
Specification and Verification with References

Bruce W. Weide
Computer and Information Science

The Ohio State University
Columbus, OH 43210

+1-614-292-1517

weide.1@osu.edu

OSU-CISRC-08/01-TR10

Submitted to OOPSLA 2001 Workshop on Specification and Verification of Component-Based Systems

Copyright © 2001 by the author. All rights reserved.

ii

This page intentionally blank.

1

Specification and Verification with References
Bruce W. Weide

Computer and Information Science
The Ohio State University

Columbus, OH 43210
+1-614-292-1517

weide.1@osu.edu

ABSTRACT
Modern object-oriented programming languages demand that
component designers, specifiers, and clients deal with refer-
ences. This is true despite the fact that some programming
language and formal methods researchers have been announc-
ing for decades, in effect, that pointers/references are harmful
to the reasoning process. Their wise counsel to bury point-
ers/references as deeply as possible, or to eliminate them en-
tirely, hasn’t been heeded.

What can be done to reconcile the practical need to program in
these languages with the need to reason soundly about the
behavior of component-based software systems? By directly
comparing the specifications for value and reference types, it
is possible to assess the effects of having pointers/references.
The areas of concern involve the added difficulty for clients of
components in (1) understanding component specifications,
and (2) reasoning about client program behavior. The conclu-
sion is that making pointers/references visible to component
clients is clearly very bad news—but perhaps not the kiss of
death—for component specifiers and verifiers.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Languages, Method-
ologies.

D.2.4 [Software/Program Verification]: Correctness proofs,
Formal methods, Programming by contract, Reliability.

General Terms
Design, Reliability, Languages, Verification.

Keywords
Java, Pointers, References, Specification, Verification.

1. INTRODUCTION
A well-known “folk theorem” in computing circles is that
nearly every problem can be solved with one more level of
indirection. Like most folklore, this claim is partially true—a
fact not lost on programming language designers, who have
consistently delivered not only computational models, but a
variety of language constructs, to help us more easily write
programs that use indirection.

The belief is a dangerous one, however, which has been noted
many times over the past few decades. Writing programs more
easily is one thing. Reasoning more easily about their behav-
ior is quite another. As early as 1973, Tony Hoare remarked of
pointers that “their introduction into high-level languages has
been a step backward from which we may never recover” [10].
In 1976, Dick Kieburtz explained why we should be “pro-

gramming without pointer variables” [15]. And in 1978, Steve
Cook’s seminal paper on the soundness and relative com-
pleteness of Hoare logic [3] identified aliasing (of arguments
to calls, i.e., even in a language without pointer variables) as
the key technical impediment to modular verification.

Why do we need another paper revisiting the issue? The con-
sequences of programming with pointers have been presented
so far primarily in the context of programming language de-
sign. We present another argument in the context of specifica-
tion and verification, in support of the following position:

Making pointers/references visible to component clients
is clearly very bad news—but perhaps not the kiss of
death—for component specifiers and verifiers.

Throughout the paper (and with apologies to C++ gurus, as
noted in Section 5.1) the terms “pointer” and “reference” are
used interchangeably. The point, so to speak, is that from the
standpoint of specification and verification difficulties they
amount to the same thing. Code examples use Java notation.
The reader is also assumed to be familiar with the basis for
standard model-based specifications but not with any particu-
lar specification language; RESOLVE [25] is used for specifi-
cation examples, but the notation is explained right here.

Section 2 discusses the difference between value and reference
variables, which might seem so well known as to go without
saying. (The reason for saying it anyway is detailed in Section
5.2.) Section 3 describes the serious impact of this distinction
on the complexity of behavioral specifications, and Section 4
describes the impact on modular verification. Section 5 dis-
cusses related work. Section 6 presents our conclusions.

2. VALUES VS. REFERENCES
Popular object-oriented languages, including C++, Eiffel, and
Java, share a bizarre feature. They create a dichotomy between
two kinds of types and, therefore, two kinds of variables:

• Value variables, which stand for values of the built-in
types (value types) such as boolean, char, and int.

• Reference variables, which stand for references to objects
whose values are of types (reference types) introduced
through interfaces and classes.

Why is this dichotomy “bizarre”? It clearly is not intuitive,
which is obvious if you have ever tried to explain and justify
it to students. Parsimony certainly suggests having only
value variables or only reference variables, not both.

Knowing Hoare’s hints on programming language design and
recognizing the elegance of some purely functional program-
ming languages, the C++, Eiffel, and Java designers must have
preferred to have only value variables, all other things being
equal. But all other things are not equal. For one thing, there

2

is the folk theorem about indirection. In fact, the use of indi-
rection is a little like the use of tobacco: an addictive bad
habit. Modern programming languages have contributed to
the problem by making indirection harder and harder to avoid
and programs using indirection easier and easier to write. Ref-
erence variables are everywhere in Java yet carry no syntactic
baggage at all! So surely it would be considered sacrilege to
remove easy indirection from any modern imperative lan-
guage—even though the effect of indirection, when truly ap-
propriate as it is occasionally, could be provided by a small
set of library components offering comparable power and per-
formance profiles to language-provided pointers [12, 14].

Of course, tradition is not the reason these popular languages
distinguish between values and references. The language de-
signers simply failed to discover another way to make pro-
grams efficient in terms of execution time and storage usage
[11].

Value variables can be represented with small chunks of stor-
age that can easily be copied, leaving x and y completely inde-
pendent in code following the assignment statement here:

int x;
int y;
...
y = x;

If user-defined types were value types that behaved like ints,
then this kind of code could be terribly inefficient. For exam-
ple, suppose x and y were value variables in the following Java
code—remember they are not—and so would remain inde-
pendent in code following the assignment statement:

SetOfInt x = new SetOfInt ();
SetOfInt y = new SetOfInt ();
...
y = x;

The assignment would then entail deep copying of a SetOfInt
object representation, which presumably would take time lin-
ear in the size of the set x. Overriding the assignment operator
to make a deep copy is recommended practice for C++ pro-
grammers who use the Standard Template Library [22], pre-
cisely because this leaves x and y independent of each other
following the assignment. The Java assignment operator, on
the other hand, cannot be overridden. An optional clone
method is supposed to make a deep copy.

Having reference variables directly addresses the performance
problems involved in copying large data structures because:

• the representations of all variables remain small, i.e., the
size of one pointer each, although every reference variable
still refers to an object whose representation is a poten-
tially large data structure; and

• the assignment statement is fast for both value and refer-
ence variables.

Most of the rest of this paper discusses the price paid for fol-
lowing this road to efficiency: complications in specification
and verification, and therefore in understanding and reasoning
about program behavior. The appendix (adapted from the ap-
pendix of [14]) briefly explains the swapping paradigm, an
alternative approach that permits the same efficiency to be
achieved without introducing references into the language
model, specifications, or the programmer’s reasoning. The
purpose of the appendix is to suggest that there are other solu-
tions to the apparent reasoning vs. efficiency trade-off, i.e.,

that the choices are not limited to adopting either a pure func-
tional programming paradigm (reasoning over efficiency) or
the standard object-oriented programming paradigm (effi-
ciency over reasoning).

3. IMPACT ON SPECIFICATION
Simply introducing reference types into a language model
complicates component specifications compared with what
they would be with just value types. This means it is harder
for clients to understand the specified behavior of compo-
nents—if such behavior were carefully specified, which in
practice (e.g., Java component libraries) it is not. This section
illustrates the additional complication by describing a refer-
ence type in a model-based specification language, RESOLVE,
that is designed for specifying value types [25]. That is, there
should be no syntactic sugar through which the specification
language might mask the fact that there is a reference type.
This approach allows an apples-to-apples comparison of the
underlying “intellectual load” introduced by value vs. refer-
ence types, both on component specifiers and on clients of
those specifications.

Wouldn’t it be fair to (also?) select a specification language
that is designed to handle reference types, and use it to try to
specify value types? Not really. Variables in traditional
mathematics stand for values; they do not stand for references
to objects that have values. In other words, a hypothetical
specification language that is designed to hide references be-
hind syntactic sugar must still, in the final analysis, “mean”
(i.e., have its semantics) in the domain of traditional mathe-
matics. The verification conditions arising in correctness
proofs must be stated in traditional mathematics in order that
proofs can be carried out. “Desugaring” from references to
values is, therefore, ultimately required. It is only in the
desugared version of this hypothetical specification language
that we could really compare the relative difficulties values
and references pose for specification writers and readers.

3.1 Defining Mathematical Models for Types
Let’s start with a simple case: specifying the mathematical
model for a simple built-in value type. For example, for type
int in Java the obvious mathematical model is a mathematical
integer constrained to be within some bounds. In RESOLVE
notation, this is expressed as follows:

type int is modeled by integer
 exemplar i
 constraint
 -2147483648 <= i <= 2147483647

The exemplar clause introduces an arbitrary name for a proto-
typical variable of the new type, and the constraint clause is
an assertion that describes such a variable’s value space. So,
the meaning of this specification is that in reasoning about
Java code such as that shown earlier using int variables, you
should think of the values of x and y as being mathematical
integers like 1372 and –49 (i.e., not as strings of 32 bits).

3.1.1 Value Type Specification
A similar scenario arises for a type such as SetOfInt whose
mathematical model is more complex and whose representa-
tion is potentially large.

For example, if SetOfInt were a value type in the earlier Java
code—remember it is not—then you would want to think of
the values of x and y as being sets of numbers like {1, 34, 16,

3

13} and {2, –9, 45, 67, 15, 16, 942, 0}. The mathematical
model specification would look like this:

type SetOfInt is modeled by
 finite set of integer
 exemplar s
 constraint
 for all k: integer where (k is in s)
 (-2147483648 <= k <= 2147483647)
 initialization ensures
 s = {}

The initialization clause says that when a new SetOfInt object
is constructed, its value is the empty set.

3.1.2 Reference Type Specification
Unfortunately, life is not so simple in Java: SetOfInt is a refer-
ence type. In order to reason soundly about what your pro-
grams do, you must think of the values of x and y as being
references to sets of numbers like {1, 34, 16, 13} and {2, –9,
45, 67, 15, 16, 942, 0}. That is, the fact that this is a reference
type must be made explicit in the type’s mathematical model
specification. How can this be done?

Without syntactic sugar to hide references, the obvious ap-
proach is to model the mapping of references to sets of inte-
gers as a mathematical function whose scope is global to all
SetOfInt variables. In RESOLVE, you can say this by setting
up abstract state variables that may be accessed and updated
in (the specification of) any method associated with any vari-
able of the type being specified. An appropriate mathematical
model can be expressed as follows; there are other ways to do
it but this is the simplest one we know:

state variables
 last: integer
 objval: function from integer to
 finite set of integer
 constraint
 for all r: integer
 (for all k: integer
 where (k is in objval(r))
 (-2147483648 <= k <= 2147483647))
 initialization ensures
 for all r: integer (objval(r) = {})

type SetOfInt is modeled by integer
 exemplar s
 initialization ensures
 last = #last + 1 and
 objval = #objval and
 s = last

The state variable last is an abstraction of the address held in a
SetOfInt variable. Its purpose in the specification is to make
sure that a newly constructed SetOfInt object is independent of
all others. The starting value of last does not matter because,
each time a new SetOfInt object is constructed, the value of
last is incremented (“#” before a variable name denotes the
incoming value). Since last is an abstract mathematical vari-
able, there is no need to worry about eventual overflow.

The state variable objval is an abstraction of the mapping be-
tween references and the values of the objects they refer to.
Again, objval is an abstract mathematical variable, so there is
no problem that it (or, for that matter, last) has a value from a
mathematical domain that is manifestly too large to represent.

In this specification, we decided to initialize objval so every
possible reference is mapped to an empty set. The illusion is

that there is an infinite pool of objects whose values are empty
sets of integers, and that every time a new SetOfInt object is
constructed, one of these pre-formed objects is selected from
that pool. There are other ways to model the situation, of
course, but none is any simpler or cleaner when written out.

It is already evident that the mathematical machinery involved
in modeling the reference type is significantly more complex
than that needed to model the corresponding value type. But
this is only part of the problem; there remains the issue of
specifying the behavior of methods.

3.2 Defining Method Behavior
Let’s consider a method to add an int to a SetOfInt:

public void addInt (int i);

3.2.1 Value Type Specification
If SetOfInt were a value type in Java—remember it is
not—then the specification for addInt might look like this:

preserves i
alters self
requires
 i is not in self
ensures
 self = #self union {i}

Before the precondition (requires clause) and the postcondi-
tion (ensures clause), the two lists of variables classify each
variable in scope as either unchanged (preserves list) or poten-
tially modified (alters list). For example, because i is in the
preserves list, this additional clause in the postcondition
would be redundant:

 ... and i = #i

3.2.2 Reference Type Specification
Here is what this specification becomes because SetOfInt i s
really a reference type:

preserves self, i, last
alters objval
requires
 i is not in objval(self)
ensures
 objval(self) = #objval(self) union {i} and
 for all r: integer where (r /= self)
 (objval(r) = #objval(r))

Note that self is not changed, which might seem surprising at
first. The reason is that self is a reference. The reference is not
changed, but the SetOfInt object it refers to has its value (i.e.,
objval(self)) changed. The last clause of the postcondition
says that no other SetOfInt object has its value changed. And i
is not changed because all parameters are passed by value in
Java and therefore cannot be changed (but each parameter is
still in the preserves list of the specification for definiteness).

All the other public methods for SetOfInt have specifications
with the same flavor as addInt. So, all of this is “boilerplate”:

preserves self, last
alters objval
ensures
 for all r: integer where (r /= self)
 (objval(r) = #objval(r))

By making these oft-repeated specification clauses implicit
with a wave of the hand, it might be possible to create a speci-

4

fication language with enough syntactic sugar to simplify the
look of a specification for a reference type. This would not
materially change the intellectual task of understanding the
meaning of a specification, however. And as noted in Section
4, the underlying additional complication of references would
quickly reveal itself once you started relying on the specifica-
tion to try to reason about client code that uses SetOfInt.

3.3 Assignment
It is instructive to specify the behavior of the Java assignment
operator, prototypically of the following form:

lhs = rhs;

3.3.1 Value Type Specification
If SetOfInt were a value type in Java—remember it is not—then
the specification would be:

preserves rhs
alters lhs
ensures
 rhs = lhs

Note that the “=” in the specification is not itself an assign-
ment operator, but denotes the assertion of ordinary mathe-
matical equality between the mathematical models of lhs and
rhs. We have written “rhs = lhs” rather than the equivalent
“lhs = rhs” to emphasize this. The confusing use of “=” as an
assignment operator is an unfortunate design choice that crept
from Fortran back into C after having been nearly eradicated
by “:=” in Algol-like languages.

3.3.2 Reference Type Specification
Interestingly, the assignment specification looks virtually
identical for SetOfInt as a reference type, the only difference
being that last and objval are also listed as being preserved:

preserves rhs, last, objval
alters lhs
ensures
 rhs = lhs

Maybe there is some comfort in knowing that the assignment
operator does “the same thing” for value and reference vari-
ables. Of course, the only reason it does “the same thing” is
that the mathematical model for a reference type makes the
value of a reference variable explicit and distinct from the
value of the object it refers to. The assignment operator sim-
ply copies the value of the (value or reference) variable on the
right-hand side to that on the left-hand side.

4. IMPACT ON MODULAR VERIFICATION
It is widely acknowledged that practical verification must be
modular, a.k.a. compositional. Factoring of the verification
task cuts along the lines of programming-by-contract [21].
That is, a component implementation is verified against its
specification once and for all, out of the context of the client
programs that might use it. The legitimacy of client use of a
component implementation is gauged during verification of
the client, based on knowledge of only the component specifi-
cation, i.e., without “peeking inside” the separately-verified
component implementation and without reverifying any part
of it on a per-use basis. The reason that practical verification
must be modular in this sense is that otherwise it is intractable
to verify large systems [31].

The verification problem for software with references stems
from the possibility of aliasing: having two or more references
to the same object. Aliasing can arise either from reference
assignment (the case considered here) or from parameter-
passing anomalies (the case Cook considered in his study of
Hoare logic [3]). The challenge here is to discover how the
specifications of SetOfInt in Section 3 might be used in modu-
lar verification of a client of SetOfInt, if the client program
could execute a reference assignment.

Let’s consider a relatively simple situation where the client
program is a main program having two “helper” operations P
and Q with specifications not shown:

import Section3.SetOfInt;
class Client {
 private static void P (SetOfInt si) {
 ...
 };
 private static int Q (int i) {
 ...
 };
 public static void main (...) {
 int j, k;
 SetOfInt s1 = new SetOfInt();
 SetOfInt s2 = new SetOfInt();
 ...
 P(s1);
 ...
 k = Q(j);
 ... // point A
 P(s2); // point B
 ...
 }
}

Suppose this program uses no other classes or constructs that
might cause modular verification problems, so the focus is
entirely on the impact of using SetOfInt. In other words, sup-
pose main , P, and Q could be verified independently except for
any effects introduced by using SetOfInt.

4.1 Value Type Verification
If SetOfInt were a value type in Java—remember it is not—then
variables of this type could be passed from main to P without
fear that modularity might be compromised. The specification
of SetOfInt as a value type makes this clear. There are no state
variables in that specification and, consequently, no shared
state would be introduced among main , P, and Q as a result of
their common visibility over the SetOfInt class.

For example, suppose the intended behavior of P were this:

alters si
ensures
 si = #si union {13}

You would be able to reason about the correctness of the body
of P independently of the bodies of main and Q because there
would be nothing P’s body could do to the values of any vari-
ables in the program other than the argument passed for the
formal si in a given call. The same would be true of the bodies
of main and Q. Reasoning would remain modular even with
this user-defined type in the picture, if it were a value type.

4.2 Reference Type Verification
In truth, SetOfInt is a reference type. But suppose, in a fit of
wishful thinking, you decided that it didn’t matter that much
and made the simplification of thinking of SetOfInt as a value

5

type. Given the specification above, you might expect P to
have the following body:

{
 if (! si.contains (13)) {
 si.addInt (13);
 }
}

The problem with your thinking would be that P has visibility
over the reference type SetOfInt, including the abstract state
variables last and objval. Through them it might do other
things. For example, P might copy and save the reference s1
that main passes in the first call, and then quietly change ob-
jval(s1) through that alias during the next call. If you errone-
ously thought of SetOfInt as a value type, then it would seem
that the value of s1 changed spontaneously between the points
labeled “A” and “B” in main even though the variable s1 was
not even mentioned in the statement executed between them.
In reality, of course, what was changing was objval(s1); but by
hypothesis you were oblivious to the abstract state variable
objval and were thinking of si as a value variable.

So, the following might be the body of P. It also seems to sat-
isfy the specification above in terms of its effect on si , if you
treat si as a value variable and thereby ignore objval. Here,
Alias is a simple class with two static methods, saveTheAlias
and theAlias, which copy an Object reference and return the
copy, respectively. The point is that nowhere outside the body
of P is there even a hint that an alias is being kept inside it.

{
 if (Alias.theAlias () != null) {
 ((SetOfInt) Alias.theAlias ()).clear ();
 }
 Alias.saveTheAlias (si);
 if (! si.contains (13)) {
 si.addInt (13);
 }
}

In reasoning about the body of main , how could you predict
the strange behavior resulting from this code without examin-
ing the body of P—and thereby giving up modular reasoning?

The key to salvaging modularity is to realize that the specifi-
cation of SetOfInt as a reference type involves two abstract
state variables, last and objval, that are visible throughout
main , P, and Q. From the reasoning standpoint, there are vari-
ables in this program that are global to main , P, and Q, al-
though the syntax of Java does a great job of hiding them.

Now main still can be verified independently of P and Q de-
spite sharing last and objval with them. The specifications of
P and Q simply must describe their effects on the abstract state
variables last and objval as well as on their explicit parame-
ters. P’s specification should be changed to this:

preserves si, last
alters objval
ensures
 objval(si) = objval(#si) union {13} and
 for all r: integer where (r /= si)
 (objval(r) = #objval(r))

Knowing only that P preserves last does not allow the verifier
of main to be sure that P cannot create an alias by copying si
and then changing the object value later. But the “nothing
else changes” clause in the postcondition prevents a correct

body for P from doing anything funny with an alias (like the
second body above) even if it saves one.

Another possibility is that maybe the above specification isn’t
really what is needed! Perhaps the weird implementation of P
is correct according to the programmer’s intent, and the prob-
lem is specifying what P is supposed to do. Such a situation
also can be handled in our specification framework.

This example shows why it is critical for sound reasoning that
a programmer not imagine and/or hope that reference variables
are sort of like value variables. They aren’t.

Can Q be verified independently of main and P despite sharing
last and objval with them? Here, main and P can manipulate
last and objval by executing any series of SetOfInt method
calls. It turns out that Q cannot see the effects of those ma-
nipulations even if it declares and uses SetOfInt variables of
its own—and vice versa. But the basis for this claim is not
clearly evident from the specification of SetOfInt. It is a con-
sequence of a special “non-interference” property that arises
from the way the SetOfInt specification uses the abstract state
variables: Neither of two methods declaring their own SetOfInt
variables but otherwise not communicating with each other
can detect changes that are made by the other to the abstract
state variables. So, curiously, Q can be verified independently
of main and P in this case even if its specification does not
include a “nothing else changes” clause.

5. RELATED WORK
Following the early papers cited in Section 1, there have been
some interesting recent episodes in programming language
design that suggest a fundamental struggle between acknowl-
edging the folklore about the importance and power of indirec-
tion, and the reasoning problems arising from its use. We
briefly review two of these, the cases of C++ and Java, in Sec-
tions 5.1 and 5.2, respectively. Other researchers have investi-
gated some of the specification and verification difficulties
arising from pointers. We discuss this work in Section 5.3.

5.1 C++
C++ makes a distinction between pointers and references, as
explained by Bjarne Stroustrup, the creator of C++ [27]:

A reference is an alternative name for an object. The main
use of references is for specifying arguments and return
values for functions in general and for overloaded opera-
tors... [T]he value of a reference cannot be changed after
initialization; it always refers to the object it was initial-
ized to denote. To get a pointer to the object denoted by a
reference rr , we can write &rr . The obvious implementa-
tion of a reference is as a (constant) pointer that is derefer-
enced each time it is used. It doesn’t do much harm think-
ing about references that way, as long as one remembers
that a reference isn’t an object that can be manipulated the
way a pointer is...

That is, references were introduced into C++ primarily to sim-
plify parameter passing and overload resolution. These pro-
gramming language concerns had nothing to do with trying to
address the reasoning problems that arise from using pointers.
Indeed, C++ still has pointers, too.

The decision to complicate C++ by not only introducing refer-
ences, but making them different from pointers in a rather sub-
tle way, might seem to be another “step backward”. But other
language features combine with references to give the C++
programmer the flexibility to change the default programming

6

model from reference-oriented to value-oriented. That is, it
turns out it is possible in C++ to keep pointers and references
from bubbling up through component (class) interfaces where
they must be faced by clients reading specifications and veri-
fying client code. One of these features is the ability to over-
ride the assignment operator and copy constructor so they
make deep copies, not merely copies of references.

The bad news is that there is a performance penalty for making
deep copies, as discussed earlier. The good news is that the
flexibility of C++ does not stop there. It is also possible to
make both the assignment operator and copy constructor pri-
vate, so they are simply not available to clients of a class.

We have taken advantage of the latter feature (and several oth-
ers) to create a disciplined style of programming in C++, the
RESOLVE/C++ discipline [14, 32], in which adherence to some
rules of the discipline is compiler-checked by C++ itself. The
bottom line is that you can program in C++ using what are
technically reference variables yet maintain the illusion that
you have only value variables. To achieve this, we introduced
the swap operator [9] to replace the private assignment opera-
tor and copy constructor. Then we designed a large library of
class templates [23] whose formal specifications allow clients
to reason modularly about client code [14, 32]. The RE-
SOLVE/C++ discipline has been shown to be eminently usable
by introductory CS students [19, 26] and has been shown to
result in dramatically good code quality when used to build a
commercial software system [14]. See the appendix for a brief
discussion of the key idea behind the discipline, i.e., the
swapping paradigm.

5.2 Java
By the time Java was born, Sun Microsystems apparently
sensed that people were worried about the “safety” of their
programming languages. Thus, the conservatism of Java’s
design was heavily stressed. In the first paragraph of The Java
Language Specification, James Gosling, Bill Joy, and Guy
Steele wrote [7]:

Java is intended to be a production language, not a re-
search language, and so, as C. A. R. Hoare suggested in his
classic paper on language design, the design of Java has
avoided including new and untested features.

Some of the early literature about Java also argued that it did
not have certain old and well tested but known-to-be-
dangerous features—like pointers. For example, consider this
passage written by Gosling and Henry McGilton in their 1996
white paper on The Java Language Environment [8]:

Most studies agree that pointers are one of the primary
features that enable programmers to put bugs into their
code. Given that structures are gone, and arrays and
strings are objects, the need for pointers to these con-
structs goes away. Thus the Java language has no point-
ers.

Later, it became clear that this claim was a bit of an overstate-
ment, or at least that it could be considered correct only in the
technical sense that Java does not have pointer syntax. Of
course, it has pointers almost everywhere, but it calls them
references. The potential for confusion was addressed by Sun
Microsystems itself in its on-line Java FAQ [28]

[Question:] How can I program linked lists if there are no
pointers?

[Answer:] Of all the misconceptions about the Java pro-
gramming language, this is the most egregious. Far from
not having pointers, object-oriented programming is
conducted in the Java programming language exclusively
with pointers. In other words, objects are only ever ac-
cessed through pointers, never directly. The pointers are
termed “references” and they are automatically derefer-
enced for you.

“An object is a class instance or an array. The reference
values (often just references) are pointers to these ob-
jects.” Java Language Specification, section 4.3.1. [em-
phasis is in the original text]

Any book that claims Java does not have pointers is in-
consistent with the Java reference specification.

Interestingly, then, some of Hoare’s general advice about pro-
gramming language design was heeded by the Java designers.
But his specific warning about pointers was ignored, early
claims to the contrary notwithstanding.

5.3 Specification and Verification
In the 1970s, several researchers addressed pointer specifica-
tion and verification in the context of the precursors to object-
oriented languages, notably Pascal. The culmination of this
effort was reported in a 1979 paper by David Luckham and
Nori Suzuki [20], where the modeling of the state of memory
was made explicit in specifications and verification condi-
tions in a slightly different way than we have done it. They
introduced a mapping from the reference variable’s textual
name, not its mathematical model value (integer in our case),
to the data value it pointed to. They would write the type-
specific state variable we call objval in our example as
P#SetOfInt, for “pointer to SetOfInt”. Special notation also
was introduced for dereferencing a SetOfInt reference variable s
when writing assertions, e.g., P#SetOfIn⊂s⊃.

An important missing ingredient in this early work—appar-
ently because Pascal lacked user-defined types with hidden
representations—was any use of abstraction in explaining the
behavior of new types. For example, in our SetOfInt specifica-
tion as a reference type, as a client you may think of objval(s)
as being a mathematical set of integers. In the Luck-
ham/Suzuki style of specification, you would see not only the
top-level reference complication but the pointers to the nodes
in the (unhidden) data structure that represented the set. In
other words, in 1979 and in Pascal, client component specifi-
cations for user-defined types exhibited all the complexity of
specifications of reference types in Java, and then some. This
was technically acceptable from the formal standpoint of veri-
fication but could not be used to give a fair comparison be-
tween specifying reference types and specifying value types
because specifying reference types this way was even uglier
than it needed to be.

In 1980, George Ernst and Bill Ogden [5] considered similar
specification and verification issues in Modula, which had a
module construct with hidden exported types. They, therefore,
needed to consider the question of how it was possible to hide
reference types behind abstract specifications. They showed it
was technically possible to hide references in module specifi-
cations through the use of some syntactic sugar in the specifi-
cation language and an appropriate abstraction function in the
module implementation. But the complexity moved over the
horizon and into the proof rules:

7

The only conceptual difficulty with the verification rules
presented in this paper is that they do not prevent a pro-
cedure from side-effecting certain instances of abstract
types which are not parameters to a call on it... [T]o verify
a module, we must verify everything prescribed by the
rule ..., but we must also verify that the side-effecting ...
cannot occur. Developing such a rule is a non-trivial task
... and hence beyond the scope of this paper.

One problem with showing that “the side-effecting ... cannot
occur” is that it can occur according to the Modula language
definition by assignment of a reference variable; even worse,
some programmers want it to occur and write programs that
way, and these programs might be correct, as noted in the ex-
ample of Section 4.2. This means that hiding the complexity
of references in a proof obligation stating that there is no ali-
asing causes a completeness problem.

In 1994, Ernst and Ogden, along with Ray Hookway, published
a verification method for ADT realizations that handled
“shared realizations” [6], including heap storage. Their ap-
proach to modeling references was essentially identical to our
approach for reference types, with syntactic sugar hiding the
abstract state variables that recorded the “serial number” of the
last object constructed and the mapping from reference values
to data values. A value-type specification was possible, with
reference details arising only within the proof of the realiza-
tion, because the only source of possible aliasing in the lan-
guage was within realization code, i.e., not from client assign-
ment of references. Moreover, the paper contained another
caveat about the example used for specification and verifica-
tion with a shared realization:

The example does not use heap memory, because it would
require extensive use of pointers, which would unneces-
sarily complicate both specification and verification...
[The example] illustrates most of the important concepts,
as well as giving some idea of the variety of implementa-
tions that any general method must be capable of han-
dling.

It seems, then, that the fundamental problem of how to verify
programs with reference types is technically solvable by mak-
ing sure that the abstract state variables associated with refer-
ence variables “follow them around” throughout the proof.
Everyone agrees that the introduction of references seriously
complicates both specification and reasoning, though.

The other work that seems most directly related is by Gary
Leavens and his colleagues and students [4, 16, 17, 18]. They
have tackled the problem of specifying behaviors of commer-
cial components involving pointers and references, and have
had to try to deal with potential aliasing both from copying of
pointers and from parameter passing anomalies. The basic
approach (e.g., in ACL [17] and JML [18]) seems to be to spec-
ify behavior in the absence of aliasing, as though types were
value types, and then to try to identify aliasing when it does
occur and to correct for it, or to limit but not eliminate aliasing
through some other linguistic means [2].

Of course, we also have published some prior work in this area
[13, 24, 29, 30, 33]. And Manfred Broy, like our group, has
generally suggested designing components for ease of specifi-
cation, as opposed to doing “post-mortem” specifications for
previously-designed components [1]. This would suggest
simply avoiding reference types if possible: good advice.

To summarize, we were unable to find any work directly com-
paring the intellectual loads involved in specifying value

types vs. reference types, or using such analysis to compare
the difficulty in reasoning about client programs using them.

6. CONCLUSIONS
Adding references types to value types, as in Java, signifi-
cantly complicates standard model-based specifications and
the modular verification they help enable—but it does not
completely destroy them.

Reasonably concise and plausibly comprehensible model-
based specifications can be designed that account for the be-
havioral peculiarities of reference types. By comparing the
complexity of mathematical model specifications and method
specifications in a language that has no syntactic sugar to
mask references, it becomes obvious that reference types in-
troduce a substantially greater intellectual load than value
types for both specifier and client. Actually writing specifica-
tions for reference types suggests obvious ways in which syn-
tactic sugar might shorten the specifier’s typing time, while
still supporting a distinction between value types and refer-
ence types. It is unlikely that such sugaring would in any way
simplify the specifier’s thinking or the client’s ability to un-
derstand the specified behavior of reference types, however.

In general, modular verification remains possible in the face of
reference types if the abstract state variables needed to specify
a reference type are considered part of the state space of all
units that have visibility over that type. Technically, for veri-
fication purposes the abstract state variables used in specify-
ing a reference type can be treated like additional ghost pa-
rameters to all calls involving one or more explicit parameters
of that type. Reasoning is, of course, far more complicated
with these extra variables in the picture than it would be with
value types only. But technically you can still have modular
verification with reference types if there are no other language
constructs that thwart modularity.

It remains common practice to encode indirection in Fortran
by using some arrays and integer indices as though they were
dynamically-allocated storage pools and pointers into them.
These arrays and integers are passed among subroutines as
parameters, or sometimes placed in named common blocks that
are visible to a selected subset of the subroutines in a program.
All the subroutines that manipulate these arrays must agree on
how they are using them in order to work correctly together.
Over the years, programming language designers have simpli-
fied the syntax required to do this sort of thing, to the point
where in Java there is almost no syntax at all associated with
indirection. But the underlying logic of programming with
references in Java is the same as that of programming with
arrays and indices in Fortran.

Is it, then, a good idea to hide the sharing of global state by
making such language “advances”? This sharing is clearly
evident in Fortran programs, but not in Java programs. But
shared state introduced through references can remain hidden
only from the minds of programmers who program without
specifications and who never try to verify their programs. If
specification language designers try to take the same road then
they, too, will find they can hide this shared state only from
the minds of programmers who never try to verify programs.
Eventually, the emperor’s thin disguise will reveal itself to
all—although perhaps not before some catastrophic software
failures cause more people to take a serious look at formal
specification and verification in the face of programming lan-
guage constructs that are well known to complicate them.

8

7. ACKNOWLEDGMENTS
Murali Sitaraman and Gary Leavens and their students, as well
as the members of the OSU Reusable Software Research Group,
have provided much food for thought through various per-
sonal and electronic discussions of many of the issues men-
tioned here.

We gratefully acknowledge financial support from the Na-
tional Science Foundation under grant CCR-0081596, and
from Lucent Technologies. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those
of the author and do not necessarily reflect the views of the
National Science Foundation or Lucent.

8. REFERENCES
[1] Broy, M. Experiences with Software Specification

and Verification Using LP, the Larch Proof Assis-
tant. Research Report 93, Compaq Systems Research
Center, Palo Alto, CA, 1992.

[2] Clarke, D.G., Potter, J.M., and Noble, J. Ownership
types for flexible alias protection. In OOPSLA '98
Conference Proceedings, ACM Press, 1998, 48-64.

[3] Cook, S.A. Soundness and completeness of an axiom
system for program verification. SIAM Journal of
Computing 7, 1 (1978), 70-90.

[4] Egle, R. Evaluating Larch/C++ as a Specification
Language: A Case Study Using the Microsoft Founda-
tion Class Library. TR #95-17, Department of Com-
puter Science, Iowa State University, Ames, IA, 1995.

[5] Ernst, G.W., and Ogden, W.F. Specification of ab-
stract data types in MODULA. ACM Transactions on
Programming Languages and Systems 2, 4 (1980),
522-543.

[6] Ernst, G.W., Hookway, R.J., and Ogden, W.F. Modu-
lar verification of data abstractions with shared realiza-
tions. IEEE Transactions on Software Engineering
20, 4 (1994), 288-207.

[7] Gosling, J., Joy, B., and Steele, G. The Java Lan-
guage Specification. Addison-Wesley, Reading, MA,
1996.

[8] Gosling, J., and McGilton, H. The Java Language
Environment: A White Paper. Sun Microsystems,
Inc., 1996; http://java.sun.com/docs/white/langenv/
viewed 8 August 2001.

[9] Harms, D.E., and Weide, B.W. Copying and swap-
ping: Influences on the design of reusable software
components. IEEE Transactions on Software Engi-
neering 17, 5 (1991), 424-435.

[10] Hoare, C.A.R. Hints on Programming Language De-
sign. Stanford University Computer Science Depart-
ment Technical Report No. CS-73-403, 1973. Re-
printed in Programming Languages: A Grand Tour,
E. Horowitz, ed., Computer Science Press, Rockville,
MD, 1983, 31-40.

[11] Hogg, J., Lea, D., Holt, R., Wills, A., and de Cham-
peaux, D. The Geneva convention on the treatment of
object aliasing. OOPS Messenger, April 1992.
http://gee.cs.oswego.edu/dl/aliasing/aliasing.html
viewed 8 August 2001.

[12] Hollingsworth, J.E. and Weide, B.W. Engineering
‘unbounded’ reusable Ada generics. In Proceedings of
10th Annual National Conference on Ada Technology,
1992, ANCOST, 82-97.

[13] Hollingsworth, J.E. Uncontrolled reference semantics
thwart local certifiability. In Proceedings of the Sixth
Annual Workshop on Software Reuse, 1993.

[14] Hollingsworth, J.E., Blankenship, L., and Weide,
B.W. Experience report: Using RESOLVE/C++ for
commercial software. In Proceedings of the ACM
SIGSOFT Eighth International Symposium on the
Foundations of Software Engineering, 2000, ACM
Press, 11-19.

[15] Kieburtz, R.B. Programming without pointer vari-
ables. In Proceedings of the SIGPLAN '76 Conference
on Data: Abstraction, Definition and Structure, 1976.
ACM Press.

[16] Leavens, G.T., and Cheon, Y. Extending CORBA
IDL to specify behavior with Larch. In OOPSLA '93
Workshop Proceedings: Specification of Behavioral
Semantics in OO Information Modeling, 77-80; also
TR #93-20, Department of Computer Science, Iowa
State University, Ames, IA, 1993.

[17] Leavens, G.T., and Antropova, O. ACL — Eliminat-
ing Parameter Aliasing with Dynamic Dispatch. TR
#98-08a, Department of Computer Science, Iowa State
University, Ames, IA, 1998.

[18] Leavens, G. T., Baker, A. L., and Ruby, C. JML: A
notation for detailed design. In Behavioral Specifica-
tions of Businesses and Systems, eds. H. Kilov, B.
Rumpe, and I. Simmonds, Kluwer Academic Publish-
ers, Boston, MA, 1999.

[19] Long, T.J., Weide, B. W., Bucci, P., Gibson, D. S.,
Hollingsworth, J., Sitaraman, M., and Edwards, S.
Providing intellectual focus to CS1/CS2. In Proceed-
ings of the 29th SIGCSE Technical Symposium on
Computer Science Education, 1998, ACM Press, 252-
256.

[20] Luckham, D.C., and Suzuki, N. Verification of array,
record, and pointer operations in Pascal. ACM Trans-
actions on Programming Languages and Systems 1, 2
(1979), 226-244.

[21] Meyer, B. Object-oriented Software Construction .
Prentice-Hall, New York, 1988; second edition, 1997.

[22] Musser, D.R., Derge, G.J., and Saini, A. STL Tuto-
rial and Reference Guide, Second Edition . Addison-
Wesley, Upper Saddle River, NJ, 2001.

[23] RESOLVE/C++ Component Catalog Home Page.
http://www.cis.ohio-

9

state.edu/~weide/sce/rcpp/RESOLVE_Catalog-HTML
viewed 8 August 2001.

[24] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide,
B.W., Long, T.J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J.E. Reasoning about software-
component behavior. In Software Reuse: Advances in
Software Reusability (Proceedings Sixth International
Conference on Software Reuse), LNCS 1844, ed. W.
Frakes, Springer-Verlag, 2000, 266-283.

[25] Sitaraman, M., and Weide, B.W. Component-based
software using RESOLVE. ACM SIGSOFT Software
Engineering Notes 19 , 4 (1994), 21-67.

[26] Software Component Engineering Course Home Page.
http://www.cis.ohio-state.edu/~weide/sce/now viewed
8 August 2001.

[27] Stroustrup, B. The C++ Programming Language, 3rd

edition. Addison-Wesley, Reading, MA, 1997.

[28] Sun Microsystems, Java “Frequently Asked Ques-
tions”. http://java.sun.com/people/linden/faq_b.html
viewed 8 August 2001.

[29] Weide, B.W., and Hollingsworth, J.E. Scalability of
reuse technology to large systems requires local certifi-
ability. In Proceedings of the Fifth Annual Workshop
on Software Reuse, 1992.

[30] Weide, B.W., Edwards, S.H., Harms, D.E., and
Lamb, D.A. Design and specification of iterators us-
ing the swapping paradigm. IEEE Transactions on
Software Engineering 20, 8 (1994), 631-643.

[31] Weide, B.W., Hollingsworth, J.E. and Heym, W.D.
Reverse engineering of legacy code exposed. In Pro-
ceedings 17th International Conference on Software
Engineering, 1995, ACM Press, 327-331.

[32] Weide, B.W. Software Component Engineering .
OSU Reprographics, Columbus, OH, 1996.

[33] Weide, B.W. “Modular regression testing”: Connec-
tions to component-based software. In Proceedings
Fourth ICSE Workshop on Component-Based Soft-
ware Engineering, 2001, IEEE, 47-51.

9. APPENDIX: THE SWAPPING PARADIGM
How to achieve “movement” of data values between variables
is a technical problem that needs to be faced by designers of
imperative programming languages and/or by software engi-
neering disciplines that concern themselves with component-
level design details. Because there is no way to avoid this
problem, and because traditional approaches to dealing with it
make trade-offs that introduce specification and verification
difficulties as explained in this paper, we call it the data
movement dilemma.

To understand why there is a dilemma, start with a simple
question: How do you make some variable (say, y) get the
value of another variable (say, x)? For example, suppose x and
y are variables of type int, a value type whose mathematical
model is a mathematical integer, as discussed in Section 3.1.
The obvious answer to the question is that you use an assign-
ment statement, like this:

y = x;

What if x and y are variables of a value type VT, where VT’s
mathematical model is relatively complex and its representa-
tion is therefore potentially large? Suppose, for example, that
VT is SetOfInt, whose mathematical model is a mathematical
set of mathematical integers, as discussed in Section 3.1.1.
There are now two options for data movement, neither of which
is especially attractive:

1. Consider the assignment operator for SetOfInt to perform
deep copy, so that after the assignment statement we can
think of both x and y as having the same abstract value.
Logically, x and y must behave independently, too, so
changes to x do not side-effect the value of y and vice
versa. This can be terribly inefficient, because without us-
ing fancy data-structure-specific tricks that frequently do
not apply, the assignment operator must take time linear
in the size of x’s representation. Big sets simply take a
long time to copy and hence to assign.

2. Do not view x and y as value variables, but as reference
variables; i.e., change their type from value type VT to ref-
erence type RT, and think of x and y as references to ob-
jects whose values are sets of integers. This fixes the effi-
ciency problem but at the cost of a distressing non-
uniformity in reasoning about program behavior: Some
variables denote values and others denote references. It
also means that the assignment operator creates aliases,
which complicates formal specification and reasoning
about program behavior, as explained in Section 4.2.

The latter approach has been codified into most modern lan-
guages, notably Java. It is actually far worse than the former
from certain software engineering standpoints. One reason is
that the programmer now must be aware that variables of some
types have ordinary values while variables of other types hold
references to objects (it’s the objects that have the values). For
template components this creates a special problem. Inside a
component that is parameterized by a type Item, there is no way
to know before instantiation time whether an assignment of
one Item to another will assign a value or a reference. Of
course, this can be “fixed” as it is in Java, by introducing oth-
erwise-redundant reference types such as Integer to wrap value
types such as int. Actual template parameters can then be lim-
ited to reference types. This is really ugly, though.

What does “y = x;” do?

copies a referencemakes a deep copy

How big is x’s representation?

largesmall

OK slow

alias

Figure 1: The Data Movement Dilemma

10

A more serious problem is the complication arising from refer-
ences for specification and verification, as explained in Sec-
tions 3 and 4.

Figure 1 summarizes the data movement dilemma faced by
someone who wants efficient software about whose behavior it
is easy to reason. The conclusion is that this is only attainable
by sticking to built-in value types—not incidentally, the only
types available when the assignment operator was introduced
into programming languages—or, at best, by inventing only
new user-defined types that admit “small” representations.

Rather than confronting the dilemma directly, let’s revisit the
original question and consider alternatives to the assignment
statement as the “obvious” answer to: How do you make some
variable (say, y) get the value of another variable (say, x)?
There is no inherent requirement that the value of x must not
change as a result of the data movement process. Realizing
this opens the door to other possibilities. The new value of y
must be the old value of x, but the new value of x might be:

• the old value of x (to get this behavior we use assignment,
which works well if x’s representation is small); or

• undefined; or

• a defined, but arbitrary and unknown, value of its type; or

• some particular value of its type, e.g., an initial value; or

• the old value of y.

It is beyond the scope of this appendix to analyze the pros and
cons of all the possibilities beyond the first one, which is un-
satisfactory as a general approach to data movement. Suffice
to say that leaving x undefined complicates reasoning, al-
though not nearly as much as allowing aliasing; and that leav-
ing x with either an arbitrary or a distinguished value of its
type is actually quite a reasonable thing to do. However, the
last approach— swapping the values of x and y—is both effi-
cient and safe with respect to modular reasoning, and it results
in remarkably few changes to how most programmers write
imperative code [9, 32].

You need to get used to a few new idioms when adopting the
swapping paradigm, e.g., for iterating through a collection
[30]. The biggest effect of the swapping paradigm, however, is
on the design of component interfaces. Consider, for example,
a Set component (parameterized by the Item type it contains)
with operations add, remove, etc. What should add(x) do to
the value of x? The analysis of this question parallels the
analysis of the data movement dilemma as the question was
phrased above. The conclusion is that add should consume x,
i.e., it should leave x with an initial value of its type.

How can this be accomplished? A direct implementation of the
Set component declares a new variable of the parametric type
Item in the body of add, e.g., the data field in a new node that is
to be inserted in a linked list of nodes. This variable is then
swapped with x. Swapping simultaneously puts the old value
of x into the Set’s representation data structure, where it needs
to be; and sets the new value of x to the initial value for its
type that was originally in the data field of the node.

What if there are no pointers in the language, though? In an
implementation of the Set component that is layered on top of
a provided List component, for example, the add operation
simply inserts x at the appropriate place into the List that rep-
resents the Set. If the insertion operation for List also is de-
signed using the swapping paradigm, so it consumes its argu-
ment’s value just like add does, then this call does exactly
what is needed.

In other words, in both these situations, the code that you
would have written if using assignment for data movement is
changed in just one respect: assignment of x to its place in the
Set’s representation is replaced by swapping x with its place in
the Set’s representation.

Our experience is that a family of components such as those in
the RESOLVE/C++ component catalog [23] can be designed
according to the swapping paradigm to compose in such a way
that programming with swapping is substantially similar to
programming with assignment statements. But the resulting
components offer efficiency and/or reasoning advantages over
similar components designed in a traditional fashion.

Let’s be clear that we still use the assignment operator with
built-in value types. There is nothing wrong with the follow-
ing statement from either the efficiency or reasoning stand-
points, assuming that x and y are variables of some value type
with a “small” representation:

y = x;

The possibly surprising empirical observation that has been
substantiated by commercial application development is that,
with swapping, there is rarely a need for such a statement when
x and y have user-defined types. You can have value types and
efficiency at the same time.

The main advantages of the swapping paradigm are, then:

• The swapping paradigm is easy for imperative-language
programmers to learn and apply.

• All types are value types, which allows for understanding
of specifications and modular reasoning that are compli-
cated significantly if reference types creep in.

• All pointers and references can be hidden deep within the
bowels of a few low-level components and remain invisi-
ble to a client programmer layering new code on top of
them.

• If these low-level components have no storage leaks, then
client programs have no storage leaks, and client pro-
grammers do not have to worry about where to invoke de-
lete in, e.g., C++, because they simply never invoke it. In
the case of a garbage-collected language, e.g., Java, there
is no need for the complications of general garbage col-
lection because there are no aliases and all collection
takes place at predictable times.

Other questions often asked about the interactions between the
swapping paradigm and other programming language and
software engineering issues, such as the role of function opera-
tions, assignment of function results to variables, parameter
passing, etc., are discussed in [9].

