
Code Generation

22 November 2019 OSU CSE 1



BL Compiler Structure

22 November 2019 OSU CSE 2

Code
GeneratorParserTokenizer

string of
characters

(source code)

string of
tokens

(“words”)

abstract
program

string of
integers

(object code)

The code generator is the last step.



Executing a BL Program

• There are two qualitatively different ways 
one might execute a BL program, given a 
value of type Program that has been 
constructed from BL source code:
– Interpret the Program directly
– Compile the Program into object code 

(“byte code”) that is executed by a virtual 
machine

22 November 2019 OSU CSE 3



Executing a BL Program

• There are two qualitatively different ways 
one might execute a BL program, given a 
value of type Program that has been 
constructed from its source code:
– Interpret the Program directly
– Compile the Program into object code 

(“byte code”) that is executed by a virtual 
machine

22 November 2019 OSU CSE 4

This is what the BL 
compiler will actually do; 
and this is how Java itself 

works (recall the JVM 
and its “byte codes”).



Executing a BL Program

• There are two qualitatively different ways 
one might execute a BL program, given a 
value of type Program that has been 
constructed from its source code:
– Interpret the Program directly
– Compile the Program into object code 

(“byte code”) that is executed by a virtual 
machine

22 November 2019 OSU CSE 5

Let’s first see how this 
might be done ...



Time Lines of Execution

• Directly interpreting a Program:

• Compiling and then executing a Program:

22 November 2019 OSU CSE 6

Tokenize Parse Execute by interpreting the 
Program directly

Tokenize Parse Generate 
code

Execute by interpreting
generated code on VM



Time Lines of Execution

• Directly interpreting a Program:

• Compiling and then executing a Program:

22 November 2019 OSU CSE 7

Tokenize Parse Execute by interpreting the 
Program directly

Tokenize Parse Generate 
code

Execute by interpreting
generated code on VM

At this point, you have a 
Program value to use.



Time Lines of Execution

• Directly interpreting a Program:

• Compiling and then executing a Program:

22 November 2019 OSU CSE 8

Tokenize Parse Execute by interpreting the 
Program directly

Tokenize Parse Generate 
code

Execute by interpreting
generated code on VM

“Execution-time” or
“run-time” means here.

“Execution-time” or
“run-time” means here.



Interpreting a Program

• The structure of a Program and, within it, 
the recursive structure of a Statement, 
directly dictate how to execute a Program
by interpretation

• Without contracts and other details, the 
following few slides indicate the structure 
of such code

22 November 2019 OSU CSE 9



executeProgram

public static void executeProgram(Program p) {
Statement body = p.newBody();
Map<String, Statement> context = p.newContext();
p.swapBody(body);
p.swapContext(context);
executeStatement(body, context);
p.swapBody(body);
p.swapContext(context);

}

22 November 2019 OSU CSE 10



22 November 2019 OSU CSE 11

BLOCK

IF
condition

WHILE
condition

CALL
instruction

s =

IF_ELSE
condition



executeStatement

public static void executeStatement(Statement s,
Map<String, Statement> context) {

switch (s.kind()) {
case BLOCK: {

for (int i = 0; i < s.lengthOfBlock(); i++) {
Statement ns = s.removeFromBlock(i);
executeStatement(ns, context);
s.addToBlock(i, ns);

}
break;

}
case IF: {...}
...

}

22 November 2019 OSU CSE 12

It’s recursive just like 
everything else to do with 
Statement; context is 
needed for case CALL.



executeStatement

22 November 2019 OSU CSE 13

• Non-BLOCK cases are different in kind:
– For IF, IF_ELSE, and WHILE, you need to 

decide whether the condition being tested as 
the BL program executes is (now) true or false

• This requires a call to some method that knows the 
state of BugsWorld, i.e., what the bug “sees”

– For CALL, you need to execute a primitive 
instruction, e.g., MOVE, INFECT, etc.

• This requires a call to some method that updates 
the state of BugsWorld



The State of BugsWorld

22 November 2019 OSU CSE 14



The State of BugsWorld

22 November 2019 OSU CSE 15

For example, when 
executing this bug’s 
Program in this state, 
next-is-empty is true.



Where Is The State of BugsWorld?

22 November 2019 OSU CSE 16

The server knows about all the 
bugs, and can report to a client 
what a particular bug “sees”.

A client executes 
a particular bug’s 

program, and 
tells the server to 
execute primitive 

instructions.



executeStatement

22 November 2019 OSU CSE 17

• Surprisingly, perhaps, executing a call to a 
user-defined instruction is straightforward:
– You simply make a recursive call to 
executeStatement and pass it the body of 
that user-defined instruction, which is 
obtained from the context



Compiling a Program

• As noted earlier, we are instead going to 
compile a Program, and the last step for a 
BL compiler is to generate code

• The structure of a program to do this is 
similar to that of an interpreter of a 
Program, except that it processes each 
Statement once rather than once every 
time it happens to be executed at run-time

22 November 2019 OSU CSE 18



Code Generation

• Code generation is translating a 
Program to a linear (non-nested) 
structure, i.e., to a string of low-level 
instructions or “byte codes” of a BL 
virtual machine that can do the following:
– Update the state of BugsWorld
– “Jump around” in the string to execute the 

right “byte codes” under the right conditions, 
depending on the state of BugsWorld

22 November 2019 OSU CSE 19



Code Generation

• Code generation is translating a 
Program to a linear (non-nested) 
structure, i.e., to a string of low-level 
instructions or “byte codes” of a BL 
virtual machine that can do the following:
– Update the state of BugsWorld
– “Jump around” in the string to execute the 

right “byte codes” under the right conditions, 
depending on the state of BugsWorld

22 November 2019 OSU CSE 20

Primitive BL instructions 
are translated into 
these “byte codes”.



Code Generation

• Code generation is translating a 
Program to a linear (non-nested) 
structure, i.e., to a string of low-level 
instructions or “byte codes” of a BL 
virtual machine that can do the following:
– Update the state of BugsWorld
– “Jump around” in the string to execute the 

right “byte codes” under the right conditions, 
depending on the state of BugsWorld

22 November 2019 OSU CSE 21

BL control constructs 
that check conditions 

are translated into 
these “byte codes”.



Example Statement
IF next-is-wall THEN

turnleft
ELSE

move
END IF

22 November 2019 OSU CSE 22

IF_ELSE
NEXT_IS_WALL

BLOCK

CALL
turnleft

BLOCK

CALL
move

Loc Instruction (symbolic name)
0 JUMP_IF_NOT_NEXT_IS_WALL

1 5

2 TURNLEFT

3 JUMP

4 6

5 MOVE

6 ...



Example Statement
IF next-is-wall THEN

turnleft
ELSE

move
END IF

22 November 2019 OSU CSE 23

IF_ELSE
NEXT_IS_WALL

BLOCK

CALL
turnleft

BLOCK

CALL
move

Loc Instruction (“byte code”)
0 9

1 5

2 1

3 6

4 6

5 0

6 ...



BugsWorld Virtual Machine

• The virtual machine for BugsWorld has 
three main features:
– Memory
– Instruction set
– Program counter

22 November 2019 OSU CSE 24



BugsWorld Virtual Machine

• The virtual machine for BugsWorld has 
three main features:
– Memory
– Instruction set
– Program counter

22 November 2019 OSU CSE 25

A string of integers that 
contains the “byte codes” 

generated from a Program.



BugsWorld Virtual Machine

• The virtual machine for BugsWorld has 
three main features:
– Memory
– Instruction set
– Program counter

22 November 2019 OSU CSE 26

A finite set of integers 
that are the “byte codes” for 
the primitive instructions of the 

BugsWorld VM.



BugsWorld Virtual Machine

• The virtual machine for BugsWorld has 
three main features:
– Memory
– Instruction set
– Program counter

22 November 2019 OSU CSE 27

Each instruction is given a 
symbolic name here, for ease 
of reading, but the VM knows 

only about integer “byte codes”.



BugsWorld Virtual Machine

• The virtual machine for BugsWorld has 
three main features:
– Memory
– Instruction set
– Program counter

22 November 2019 OSU CSE 28

An integer that designates 
the location/position/address in 
memory of the “byte code” to 

be executed next.



BugsWorld Virtual Machine

• The virtual machine for BugsWorld has 
three main features:
– Memory
– Instruction set
– Program counter

22 November 2019 OSU CSE 29

Normal execution increments 
the program counter by 1 or 2 

after each instruction, so 
execution proceeds sequentially. 



Instruction Set

• The instruction set, or target language, 
for code generation has two types of 
instructions:
– Primitive instructions
– Jump instructions

22 November 2019 OSU CSE 30



Instruction Set

• The instruction set, or target language, 
for code generation has two types of 
instructions:
– Primitive instructions
– Jump instructions

22 November 2019 OSU CSE 31

Each of these occupies 
one memory location.



Instruction Set

• The instruction set, or target language, 
for code generation has two types of 
instructions:
– Primitive instructions
– Jump instructions

22 November 2019 OSU CSE 32

Each of these occupies 
two memory locations: 
the second one is the 

location to jump to.



Primitive Instructions
• MOVE (0)
• TURNLEFT (1)
• TURNRIGHT (2)
• INFECT (3)
• SKIP (4)
• HALT (5)

22 November 2019 OSU CSE 33



Primitive Instructions
• MOVE (0)
• TURNLEFT (1)
• TURNRIGHT (2)
• INFECT (3)
• SKIP (4)
• HALT (5)

22 November 2019 OSU CSE 34

This is the “byte code” 
corresponding to the 

symbolic name for each 
instruction code.



Primitive Instructions
• MOVE (0)
• TURNLEFT (1)
• TURNRIGHT (2)
• INFECT (3)
• SKIP (4)
• HALT (5)

22 November 2019 OSU CSE 35

This instruction halts 
program execution, and is 
the last instruction to be 

executed.



Jump Instructions
• JUMP (6)
• JUMP_IF_NOT_NEXT_IS_EMPTY (7)
• JUMP_IF_NOT_NEXT_IS_NOT_EMPTY (8)
• JUMP_IF_NOT_NEXT_IS_WALL (9)
• JUMP_IF_NOT_NEXT_IS_NOT_WALL (10)
• JUMP_IF_NOT_NEXT_IS_FRIEND (11)
• JUMP_IF_NOT_NEXT_IS_NOT_FRIEND (12)
• JUMP_IF_NOT_NEXT_IS_ENEMY (13)
• JUMP_IF_NOT_NEXT_IS_NOT_ENEMY (14)
• JUMP_IF_NOT_RANDOM (15)
• JUMP_IF_NOT_TRUE (16)

22 November 2019 OSU CSE 36



Jump Instructions
• JUMP (6)
• JUMP_IF_NOT_NEXT_IS_EMPTY (7)
• JUMP_IF_NOT_NEXT_IS_NOT_EMPTY (8)
• JUMP_IF_NOT_NEXT_IS_WALL (9)
• JUMP_IF_NOT_NEXT_IS_NOT_WALL (10)
• JUMP_IF_NOT_NEXT_IS_FRIEND (11)
• JUMP_IF_NOT_NEXT_IS_NOT_FRIEND (12)
• JUMP_IF_NOT_NEXT_IS_ENEMY (13)
• JUMP_IF_NOT_NEXT_IS_NOT_ENEMY (14)
• JUMP_IF_NOT_RANDOM (15)
• JUMP_IF_NOT_TRUE (16)

22 November 2019 OSU CSE 37

This unconditional jump 
instruction causes the program 
counter to be set to the value in 
the memory location following 

the JUMP code.



Jump Instructions
• JUMP (6)
• JUMP_IF_NOT_NEXT_IS_EMPTY (7)
• JUMP_IF_NOT_NEXT_IS_NOT_EMPTY (8)
• JUMP_IF_NOT_NEXT_IS_WALL (9)
• JUMP_IF_NOT_NEXT_IS_NOT_WALL (10)
• JUMP_IF_NOT_NEXT_IS_FRIEND (11)
• JUMP_IF_NOT_NEXT_IS_NOT_FRIEND (12)
• JUMP_IF_NOT_NEXT_IS_ENEMY (13)
• JUMP_IF_NOT_NEXT_IS_NOT_ENEMY (14)
• JUMP_IF_NOT_RANDOM (15)
• JUMP_IF_NOT_TRUE (16)

22 November 2019 OSU CSE 38

This conditional jump instruction 
causes the program counter to be 

set to the value in the memory 
location following the instruction 
code iff it is not the case that the 
cell in front of the bug is a wall.



Handling an IF Statement

IF condition THEN
block

END IF

22 November 2019 OSU CSE 39

Loc Instruction (symbolic name)
k JUMP_IF_NOT_condition

k+1 k+n+2

k+2 block (n instructions)

...

k+n+1

k+n+2 ...



Handling an IF_ELSE Statement

IF condition THEN
block1

ELSE
block2

END IF

22 November 2019 OSU CSE 40

Loc Instruction (symbolic name)
k JUMP_IF_NOT_condition

k+1 k+n1+4

k+2 block1 (n1 instructions)

...

k+n1+2 JUMP

k+n1+3 k+n1+n2+4

k+n1+4 block2 (n2 instructions)

...

k+n1+n2+4 ...



Handling a WHILE Statement

WHILE condition DO
block

END WHILE

22 November 2019 OSU CSE 41

Loc Instruction (symbolic name)
k JUMP_IF_NOT_condition

k+1 k+n+4

k+2 block (n instructions)

...

k+n+2 JUMP

k+n+3 k

k+n+4 ...



Handling a CALL Statement

move

turnleft

(etc.)

22 November 2019 OSU CSE 42

Loc Instruction (symbolic name)
k MOVE

Loc Instruction (symbolic name)
k TURNLEFT



Handling a CALL Statement

INSTRUCTION
my-instruction IS
block

END my-instruction

my-instruction

22 November 2019 OSU CSE 43

Loc Instruction (symbolic name)
k block (of n instructions)

...

k+n-1

k+n ...



Handling a CALL Statement

INSTRUCTION
my-instruction IS
block

END my-instruction

my-instruction

22 November 2019 OSU CSE 44

Loc Instruction (symbolic name)
k block (of n instructions)

...

k+n-1

k+n ...

A call to my-instruction generates 
a block of “byte codes” for the 

body of my-instruction. 



Handling a CALL Statement

INSTRUCTION
my-instruction IS
block

END my-instruction

my-instruction

22 November 2019 OSU CSE 45

Loc Instruction (symbolic name)
k block (of n instructions)

...

k+n-1

k+n ...

This way of generating code for 
a call to a user-defined 

instruction is called in-lining.  



Handling a CALL Statement

INSTRUCTION
my-instruction IS
block

END my-instruction

my-instruction

22 November 2019 OSU CSE 46

Loc Instruction (symbolic name)
k block (of n instructions)

...

k+n-1

k+n ...

What would happen with in-lining 
if BL allowed recursion?

How else might you handle calls to 
user-defined instructions?



Handling a BLOCK Statement

• The “byte codes” generated for individual 
Statements in a block (a sequence of 
Statements) are placed sequentially, one 
after the other, in memory

• Remember: at the end of the body block of 
the Program, there must be a HALT
instruction

22 November 2019 OSU CSE 47



Aside: More On Java enum

• Recall: the Java enum construct allows 
you to give meaningful symbolic names to 
values for which you might instead have 
used arbitrary int constants

• This construct has some other valuable 
features that allow you to associate 
symbolic names (e.g., for VM instructions) 
with specific int constants (e.g., their 
“byte codes”)

22 November 2019 OSU CSE 48



The Instruction Enum

• The interface Program contains this code:
/**
* BugsWorld VM instructions and "byte codes".
*/

enum Instruction {
MOVE(0), TURNLEFT(1), ... ;

...

}

22 November 2019 OSU CSE 49

plus 15 
more 

instructions

An instance variable,
a constructor, and

an accessor method ...



The Instruction Enum

• The interface Program contains this code:
enum Instruction {

MOVE(0), TURNLEFT(1), ... ;

private int blByteCode;

private Instruction(int code) {
this.blByteCode = code;

}

public int byteCode() {
return this.blByteCode;

}
}

22 November 2019 OSU CSE 50



The Instruction Enum

• The interface Program contains this code:
enum Instruction {

MOVE(0), TURNLEFT(1), ... ;

private int blByteCode;

private Instruction(int code) {
this.blByteCode = code;

}

public int byteCode() {
return this.blByteCode;

}
}

22 November 2019 OSU CSE 51

Every Instruction
(e.g., MOVE) has an int
instance variable called 

blByteCode.



The Instruction Enum

• The interface Program contains this code:
enum Instruction {

MOVE(0), TURNLEFT(1), ... ;

private int blByteCode;

private Instruction(int code) {
this.blByteCode = code;

}

public int byteCode() {
return this.blByteCode;

}
}

22 November 2019 OSU CSE 52

This constructor makes 
each Instruction’s 

“argument” (in parens) the 
value of its associated 

blByteCode.



The Instruction Enum

• The interface Program contains this code:
enum Instruction {

MOVE(0), TURNLEFT(1), ... ;

private int blByteCode;

private Instruction(int code) {
this.blByteCode = code;

}

public int byteCode() {
return this.blByteCode;

}
}

22 November 2019 OSU CSE 53

This accessor method
(an instance method)

allows a client to access 
an Instruction’s 

associated 
blByteCode.



Using This Feature

• In client code using Instruction, one 
might write something like this:

Instruction i = Instruction.TURNLEFT;
...
int code = i.byteCode();

or even:
... Instruction.TURNLEFT.byteCode() ...

• The “byte code” thus obtained is what 
needs to be put into the generated code

22 November 2019 OSU CSE 54



Resources

• OSU CSE Components API: Program,
Program.Instruction
– http://cse.osu.edu/software/common/doc/

• Java Tutorials: Enum Types
– http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

22 November 2019 OSU CSE 55


