
 Recursion 1 - 1 

Recursion 1 – Developing Recursive Algorithms 

Preview of Coming Attractions 

In this unit be sure to look for 

 recursion 
 recursive structure 
 5 step process for developing recursive algorithms 
 base case, base values 
 

The Force Is With You 

One of the most totally awesome features of programming languages goes by the name of 

recursion.  You'll experience this “awesomeness” by writing short, simple, and 

understandable algorithms that solve very complicated problems.  You might even find 

yourself giddy with joy or feeling a sense of amusement.  One thing is for sure — you'll 

know that the force is with you. 

 

What Is It? 

The word recursion derives from the word recur, and one of the meanings of recur is to 

occur, or appear, again.  In programming languages, recursion refers to methods where 

the method body makes one or more calls to the method itself.  Here's what this looks 

like:  



 Recursion 1 - 2 

    private static void P (  
      some parameter list goes here 
     ) 
    { 
     … 
     P(some arguments go here); 
     … 
    } 
 

So, a call to the method P executes the body of P, which also calls P, so that calls to P 

recur. 

 

Feel the Force 

In order to be an effective user of recursion when developing recursive algorithms, you'll 

need to do two things: 

1. See recursive structure in the values of an method's parameters. 

2. See how to leverage this recursive structure into a recursive algorithm. 

In short, you'll need to see, in your mind's eye, things that you may have never seen 

before.  (By seeing with your mind's eye, we mean that seeing is not necessarily seeing 

literally with your eye.  The "seeing" can be just in your mind.) 

  

What Is Seeing Recursive Structure? 

Seeing recursive structure is not looking at something.  Rather, it is looking into 

something and seeing, within, smaller things, just like the thing at which you are looking.  

For example, imagine in your mind a big, sweet, juicy onion.  Imagine “peeling off” just 

the outer layer of that onion.  Now what do you see?  Do you see another onion, only 

smaller?  In your mind, you have looked into an onion and have seen a smaller onion; 

you have seen the recursive structure of onions— onions within onions. 

 

Normally software does not perform computations on onions.  But there are plenty of 

examples of computational things that do have recursive structure.  We'll look at three 

examples.  Each example is presented as a picture, and is suggestive of the type of picture 

you might want to form in your mind's eye. 

The body of P 
makes a call to P 



 Recursion 1 - 3 

Binary-Splitting Trees 

Here's a picture of an exotic plant form that we'll call a binary-splitting tree. 

 

 

 

 

 

 

 

 

A Binary-Splitting Tree— An Exotic Plant 

 

If we look into this tree, we can see recursive structure.  There is a main trunk, with two 

branches sprouting out to the right and left of the main trunk, each at a 45-degree angle to 

the main trunk.  But these two branches are just the main trunks for two smaller binary-

splitting trees, where the main trunks for these two smaller trees are each half as long as 

the main trunk from which they sprouted, and so on.  The next figure helps us to capture 

this recursive structure. 

 

 

 

 

 

 

 

 

 

 

 

 

Recursive Structure of a Binary-Splitting Tree 

main trunk 

this outer circle 
contains a binary-
splitting tree 

these two smaller inner 
circles contain the two 
smaller binary-splitting 
trees sprouting from the 
main trunk 



 Recursion 1 - 4 

Character Strings 

Consider a character string named s:  

 

 

 

 

 

 

Recursive Structure of a Character String 

 

 

The larger, outer box in this picture contains a character string.  If we “peel off” the first 

(left-most) character of the character string, indicated by the circle, we are left with the 

rest of the character string, which is just another character string.  The smaller, inner box 

indicates this smaller character string.  So, if we look into a character string, we can see a 

smaller character string.  In this way, we can see recursive structure in character strings— 

character strings within character strings. 

 

R1-1. If s is a String variable, how would you separate (or extract) 

the first character and the rest of the String? Write Java statements 

that print the first character and the rest of the String to a given 

SimpleWriter variable named out. 

R1-2. Think of another way to see recursive structure in character strings.  Draw a 

circle/box picture illustrating your idea. 

 

 

 

 

Still Awake? 

s =  

the first 
character 
in s 

the rest 
of s 

all of s 



 Recursion 1 - 5 

Natural Numbers 

Consider a natural number named n:  

 

 

 

  

 

 

Recursive Structure of a Natural Number 

 

 

The larger, outer box in this picture contains a natural number.  If we “peel off” the last 

(right-most) digit of the natural number, indicated by the circle, we are left with the rest 

of the natural number, which is just another natural number.  The smaller, inner box 

indicates this smaller natural number.  So, if we look into a natural number, we can see a 

smaller natural number.  In this way, we can see recursive structure in natural numbers—

natural numbers within natural numbers. 

 

R1-3. If n is a NaturalNumber variable, how would you separate 

(or extract) the one’s digit and the rest of the number? Write Java 

statement that print the one’s digit and the rest of the number to a 

given SimpleWriter variable named out. 

  

 

Still Awake? 

n =  

the rest of 
the number: 
n / 10 

the one’s 
digit of n: 
n mod 10 

all of n 



 Recursion 1 - 6 

What Does It Mean to Leverage Recursive Structure?  

We've just considered three examples of seeing into things to reveal recursive structure.  

You might still be wondering, "Why bother?"  Well, the only reason to look for recursive 

structure is to determine whether seeing recursive structure can help to develop nice 

algorithms to accomplish computational tasks.  Let's consider three examples to get some 

understanding of what it might mean to use a view of recursive structure to develop an 

algorithm.  

 

Drawing a Binary-Splitting Tree  

Suppose we need to implement a method to draw a binary-splitting tree.  Further, let's 

suppose the method uses a couple of parameters, such as "drawing pen" that is located at 

some screen location and pointing in a specific direction, and a length (in screen units) 

for the main trunk of the tree to be drawn.  We have seen that a binary-splitting tree 

consists of a main trunk and two smaller binary-splitting trees that sprout from the main 

trunk.  Can we leverage this recursive structure to develop an algorithm to draw a binary-

splitting tree?  Well, ask yourself this question: If the drawing method could get a helper 

to display the two, smaller binary-splitting trees, could the drawing method take 

advantage of this generous offer to make drawing the entire tree an easy task?  It's a no 

brainer!  The drawing method would draw the main trunk, locate the drawing pen at the 

base of the main trunk of the smaller right-sprouting tree, point the drawing pen in the 

proper direction, and ask the helper to draw the smaller right-sprouting binary-splitting 

tree.  When the helper finishes, the drawing method would then locate the drawing pen at 

the base of the main trunk of the smaller left-sprouting tree, point the drawing pen in the 

proper direction, and ask the helper to draw the smaller left-sprouting binary-splitting 

tree.  As soon as the helper finishes, we're all done! 

 

In this little exercise, we asked the question: If the drawing method could get a helper to 

display the two, smaller binary-splitting trees, could the drawing method take 

advantage of this generous offer to make drawing the entire tree an easy task?  With 

just a little thought, the answer is YES!  Because the answer is yes, we can now proceed 

knowing that our particular view of recursive structure is helpful.  (In case you are 



 Recursion 1 - 7 

wondering, when the recursive algorithm is developed, the "helper" will turn out to be a 

recursive call to the very algorithm we are developing.  That's fun!)  On the other hand, if 

we could not see how to use the generous offer to make drawing a tree easy, then we 

either abandon the idea of using recursion in a solution, or we look for another view of 

recursive structure that might be more helpful.   

 

R1-4. Using the ideas just discussed, give a skeleton of a recursive 

body for a method to draw a binary-splitting tree.  Remember, the 

"helper" is replaced with recursive calls to the drawing method.  Do 

you see the need for a third parameter in addition to the drawing pen 

and the length of the main trunk? 

 

Reversing a Character String 

Suppose we need to implement a method, called reversedString, which returns the 

reverse of a given character string, e.g., given "abcd", it returns "dcba".  We have 

seen that a character string consists of a first character followed by the smaller, rest-of-

the character string.  How can we leverage this recursive structure into an algorithm for 

reversedString? Well, ask yourself this question: If the reversing method could get 

a helper to reverse the smaller character string, could the reversing method take 

advantage of this generous offer to make reversing the entire character string an easy 

task?  Again, it's a no brainer!  reversedString could remove the first character, ask 

the helper to reverse the rest of the character string, and, when the helper is done, add the 

removed first character to the right end of the reversed character string.  That's it, 

reversedString is all done.  

 

In this little exercise, we asked the question: If the reversing method could get a helper 

to reverse the smaller character string, could the reversing method take advantage of 

this generous offer to make reversing the entire character string an easy task?  With 

just a little thought, the answer is YES!  Because the answer is yes, we can now proceed 

knowing that our particular view of recursive structure is helpful. 

 

 

Still Awake? 



 Recursion 1 - 8 

Incrementing a Natural Number 

Suppose we need to implement a method to increment a natural number. We have seen 

that after removing the one’s digit, we are left with a smaller, rest-of-the number.  Can 

we leverage this recursive structure to develop an algorithm to increment a natural 

number?  Well, ask yourself this question: If the increment method could get a helper to 

increment the smaller number, could the increment method take advantage of this 

generous offer to make incrementing the original number an easy task?  Once again, 

it's a no brainer!  The display method would remove the one’s digit from the natural 

number, add 1 to the digit, check whether this results in a carry, and if it does, ask the 

helper to increment the smaller number, and, when the helper is finished, put back the 

updated one’s digit.  That's it!   

 

In this little exercise, we asked the question: If the increment method could get a helper 

to increment the smaller number, could the increment method take advantage of this 

generous offer to make incrementing the original number an easy task?  With just a 

little thought, the answer is YES!  Because the answer is yes, we can now proceed 

knowing that our particular view of recursive structure is helpful. 

 

 

R1-5. Using the ideas just discussed, give a skeleton of a recursive 

body for a method to increment a natural number. Remember, the 

"helper" is replaced with recursive calls to the increment method. 

 

Replacing the Helper With a Recursive Call— What's Up 

With That? 

We just considered three little exercises that involved thinking up algorithms for 

methods, where the algorithms made use of helpers.  By replacing calls to the helpers 

with recursive calls (calls to the same method), our helper-assisted methods become real 

methods.  With just a little thought, the idea of replacing helpers with recursive calls 

makes a lot of sense.   

 

Still Awake? 



 Recursion 1 - 9 

 

Consider the drawing method for arbitrary binary-splitting trees.  The helper was used to 

draw the two smaller binary-splitting trees sprouting from the main trunk.  But, the 

drawing method itself handles the task of drawing arbitrary binary-splitting trees, so 

why not ask the drawing method itself to draw the two smaller binary-splitting trees?  

When we do this, the result is a recursive method body that makes two recursive calls to 

the method itself.  The only thing different is that in the recursive calls, the binary-

splitting trees to be drawn are smaller.   

 

Consider the reversing method for arbitrary character strings.  The helper was used to 

reverse the smaller character string obtained by removing the left-most character of the 

original character string.  But, the reversing method itself handles the task of reversing 

an arbitrary character string, so why not ask the reversing method itself to reverse the 

smaller character string?  When we do this, the result is a recursive method body that 

makes one recursive call to the method itself.  The only thing different is that in the 

recursive call, the character string to be reversed is smaller. 

 

R1-6. Provide a similar justification for replacing the helper, in the 

natural number increment method, with a recursive call to the 

increment algorithm itself.  

 

A Process for Developing Recursive Algorithms 

Now that you have a sense of the force, it's time to do some serious 

training.  This training will help you use recursion as effectively as 

possible.  Training involves mastering a five-step process for 

developing recursive algorithms for methods.  So, assume that your 

task is to implement a method and that you intend to use recursion 

to get it done. 

 

 

Still Awake? 

 



 Recursion 1 - 10 

 

A Process for Developing Recursive Method Bodies 

 

1. Use pictures to visualize appropriate recursive structure for the incoming values of 

the method's parameters. 

2. Verify that the visualized recursive structure can be leveraged into an implementation 

for the method. 

3. Use pictures to visualize a recursive implementation. 

4. Write a skeleton for the method body describing informally the recursive 

implementation visualized in step 3.  

5. Gradually refine the skeleton into a method body. 

 

In this process, we are taking the phrase "seeing recursive structure" literally, by actually 

drawing, in step 1, a picture of recursive structure.  Please remember that as you gain 

familiarity with recursion, you might take the phrase less literally. 

An Example 

Let's put the process to work on the following method: 

/** 

 * Reverses a String. 

 * 

 * @ensures <pre> 

 * {@code reversedString = rev(s)} 

 * </pre> 

 */ 

private static String reversedString(String s) {. . .} 

(The little math function rev indicates the reverse of a string.  For example, 

rev("1234")="4321".)  Our job is to implement reversedString and we want 

to use recursion to get the job done. 



 Recursion 1 - 11 

R1-7. Before proceeding, see if you can give a skeleton for a recursive 

method body for reversedString, based on the ideas discussed 

earlier. 

 

 

Step 1 — Visualize Recursive Structure 

reversedString has single parameter s of type String.  How can we see into a 

character string and discover recursive structure?  Let's try our earlier idea and view the 

incoming value of s as: 

 

 

 

 

 

 

This looks pretty good, except that the incoming value of s may be the empty string.  In 

this case, the picture is pretty silly because there is no first character (to fill the circle) in 

s, because there are no characters in s at all.  So, let's be just a bit more careful with our 

visualization of the incoming value of s: 

 
Non-smallest values for s:  

 

 

 

 

Smallest values for s: 

 s = empty_string 

 

 

Still Awake? 

s = 

first character of s rest of s 

s = 

first character of s rest of s 

Notice 
the two 
sections 
of this 
picture. 



 Recursion 1 - 12 

Often, smallest values are referred to as base values or base-case values. Notice the 

picture has two sections, one for smallest and one for non-smallest values.  This will 

always be the case for all pictures for step 1. 

Step 2 — Verify That Leveraging is Possible 

This is a crucial step. If things do not go well here, then we must head back to step 1 and 

try again.  We can move on to step 3 only after our confidence is certain. 

 
How do we get our confidence?  Just ask and answer the question we asked earlier: If the 

reversing method could get a helper to reverse the smaller character string, could the 

reversing method take advantage of this generous offer to make reversing the entire 

character string an easy task?  As before, reversedString could remove the first 

character, call the helper to reverse the rest of the character 

string, and then add the removed first character to the right 

end of the reversed character string.  This looks very 

promising, so we are confident of being on the right track.   

Let's move on. 

 

Step 3 — Visualize a Recursive Implementation 

Here's a visualization of our answer to the question from step 2.  Notice that 

reversedString is used as the helper for itself. 

  

 



 Recursion 1 - 13 

 

rs = reversedString(s): 

Processing non-smallest incoming values for s:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Processing smallest incoming values for s: 

 s = empty_string; just return s 

 

 

Let's see what's in this picture: 

1. In the upper left corner, there's the method call reversedString(s).  In these 

pictures, always include a method call for the method being implemented.  Because 

reversedString returns the reversed character string, we show the returned value 

being assigned to a new variable. 

s = 

1: extract the substring of s that 
starts with the second character 

2: reverse the substring by 
calling reversedString to do it 

3: add the first character of s to the right 
end of the reversed substring 

name of method 
being implemented section to 

process non-
smallest values 

section to process 
smallest values 

4: return the reversed string 

c0   c1 c2 c3 … ck-1 ck

c1 c2 c3 … ck-1 ck

ck ck-1 … c3 c2 c1   c0



 Recursion 1 - 14 

2. Next comes the processing of non-smallest values.  The process pictured here reflects 

our ideas from step 2.  To draw this section, start with a picture of non-smallest 

values from step 1.  Annotate the picture with actions.  Normally, this will involve at 

least three actions: 

2.1. There should be an action or actions showing how input values (the outer box) 

are transformed to obtain smaller input values (the inner box).  In the picture, 

this is the action labeled with 1: extract the substring of s that starts with the 

second character.   

2.2. There should be an action or actions annotated with explicit indications of one 

or more recursive calls to the method being implemented.  These calls apply the 

method to smaller input values (the inner box).  In the picture, action 2 includes 

calling reversedString to reverse the substring of s.   

2.3. There should be some indication of how the solution for smaller input values 

(the inner box) is used to arrive at a solution for original input values (the 

outer box).  In the picture, this is the action labeled 3 that adds the first character 

of s to the right end of the reversed substring.   

3. Last is a section describing the processing of smallest input values.  This is a separate 

section because smallest values are normally processed differently than non-smallest 

values. 

 

Step 4 — Write a Skeleton 

Here's a skeleton that captures the ideas from step 3. 

reversedString(s) { 
 if (s is not the empty string) { 
  // process non-smallest values  
  extract the substring of s that starts with the 
   second character; 
  reverse the substring by calling reversedString to do it; 
  add the first character of s to the right end of the 
   reversed substring; 
 } else { 
  // process smallest values 
  return s; 
 } 
} 
 

 



 Recursion 1 - 15 

The form or structure of this skeleton is a cliché — almost every recursive method body 

will have the same structure: 

someMethod(…) { 
 if (input does not have a smallest value) { 
  // process non-smallest values 
  // code to process non-smallest values goes here 
 } else { 
  // process smallest values 
  // code to process smallest values goes here 
 } 
} 
 

Pretty simple, eh?  By the way, processing smallest values is often referred to as 

processing the base case.  

 

Step 5 — Refine the Skeleton Into a Method Body 

Working straight from the skeleton, here's a body for the reversedString method: 

private static String reversedString(String s) { 
 if (s.length() > 0) { 
  // process non-smallest values 
  String sub = s.substring(1); 
  String revSub = reversedString(sub); 
  String result = revSub + s.charAt(0); 
  return result; 
 } else { 
  // nothing to do for smallest values, except returning s 
  return s; 
 } 
} 
 

 

R1-8. In an earlier Still Awake? exercise, you described another way 

of seeing recursive structure in text strings. Complete the 5-step 

process for developing recursive methods bodies to arrive at a second 

implementation of reversedString, based on your earlier idea. 

  

 

Still Awake? 



 Recursion 1 - 16 

Training Completed 

Well, that's the end of training camp for developing method 

bodies that use recursion.  Go forth and practice now you 

must.  The force to use remember. 

 

Unit Wrap-up 

Comments appearing in the next figure ARE FUNDAMENTALLY IMPORTANT.  

Make sure you understand them completely.  Put them into an accessible, long-term part 

of your memory! 

 

If your task is to develop an algorithm to implement a method, and if you intend to use 

recursion in the method body, then you must 

 Identify recursive structure in the data to be processed. 

 Understand how to arrive at simple algorithm for the task at hand by making use of 

the identified recursive structure.  

   

 

 

 

 

 

 

  

This is FUNDAMENTALLY important!  Make 

sure you understand it completely! 


