have been proposed in the literature to alleviate 
the computational load while achieving almost identical 
results [15]. 1) Pruning has been used to reduce the number 
of pitch states to be searched for finding the current 
candidates of a pitch state sequence. Since pitch tracks are 
continuous, the differences of pitch periods in consecutive 
time frames in a sequence can be restricted to a reasonable 
range. Therefore, only pitch periods within the range need to 
be searched. 2) Beam search has been employed to reduce the 
total number of pitch state sequences considered in 
evaluation. In every time frame, only a limited number of the 

most probable pitch state sequences are maintained and 
considered in the next frame. 3) The highest computational 
load comes from searching the pitch states corresponding to 
two pitch periods. In order to reduce the search effort, we 
only check the pitch periods in the neighborhood of the local 
peaks of bottom-up observation probabilities. 

By using the above efficient implementation techniques, we 
find that the computational load of our algorithm is 
drastically reduced. Meanwhile, our experiments show that 
the results from the original formulation and that derived for 
efficient implementation have negligible differences.  

X. RESULTS AND COMPARISONS 

A corpus of 100 mixtures of speech and interference [5], 
commonly used for CASA research [2] [8] [38], has been 
used for system evaluation and model parameter estimation. 
The mixtures are obtained by mixing 10 voiced utterances 
with 10 interference signals representing a variety of acoustic 
sounds. As shown in Table III, the interferences are further 

TABLE  III 
CATEGORIZATION OF INTERFERENCE SIGNALS 

 Interference signals 
Category 1 White noise and noise bursts 
Category 2 1 kHz tone, “cocktail party”  noise, rock music, siren, and 

trill telephone 
Category 3 Female utterance 1, male utterance and female utterance 2 
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Fig. 7: (a) Time-frequency energy plot for a mixture of two simultaneous 
utterances of a male and a female speaker. The utterances are “Why are you 
all weary”  and “Don’ t ask me to carry an oily rag like that.”  The brightness in 
a time-frequency cell indicates the energy of the corresponding gammatone 
filter output in the corresponding time frame. For better display, energy is 
plotted as the square of the logarithm. (b) Result of tracking the mixture. The 
solid lines indicate the true pitch tracks. The ‘×’  and ‘ο’  tracks represent the 
pitch tracks estimated by our algorithm. 
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classified into three categories: 1) those with no pitch, 2) 
those with some pitch qualities, 3) other speech. Five speech 
utterances and their mixtures, which represent approximately 
half of the corpus, have been employed for model parameter 
estimation. The other half of the corpus is used for 
performance evaluation. 

To evaluate our algorithm (or any algorithm for that 
matter) requires a reference pitch contour corresponding to 
true pitch. However, such a reference is probably impossible 
to obtain [13], even with instrument support [17]. Therefore, 
our method of obtaining reference pitch contours starts from 
pitch tracks computed from clean speech and is followed by a 
manual correction as mentioned before. Reference pitch 
contours obtained this way are far more accurate than those 
without manual correction, or those obtained from noisy 
speech. 

To measure progress, it is important to provide a 
quantitative assessment of PDA performance. The guidelines 
for the performance evaluation of PDAs with single pitch 
track were established by Rabiner et al. [30]. However, there 

are no generally accepted guidelines for multiple pitch 
periods that are simultaneously present. Extending the 
classical guidelines, we measure pitch determination errors 
separately for the three interference categories documented in 
Table III because of their distinct pitch properties. We denote 

yxE →  as the error rate of time frames where x  pitch points 

are misclassified as y  pitch points. The pitch frequency 

deviation f∆  is calculated by 
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Fig. 8. (a) Time-frequency energy plot for a mixture of a male utterance and 
white noise. The utterance is “Why are you wary.”  The brightness in a time-
frequency cell indicates the energy of the corresponding gammatone filter 
output in the corresponding time frame. For better display, energy is plotted as 
the square of logarithm. (b) Result of tracking the mixture. The solid lines 
indicate the true pitch tracks. The ‘×’  tracks represent the pitch tracks 
estimated by our algorithm. 
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Fig. 9. Results of tracking the same signal as in Fig. 7 using (a) the TK PDA, 
(b) the GB PDA, and (c) the R-GB PDA. The solid lines indicate the true pitch 
tracks. The ‘×’  and ‘ο’  tracks represent the estimated pitch tracks. 
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   %100
0

0
×

−
=∆

f

fPDA
f

output
,        (13) 

where outputPDA  is the closest pitch frequency estimated by 

the PDA to be evaluated and 0f  is the reference pitch 

frequency. Note that outputPDA  may yield more than one pitch 

point for a particular time frame. The gross detection error 
rate GrossE  is defined as the percentage of time frames where 

%20>∆f  and the fine detection error FineE  is defined as the 

average frequency deviation from the reference pitch contour 
for those time frames without gross detection errors.  

For speech signals mixed with Category 1 interferences, a 
total gross error is indicated by 

GrossTotal EEEEE +++= →→→ 012010 .      (14) 

Since the main interest in many contexts is to detect the 
pitch contours of speech utterances, for Category 2 mixtures 
only 01→E  is measured and the total gross error TotalE  is 

indicated by the sum of 01→E  and GrossE . Category 3 

interferences are also speech utterances and therefore all 

possible decision errors should be considered. For time frames 
with a single reference pitch, gross and fine determination 
errors are defined as earlier. For time frames with two 
reference pitches, a gross error occurs if either one exceeds 
the 20% limit, and a fine error is the sum of the two for two 
reference pitch periods. For many applications, the accuracy 
with which the dominating pitch is determined is of primary 

interest. Therefore, the total gross error Dom
GrossE  and the fine 

error Dom
FineE  for dominating pitch periods are also measured.  

Our results show that the proposed algorithm reliably 
tracks pitch points in various situations, such as one speaker, 
speech mixed with other acoustic sources, and two speakers. 
For instance, Fig. 7a shows the time-frequency energy plot for 
a mixture of two simultaneous utterances (a male speaker and 
a female speaker with signal-to-signal energy ratio = 9 dB) 
and Fig. 7b shows the result of tracking the mixture. As 
another example, Fig. 8a shows the time-frequency energy 
plot for a mixture of a male utterance and white noise (signal-
to-noise ratio = –2 dB). Note here that the white noise is very 
strong. Fig. 8b shows the result of tracking the signal. In both 
cases, our algorithm robustly tracks either one or two pitches. 
Systemic performance of our algorithm for the three 
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Fig. 10. Result of tracking the same signal as in Fig. 8 using (a) the TK PDA, (b) the GB PDA, (c) the R-GB PDA, and (d) the PDA proposed by Rouat et al. [31]. 
The solid lines indicate the true pitch tracks. The ‘×’  and ‘ο’  tracks represent the estimated pitch tracks. In subplot (d), time frames with negative pitch period 
estimates indicate the decision of voiced with unknown period. 
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interference categories is given in Tables IV-VI respectively. 
As can be seen, our algorithm achieves total gross errors of 
7.17% and 3.50% for Category 1 and 2 mixtures respectively. 
For Category 3 interferences, a total gross error rate of 0.93% 
for the dominating pitch is obtained. 

To put the above performance in perspective, we compare 
with two recent multpitch detection algorithms proposed by 
Tolonen and Karjalainen [36] and Gu and van Bokhoven 
[11]. In the Tolonen and Karjalainen model, the signal is first 
passed through a pre-whitening filter and then divided into 
two channels, below and above 1000 Hz. Generalized 
autocorrelations are computed in the low-frequency channel 
directly and those of the envelope are computed in the high-
frequency channel. Then, enhanced summary autocorrelation 
functions are generated and the decisions on the number of 
pitch points as well as their pitch periods are based on the 
most prominent and the second most prominent peaks of such 
functions. We choose this study for comparison because it is a 
recent time-frequency domain algorithm based on a similar 
correlogram representation. We refer to this PDA as the TK 
PDA. 

Gu and van Bokhoven’s multpitch PDA is chosen for 
comparison because it is an HMM-based algorithm, and an 
HMM is also used in our system. The algorithm can be 
separated into two parts. The first part is a pseudo perceptual 
estimator [10] that provides coarse pitch candidates by 
analyzing the envelopes and carrier frequencies from the 
responses of a multi-channel front-end. Such pitch candidates 
are then fed into an HMM-based pitch contour estimator [10] 
for forming continuous pitch tracks. Two HMMs are trained 
for female and male speech utterances separately and are 
capable of tracking a single pitch track without 
voiced/unvoiced decisions at a time. In order to have voicing 
decisions, we add one more state representing unvoiced time 
frames to their original 3-state HMM. Knowing the number 
and types of the speech utterances presented in a mixture in 
advance (e.g. a mixture of a male and a female utterance) we 
can find the two pitch tracks by applying the male and female 
HMM separately. For a mixture of two male utterances, after 

the first male pitch track is obtained, the pitch track is 
subtracted from the pitch candidates and the second track is 
identified by applying the male HMM again. We refer to this 
PDA as the GB PDA.  

Our experiments show that sometimes the GB PDA 
provides poor results, especially for speech mixed with a 
significant amount of white noise. Part of the problem is 
caused by its bottom-up pitch estimator, which is not as good 
as ours. To directly compare our HMM-based pitch track 
estimator with their HMM method, we substitute our bottom-
up pitch estimator for theirs but still use their HMM model 
for forming continuous pitch tracks. The revised algorithm is 
referred as the R-GB PDA.  

Fig. 9 shows the multipitch tracking results using the TK, 
the GB, and the R-GB PDAs, respectively, from the same 
mixture of Fig. 7. As can been seen, our algorithm performs 
significantly better than all those algorithms. Fig. 10a-c give 
the results of extracting pitch tracks from the same mixture of 
Fig. 8 using the TK, the GB, and the R-GB PDAs, 
respectively. As can be seen, our algorithm has much less 
detection error. 

Quantitative comparisons are shown in Tables IV-VI. For 
Category 1 interferences, our algorithm has a total gross error 
of 7.17% while others have errors varying from 14.50% to 
50.10%. The total gross error for Category 2 mixtures is 
3.50% for ours, and for others it ranges from 10.04% to 
24.21%. Our algorithm yields the total gross error rate of 
0.93% for the dominating pitch. The corresponding error 
rates for the others range from 3.63% to 7.70%.  

Note in Table VI that the error rate 12→E  of the R-GB PDA 

is considerably lower than ours. This, however, does not 
imply the R-GB PDA outperforms our algorithm. As shown 
in Fig. 9c, the R-GB PDA tends to mistake harmonics of the 
first pitch period as the second pitch period. As a result, the 
overall performance is much worse. 

Finally, we compare our algorithm with a single-pitch 
determination algorithm for noisy speech proposed by Rouat 

TABLE  IV 
ERROR RATES (IN PERCENTAGE) FOR CATEGORY 1 INTERFERENCE 

 
10→E   20→E  01→E  21→E  GrossE  TotalE  FineE  

Proposed PDA 0.36 Nil 6.81 Nil Nil 7.17 0.43 
TK PDA 1.96 0.05 23.3 9.10 2.38 27.66 1.76 
GB PDA 0.26 Nil 49.5 Nil 0.36 50.10 1.06 
R-GB PDA 1.56 Nil 10.81 Nil 2.13 14.50 0.78 

TABLE  V 
ERROR RATES (IN PERCENTAGE) FOR CATEGORY 2 INTERFERENCE 

 
01→E  GrossE  TotalE  FineE  

Proposed PDA 3.18 0.32 3.50 0.44 
TK PDA 7.70 4.53 12.23 1.41 
GB PDA 22.10 2.10 24.21 2.20 
R-GB PDA 5.94 4.48 10.04 0.70 

TABLE  VI 
 ERROR RATES (IN PERCENTAGE) FOR CATEGORY 3 INTERFERENCE 

 
10→E  20→E  01→E  21→E  02→E  12→E  

GrossE  FineE  Dom
GrossE  Dom

FineE  

Proposed PDA 0.68 Nil 0.88 0.16 Nil 27.08 0.21 0.33 0.93 0.21 
TK PDA 0.47 0.10 2.64 4.55 1.19 26.84 2.33 0.99 4.28 0.69 
GB PDA 0.41 Nil 2.65 4.20 4.20 34.54 3.89 2.04 7.70 1.34 
R-GB PDA 0.57 Nil 2.28 2.78 0.57 11.80 9.09 2.11 3.63 0.53 
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et al. [31]1. Fig. 10d shows the result of tracking the same 
mixture as in Fig. 8. As can be seen, our algorithm yields less 
error. We do not compare with this PDA quantitatively 
because it is designed as a single-pitch tracker and cannot be 
applied to Category 2 and 3 interferences. 

In summary, these results show that our algorithm 
outperforms the other algorithms significantly in almost all 
the error measures. 

XI. DISCUSSION 

A common problem in PDAs is harmonic and subharmonic 
errors, in which the harmonics or subharmonics of a pitch are 
detected instead of the real pitch itself. Several techniques 
have been proposed to alleviate this problem. For example, a 
number of algorithms check sub-multiples of the time lag for 
the highest peak of the summary autocorrelations to ensure 
the detection of the real pitch period (for example, see [18]). 
Shimamura and Kobayashi [33] proposed a weighted 
autocorrelation method discounting the periodicity score of 
the multiples of a potential pitch period. The system by Rouat 
et al. [31] checks the sub-multiples of the two largest peaks in 
normalized summary autocorrelations and further utilizes the 
continuity constraint of pitch tracks to reduce these errors. 
Liu and Lin [23] compensate two pitch measures to reduce 
the scores of harmonic and subharmonic pitch periods. 
Medan et al. [24] disqualify such candidates by checking the 
normalized autocorrelation using a larger time window and 
pick the pitch candidate that exceeds a certain threshold and 
has the smallest pitch period.  

In our time-frequency domain PDA, several measures 
contribute to alleviate these errors. First, the probabilities of 
subharmonic pitch periods are significantly reduced by 
selecting only the first correlogram peaks calculated from 
envelopes in high-frequency channels. Second, noisy 
channels tend to have random peak positions, which can 
reinforce harmonics or subharmonics of the real pitch. By 
eliminating these channels using channel selection, harmonic 
and subharmonic errors are greatly reduced. Third, the HMM 
for forming continuous pitch tracks contributes to decrease 
these errors.  

The HMM in our model plays a similar role (utilizing pitch 
track continuity) as post-processing in many PDAs. Some 
algorithms, such as [31], employ a number of post-processing 
rules. These ad hoc rules introduce new free parameters. 
Although there are parameters in our HMM, they are learned 
from training samples. Also, in many algorithms (for 
example, see [37]), pitch tracking only considers several 
candidates proposed by the bottom-up algorithm and 
composed of peaks in bottom-up pitch scores. Our tracking 
mechanism considers all possible pitch hypotheses and 
therefore performs in a wider range of conditions. 

There are several major differences in forming continuous 

 
1 Results provided by J. Rouat. 

pitch tracks between our HMM model and that of Gu and van 
Bokhoven [11]. Their approach is essentially for single pitch 
tracking while ours is for multipitch tracking. Theirs uses two 
different HMMs for modeling male and female speech while 
ours uses the same model. Their model needs to know the 
number and types of speech utterances in advance, and has 
difficulty tracking a mixture of two utterances of the same 
type (e.g. two male utterances). Our model does not have 
these difficulties. 

Many models estimate multiple pitch periods by directly 
extending single-pitch detection methods, and they are called 
the one-dimensional paradigm. A common one-dimensional 
representation is a summary autocorrelation. Multiple pitch 
periods can be extracted by identifying the largest peak, the 
second largest peak, and so on. However, this approach is not 
very effective in a noisy environment, because harmonic 
structures often interact with each other. Cheveigné and 
Kawahara [7] have pointed out that a multi-step “estimate-
cancel-estimate”  approach is more effective. Their pitch 
perception model cancels the first harmonic structure using 
an initial estimate of the pitch, and the second pitch is 
estimated from the comb-filtered residue. Also, Meddis and 
Hewitt’s [25] model of concurrent vowel separation uses a 
similar paradigm. A multi-dimensional paradigm is used in 
our model, where the scores of single and combined pitch 
periods are explicitly given. Interactions among the harmonic 
structures are formulated explicitly, and our results show that 
this multi-dimensional paradigm is effective for dealing with 
noise intrusions and mutual interference among multiple 
harmonic structures. 

As stated previously, approximately half of the mixture 
database is employed for estimating (learning) relative time 
lag distributions in a channel (see Fig. 4) and pitch dynamics 
(see Fig. 6), while the other half is utilized for evaluation. It 
is worth emphasizing that such statistical estimations reflect 
general speech characteristics, not specific to either speaker 
or utterance.  Hence, estimated distributions and parameters 
are expected to generalize broadly, and this is confirmed by 
our results.  We have also tested our system on different kinds 
of utterance and different speakers, including digit strings 
from TIDigit [21], after the system is trained, and we observe 
equally good performance.    

The proposed model can be extended to track more than 
two pitch periods. To do so, the union space described in 
Section VI would be augmented to include more than three 
pitch spaces. The conditional probability for the hypotheses of 
more than two pitch periods may be formulated using the 
same principles as for formulating up to two pitch periods. 

In summary, we have shown that our algorithm performs 
reliably for tracking single and double pitch tracks in a noisy 
acoustic environment. A combination of several novel ideas 
enables the algorithm to perform well. First, an improved 
channel and peak selection method effectively removes 
corrupted channels and invalid peaks. Second, a statistical 
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integration method utilizes the periodicity information across 
different channels. Finally, an HMM realizes the pitch 
continuity constraint. 
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