Iteration

Preview of Coming Attractions

In this unit be sure to look for

- a five-step process for developing while statements
- tracing while statements

The Need to Get Your Act Together

As you probably know already, developing a while statement can require a great deal of care. Because the body of a while is executed repeatedly, a single mistake can come back to haunt us not just once, not just twice, but an untold number of times! That's serious.

In order to help keep you out of trouble, we'll explain a somewhat general process for developing while statements. The process is informal, intuitive, sensible, straightforward, and helpful. If you find yourself facing a particularly difficult while statement, fall back on the process and let it help you out.

A Process for Developing While Statements

1. Make sure you understand what is given to the while statement and what its goal is. (You should think of the goal as what the while statement is supposed to accomplish.) In particular, make sure you understand what must be true of variable values
1.1 as execution first reaches the while statement
1.2 upon successful completion of the while statement.
(You might think of 1.1 as a precondition or "requires" for the while and think of 1.2 a postcondition or "ensures" for the while.)
2. Think of an action that, if repeated a sufficient number times, will accomplish the goal of the while statement. The action will eventually morph into the body of the while statement and may consist of several steps.
3. Think of an appropriate continuation condition to go with the action from step 2.
4. Write a skeleton of the while statement using an informal statement of the continuation condition from step 3 and an informal expression of the action, from step 2 , for the body of the while.
5. Gradually refine the skeleton into the final while statement.

A First Example

Let's see how the process works on a real example. Informally, the problem is, given variable int n and variable double approx, assign to approx the summation of the first n terms in $(1 / 1)+(1 / 3)+(1 / 5)+(1 / 7)+\ldots$. To get started, notice that iteration is necessary here because the number of terms to be added is not fixed, but rather depends on the value of n.

Step 1 - Understand the Given and the Goal

Variables n and approx are given. n determines the number of terms to be added together. Let's assume that at least one term should appear in the summation; otherwise, there really isn't much to do. So we assume that $\mathrm{n}>=1$ when execution reaches the while statement. For now, we really don't care what value approx has when execution reaches the while statement, because the while statement will produce a value for approx.

When the while statement is finished, let's ensure that n has the same value as before the while and ensure that approx has, for its value, the appropriate summation.

Step 2 - Think of an Appropriate Repeatable Action

We need to compute the sum of n terms. So, one obvious piece of the action will be to add another term to approx. But, the terms aren't there for the picking - they must be computed. Hence, another piece of the action will be to compute another term. Let's compute and add the terms in the order $(1 / 1)$, then $(1 / 3)$, then $(1 / 5)$, and so on. It looks like our action sequence is:
compute the next term and add it to approx

Step 3 - Think of a Continuation Condition

The action from step 2 can be repeated as long as there are additional terms to be computed and added to approx. So, the continuation condition will be something like there are more terms to process

Step 4 - Write a Skeleton

Given the action sequence and continuation condition from steps 2 and 3, here's a simple skeleton:


```
while (there are more terms to process) {
    compute the next term and add it to approx;
}
```


Step 5 - Refine the Skeleton Into a While Statement

The skeleton does a nice job of getting us organized. Now we just need to add some flesh to the bones by growing some good code. Adding the terms, one at a time, to approx should be easy. The more interesting challenge is computing the next term. For this problem, a little notation defining the terms goes a long way: $t_{1}=(1 / 1)$ defines the first term; $t_{2}=(1 / 3)$ defines the second term; $t_{3}=(1 / 5)$ defines the third term, and so on. Can you see the pattern? What defines the i-th term? It looks like for all $i \geq 1$, $t_{i}=(1 /(2 i-1))$.

To take advantage of this insight, let's introduce a new variable for the while loop of type int and call it termNum. termNum will be used to keep track of the number of the current term being processed. To be very precise, we'll make sure that the while statement has the following key property:

The body of the while statement will need to make sure that the value of termNum is properly updated. And, the continuation condition now can be stated formally as termNum < n.

Putting these ideas together, here is the first version of the while statement:

```
while (termNum < n) {
    // adjust the value of termNum
    termNum = termNum + 1;
    // compute the next term and add it to approx
    approx = approx + (1.0 / (2 * termNum - 1));
}
```

We're almost there. The last detail concerns possibly setting the values of the variables just prior to the while statement. Remember the key idea: EVERY TIME execution reaches the continuation condition of the while statement the value of termNum must be the number of the last term computed and added to approx and approx must be the corresponding summation. This includes the very first time execution reaches the continuation condition, even before the body of the while statement has been executed even once. So, which term should be processed just before the very first time execution reaches the continuation condition? The simplest thing is to process term $t_{1}=(1 / 1)$ only just prior to the while statement. This leads to:

A Final Solution

```
int termNum = 1; // processing term t1
double approx = 1.0; // approx = t1
while (termNum < n) {
    // adjust the value of term_num
    termNum = termNum + 1;
    // compute the next term and add it to approx
    approx = approx + (1.0 / (2 * termNum - 1));
}
```


Still Awake?

10-1. Explain why the value of approx should be set to 1.0 just prior to the while statement. Consider the key property.

10-2. Would it be okay to use termNum <= n for the continuation condition? Explain your answer.

10-3. Could the final solution start with approx $=0.0$ just before the while statement? If so, explain what other changes would have to be made to the final solution and why.

10-4. The final solution computes and sums the terms in the order $t_{1}, t_{2}, t_{3}, \ldots$. Develop another while statement that solves the same problem by computing and summing the terms in the order $\ldots, t_{3}, t_{2}, t_{1}$.

10-5. In the sequence of terms (1/1),(1/3),(1/5),(1/7),... the denominators are $1,3,5$, 7, Suppose that we had an additional variable of type int named denominator and that we ensured that, every time execution reached the continuation condition, the value of denominator was equal to the denominator of the last term computed and added to approx. Develop another while statement that solves the same problem using the denominator variable.

A Second Example

The second example uses the SimpleReader and String components. Informally, for this problem, we are given a SimpleReader variable named input connected to a file that contains a sequence of number, string pairs, and the task is to count how many of these pairs have the property that the number is equal to the length of the string. Iteration is necessary here because the number of pairs to be considered is not fixed, but rather depends on the value of file to which input is connected.

Step 1 - Understand the Given and the Goal

Variable input is given and has been connected to a file that contains the number, string pairs. Let's assume that the format of this file is a sequence of lines organized as:

```
n1
string1
n2
string2
n3
string3
...
nk
stringk
```

for some $\mathrm{k}>=0$. (If $\mathrm{k}=0$, then the file is empty; that is, the file contains no pairs.) Let's also assume that we have a variable of type int named count that we will use to store the number of pairs to be counted.

When the while statement is finished, let's ensure that all pairs have been read from input so that input is empty and ensure that count has, for its value, the number of (n , string) pairs where $\mathrm{n}=$ length of string.

Step 2 - Think of an Appropriate Repeatable Action

The repeatable action for this problem is fairly obvious
get the next number and string from input
increment count if the number matches the length of the string

Step 3 - Think of a Continuation Condition

The action from step 2 can be repeated as long as there are additional pairs to read from input; that is, as long as input is not empty. So, the continuation condition will be something like
input is not empty

Step 4 - Write a Skeleton

Given the action sequence and continuation condition from steps 2 and 3, here's a simple skeleton:

Step 5 - Refine the Skeleton Into a While Statement
To get a number-string pair from input, we need two new variables, say n of type int and str of type String. Then, the statements

```
n = input.nextInteger();
str = input.nextLine();
```

can be used to get another number and string. The length operation for String variables can be used to check whether the pair satisfies the required property. The key property for our solution will be:

Abstract

EVERY TIME execution reaches the continuation condition of the while statement, the value of count will be exactly the number of pairs that have been read from input and that satisfy the required property.

To state the continuation condition, we use the atEOS operation for SimpleReader variables. This operation is specifically designed to test for emptiness. Applied to input, the operation call is input. atEOS(), which you can read as "input is at the end of stream".

Here's the first version of the while statement:

```
while (! input.atEOS ()) {
    // get the next number and string
    n = input.nextInteger();
    str = input.nextLine();
    // check if n is equal to the length of str
    // and if it is increment count
    if (n == str.length()) {
        count = count + 1;
    }
}
```

Once again, we need to make sure that the key property holds the very first time execution reaches the continuation condition before the body of the while statement has been executed even once. Just prior to the while, no pairs have been read from input, so count should be 0 .

```
A Final Solution
int count = 0; // nothing counted yet
while (! input.atEOS ()) {
    // get the next number and string
    int n = input.nextInteger();
    String str = input.nextLine();
    // check if n is equal to the length of str
    // and if it is increment count
    if (n == str.length()) {
        count = count + 1;
    }
}
```


Still Awake?

10-6. If the variables n and str were declared before the while loop, what values should they be initialized to? Why?
10-7. Explain how you would modify the problem statement and had two integers and a string, and you needed to count how many 3-tuples have the property that the length of the string is between the two integers.

Tricky Tracing Ahead

Tracing while statements is a double-edged sword. Because the details of while statements can be quite intricate and difficult to get right, tracing on sample values would appear to be an attractive idea. However, because the values of variables can change each time the body of the while is executed, tracing while statements can be very tricky. Great care is needed to make sure that unexpected results during tracing are due to a mistake in the while-statement design and
 not due to erroneous tracing!

A systematic, though tedious way to trace while statements is to use the "cross 'em out" technique. For each iteration of the body of the while, the values of the variables from the previous iteration are crossed out and new values recorded beside the old. Here's an example, where variables x, y, and m are of type int. (Note: the '\%' operator is the Java remainder operator. For instance, $10 \% 3$ is 1 because 10 divided by 3 leaves a remainder of 1.)

Statement	Variable Values
	$\begin{aligned} & \hline x=21 \\ & y=15 \\ & m=2917 \end{aligned}$
while (y ! = 0) \{	
	$\begin{array}{lll} \mathrm{x}=21 & 15 & 6 \\ \mathrm{y}=15 & 6 & 3 \\ \mathrm{~m}=2917 & 6 & 3 \end{array}$
$\mathrm{m}=\mathrm{x}$ \% y ;	
	$x=21$ 15 6 $y=15$ $\not 6$ 3 $m=\varnothing 6$ $\not 3$ 0
$x=y ;$	
	$\begin{array}{lll} x=15 & \varnothing & 3 \\ y=15 & 6 & 3 \\ m=\varnothing 6 & 0 & 0 \end{array}$
$y=m ;$	
	$x=15$ $\boxed{1}$ 3 $y=\not 0$ $\not 2$ 0 $m=\varnothing 6$ β 0
\}	
	$\begin{aligned} & \mathrm{x}=3 \\ & \mathrm{y}=0 \\ & \mathrm{~m}=0 \\ & \hline \end{aligned}$

Unit 10-10

10-8. Complete the following tracing table. Variables x, y, and q are of type int.

Still Awake?

Statement	Variable Values
	$\begin{aligned} & \hline x=103 \\ & y=32 \\ & q=0 \\ & \hline \end{aligned}$
while (x >= y) \{	
	$\begin{aligned} & x= \\ & y= \\ & q= \end{aligned}$
$x=x-y ;$	
	$\begin{aligned} & x= \\ & y= \\ & q= \\ & \hline \end{aligned}$
$q++; \quad / / \mathrm{q}=\mathrm{q}+1$	
	$\begin{aligned} & x= \\ & y= \\ & q= \end{aligned}$
\}	
	$\begin{aligned} & x= \\ & y= \\ & q= \end{aligned}$

Unit 10-11

