
Heaps and Heapsort

1 October 2020 OSU CSE 1

Heaps

• A heap is a binary tree of T that
satisfies two properties:
– Global shape property: it is a complete

binary tree
– Local ordering property: the label in each

node is “smaller than or equal to” the label in
each of its child nodes

1 October 2020 OSU CSE 2

Heaps

• A heap is a binary tree of T that
satisfies two properties:
– Global shape property: it is a complete

binary tree
– Local ordering property: the label in each

node is “smaller than or equal to” the label in
each of its child nodes

1 October 2020 OSU CSE 3

A complete binary tree is one in which
all levels are “full” except possibly the
bottom level, with any nodes on the
bottom level as far left as possible.

Heaps

• A heap is a binary tree of T that
satisfies two properties:
– Global shape property: it is a complete

binary tree
– Local ordering property: the label in each

node is “smaller than or equal to” the label in
each of its child nodes

1 October 2020 OSU CSE 4

Also in the picture is (as with BSTs,
sorting, etc.) a total preorder that

makes this notion precise.

Simplification

• For simplicity in the following illustrations,
we use only one kind of example:
– T = integer
– The ordering is ≤

• Because heaps are used in sorting, where
duplicate values may be involved, we
allow that multiple nodes in a heap may
have the same labels (i.e., we will not
assume that the labels are unique)

1 October 2020 OSU CSE 5

The Big Picture

1 October 2020 OSU CSE 6

x

The Big Picture

1 October 2020 OSU CSE 7

y

x

This tree’s root
label y satisfies

x ≤ y

The Big Picture

1 October 2020 OSU CSE 8

y

x

Observe: This tree is also
a heap; and for each
node in this tree with

label z, we have:
x ≤ y ≤ z.

The Big Picture

1 October 2020 OSU CSE 9

y

x

This tree’s root
label y satisfies

x ≤ y

The Big Picture

1 October 2020 OSU CSE 10

y

x

Observe: This tree is also
a heap; and for each
node in this tree with

label z, we have:
x ≤ y ≤ z.

Examples of Heaps

1 October 2020 OSU CSE 11

5

2

1

8

7

8 2

1

1

8

Non-Examples of Heaps

1 October 2020 OSU CSE 12

8 1

2

1

5

1

2

8

2

1

1

5

Non-Examples of Heaps

1 October 2020 OSU CSE 13

8 1

2

1

5

1

2

8

2

1

1

5Shape property is violated here: not
all nodes at the bottom level are as

far left as possible.

Non-Examples of Heaps

1 October 2020 OSU CSE 14

8 1

2

1

5

1

2

8

2

1

1

5Ordering property is violated here:
value is out of order with that of its

right child.

Non-Examples of Heaps

1 October 2020 OSU CSE 15

8 1

2

1

5

1

2

8

2

1

1

5Shape property is violated: two
levels are not “full”.

Heapsort

• A heap can be used to represent the
values in a SortingMachine, as follows:
– In changeToExtractionMode, arrange all

the values into a heap
– In removeFirst, remove the root, and adjust

the slightly mutilated heap to make it a heap
again

1 October 2020 OSU CSE 16

Heapsort

• A heap can be used to represent the
values in a SortingMachine, as follows:
– In changeToExtractionMode, arrange all

the values into a heap
– In removeFirst, remove the root, and adjust

the slightly mutilated heap to make it a heap
again

1 October 2020 OSU CSE 17

Why should this work?

How removeFirst Can Work

• If the root is the only node in the heap,
then after removing it, what remains is
already a heap; nothing left to do

• If the root is not the only node, then
removing it leaves an “opening” that must
be filled by moving some other value in the
heap into the opening

1 October 2020 OSU CSE 18

How removeFirst Can Work

• If the root is the only node in the heap,
then after removing it, what remains is
already a heap; nothing left to do

• If the root is not the only node, then
removing it leaves an “opening” that must
be filled by moving some other value in the
heap into the opening

1 October 2020 OSU CSE 19

The question is:
which one?

Example: A First Attempt

1 October 2020 OSU CSE 20

4 3

2

1

5

Example: A First Attempt

1 October 2020 OSU CSE 21

4 3

2 5

If we remove the
root, leaving this

opening ...

Example: A First Attempt

1 October 2020 OSU CSE 22

4 3

5

... we might move
up the smaller

child ...
2

Example: A First Attempt

1 October 2020 OSU CSE 23

4 3

5

... now creating
another opening

...
2

Example: A First Attempt

1 October 2020 OSU CSE 24

4

5

... so, we might
move up the
smaller child.

2

3

Example: A First Attempt

1 October 2020 OSU CSE 25

4

5

Is the result
necessarily a

heap?
2

3

Example: A Second Attempt

1 October 2020 OSU CSE 26

4 3

2

1

5

Example: A Second Attempt

1 October 2020 OSU CSE 27

4 3

2 5

This time, let’s
maintain the

shape property ...

Example: A Second Attempt

1 October 2020 OSU CSE 28

4

2 5

... by promoting
the last node on
the bottom level.

3

Example: A Second Attempt

1 October 2020 OSU CSE 29

4

2 5

Now, we can “sift
down” the root into
its proper place ...

3

Example: A Second Attempt

1 October 2020 OSU CSE 30

4

3 5

... by swapping it
with its smaller

child ...
2

Example: A Second Attempt

1 October 2020 OSU CSE 31

4

3 5

2

... and then “sifting
down” the root of

that subtree.

Example: A Second Attempt

1 October 2020 OSU CSE 32

4

3 5

2

Is the result
necessarily a

heap?

Pseudo-Contract
/**

* Restores a complete binary tree to be a heap

* if only the root might be out of place.

* @updates t

* @requires
* [t is a complete binary tree] and
* [both subtrees of the root of t are heaps]

* @ensures
* [t is a heap with the same values as #t]

*/

public static void siftDown (BinaryTree<T> t)

{...}

1 October 2020 OSU CSE 33

Building a Heap In the First Place

• Suppose we have n values in a complete
binary tree, but they are arranged without
regard to the heap ordering

• How can we “heapify” it?

1 October 2020 OSU CSE 34

Pseudo-Contract
/**

* Makes a complete binary tree into a heap.

* @updates t
* @requires
* [t is a complete binary tree]

* @ensures
* [t is a heap with the same values as #t]

*/

public static void heapify (BinaryTree<T> t)
{...}

1 October 2020 OSU CSE 35

Hint

• To see how you might implement
heapify, compare the contracts of
siftDown and heapify

• The only difference: before we can call
siftDown to make a heap, both subtrees
of the root must already be heaps
– Once they are heaps, just a call to siftDown

will finish the job

1 October 2020 OSU CSE 36

Hint

• To see how you might implement
heapify, compare the contracts of
siftDown and heapify

• The only difference: before we can call
siftDown to make a heap, both subtrees
of the root must already be heaps
– Once they are heaps, just a call to siftDown

will finish the job

1 October 2020 OSU CSE 37

How do we make
the subtrees into

heaps?

Example

1 October 2020 OSU CSE 38

1 4

5

3

2

Example

1 October 2020 OSU CSE 39

5 4

1

3

2

First, recursively
“heapify” the left

subtree.

Example

1 October 2020 OSU CSE 40

5 4

1

3

2

Then, recursively
“heapify” the right

subtree.

Example

1 October 2020 OSU CSE 41

5 4

1

3

2

Then “sift down” the
root, because now
only the root might

be out of place.

Embedding a Heap in an array

• While one could represent a heap using a
BinaryTree<T> (as suggested in the
pseudo-contracts above), it is generally
not done this way

• Instead, a heap is usually represented
“compactly” using an array of T

1 October 2020 OSU CSE 42

Interpreting an array as a Heap

1 October 2020 OSU CSE 43

40 30

20

10

50

1 October 2020 OSU CSE 44

40 30

20

10

50

43

1 2

0

Interpreting an array as a Heap
Because it’s a complete

binary tree, the nodes
can be numbered top-to-

bottom, left-to-right.

1 October 2020 OSU CSE 45

40 30

20

10

50

43

1 2

0

10 20 50 40 30

0 1 2 3 4

1 October 2020 OSU CSE 46

40 30

20

10

50

43

1 2

0

10 20 50 40 30

0 1 2 3 4

At what index in the
array is the left child of

the node at index i?

1 October 2020 OSU CSE 47

40 30

20

10

50

43

1 2

0

10 20 50 40 30

0 1 2 3 4

At what index in the
array is the right child
of the node at index i?

Resources
• Wikipedia: Heapsort

– http://en.wikipedia.org/wiki/Heapsort
• Wikipedia: Heap (data structure)

– http://en.wikipedia.org/wiki/Heap_(data_structure)
• Big Java (4th ed), Sections 16.8, 16.9

– https://library.ohio-state.edu/record=b8540788~S7

1 October 2020 OSU CSE 48

http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Heap_(data_structure)
https://library.ohio-state.edu/record=b8540788%7ES7

	Heaps and Heapsort
	Heaps
	Heaps
	Heaps
	Simplification
	The Big Picture
	The Big Picture
	The Big Picture
	The Big Picture
	The Big Picture
	Examples of Heaps
	Non-Examples of Heaps
	Non-Examples of Heaps
	Non-Examples of Heaps
	Non-Examples of Heaps
	Heapsort
	Heapsort
	How removeFirst Can Work
	How removeFirst Can Work
	Example: A First Attempt
	Example: A First Attempt
	Example: A First Attempt
	Example: A First Attempt
	Example: A First Attempt
	Example: A First Attempt
	Example: A Second Attempt
	Example: A Second Attempt
	Example: A Second Attempt
	Example: A Second Attempt
	Example: A Second Attempt
	Example: A Second Attempt
	Example: A Second Attempt
	Pseudo-Contract
	Building a Heap In the First Place
	Pseudo-Contract
	Hint
	Hint
	Example
	Example
	Example
	Example
	Embedding a Heap in an array
	Interpreting an array as a Heap
	Interpreting an array as a Heap
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Resources

