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Heaps

• A heap is a binary tree of T that 
satisfies two properties:
– Global shape property: it is a complete 

binary tree
– Local ordering property: the label in each 

node is “smaller than or equal to” the label in 
each of its child nodes
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A complete binary tree is one in which 
all levels are “full” except possibly the 
bottom level, with any nodes on the 
bottom level as far left as possible.
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Also in the picture is (as with BSTs, 
sorting, etc.) a total preorder that 

makes this notion precise.



Simplification

• For simplicity in the following illustrations, 
we use only one kind of example:
– T = integer
– The ordering is ≤

• Because heaps are used in sorting, where 
duplicate values may be involved, we 
allow that multiple nodes in a heap may 
have the same labels (i.e., we will not
assume that the labels are unique)
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The Big Picture
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The Big Picture
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Observe: This tree is also 
a heap; and for each 
node in this tree with 

label z, we have:
x ≤ y ≤ z.
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The Big Picture
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Examples of Heaps
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Non-Examples of Heaps
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Non-Examples of Heaps
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all nodes at the bottom level are as 

far left as possible.



Non-Examples of Heaps
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Non-Examples of Heaps
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Heapsort

• A heap can be used to represent the 
values in a SortingMachine, as follows:
– In changeToExtractionMode, arrange all 

the values into a heap
– In removeFirst, remove the root, and adjust 

the slightly mutilated heap to make it a heap 
again
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Why should this work?



How removeFirst Can Work

• If the root is the only node in the heap, 
then after removing it, what remains is 
already a heap; nothing left to do

• If the root is not the only node, then 
removing it leaves an “opening” that must 
be filled by moving some other value in the 
heap into the opening
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The question is: 
which one?



Example: A First Attempt
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Example: A First Attempt
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If we remove the 
root, leaving this 

opening ...



Example: A First Attempt
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Example: A First Attempt
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Example: A First Attempt
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Example: A First Attempt
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Example: A Second Attempt
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Example: A Second Attempt
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maintain the 

shape property ...



Example: A Second Attempt

1 October 2020 OSU CSE 28

4

2 5

... by promoting 
the last node on 
the bottom level.

3



Example: A Second Attempt
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Example: A Second Attempt
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Example: A Second Attempt
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down” the root of 

that subtree.



Example: A Second Attempt
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Pseudo-Contract
/**

* Restores a complete binary tree to be a heap

* if only the root might be out of place.

* @updates t

* @requires
* [t is a complete binary tree]  and
* [both subtrees of the root of t are heaps]

* @ensures
* [t is a heap with the same values as #t]

*/

public static void siftDown (BinaryTree<T> t)

{...}
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Building a Heap In the First Place

• Suppose we have n values in a complete 
binary tree, but they are arranged without 
regard to the heap ordering

• How can we “heapify” it?
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Pseudo-Contract
/**

* Makes a complete binary tree into a heap.

* @updates t
* @requires
* [t is a complete binary tree]

* @ensures
* [t is a heap with the same values as #t]

*/

public static void heapify (BinaryTree<T> t) 
{...}
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Hint

• To see how you might implement 
heapify, compare the contracts of 
siftDown and heapify

• The only difference: before we can call 
siftDown to make a heap, both subtrees
of the root must already be heaps
– Once they are heaps, just a call to siftDown

will finish the job
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How do we make 
the subtrees into 

heaps?



Example
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Example
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First, recursively 
“heapify” the left 

subtree.



Example
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Then, recursively 
“heapify” the right 

subtree.



Example
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Then “sift down” the 
root, because now 
only the root might 

be out of place.



Embedding a Heap in an array

• While one could represent a heap using a 
BinaryTree<T> (as suggested in the 
pseudo-contracts above), it is generally 
not done this way

• Instead, a heap is usually represented 
“compactly” using an array of T
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Interpreting an array as a Heap
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Interpreting an array as a Heap
Because it’s a complete

binary tree, the nodes 
can be numbered top-to-

bottom, left-to-right.
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At what index in the 
array is the left child of 

the node at index i?
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At what index in the 
array is the right child 
of the node at index i?



Resources
• Wikipedia: Heapsort

– http://en.wikipedia.org/wiki/Heapsort
• Wikipedia: Heap (data structure)

– http://en.wikipedia.org/wiki/Heap_(data_structure)
• Big Java (4th ed), Sections 16.8, 16.9

– https://library.ohio-state.edu/record=b8540788~S7
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