
 Unit 4 - 1

Unit 4: Client View of a Component — Methods

Preview of Coming Attractions

In this unit be sure to look for

• method/operation
• parameters/formal parameters
• arguments/actual parameters
• method header/method signature/method prototype
• updates parameter mode
• method contract
• requires clause/ensures clause
• distinguished parameter/distinguished argument/receiver
• procedure and function
• tracing tables
• how to call functions

Where We’ve Been, Where We’re Going

We are learning about a proper way to describe

components to component clients. Here’s what we

know so far:

• Clients need to understand what a component can

do and how to use it, and do not need to understand

how the component does what it does.

• To use a component, clients declare variables described by a component type,

initialize the variables with a value of the component type, and then use the variables.

• To understand a variable and how to use it, clients need to understand the interface;

that is, the values the variable can assume and the methods, sometimes called

operations that can be applied to the variable/value.

• To describe the values a variable can assume, we define a mathematical model for the

abstract state space of the component type (the abstract values the variable can store).

That’s where we’ve been, using an am-pm-clock component as a working example.

What we’ll do next is to learn about a proper way to describe the methods that can be

 Unit 4 - 2

applied to a variable, and we will continue to use the clock example. When that’s done,

we’ll have a good understanding of how components are described to clients.

The Before and the After

When components come from a catalog, they come equipped with a set of methods that

can be applied to variables described by the component. Generally, methods are used to

change the values of variables, so what clients need to understand is how a method

changes the values of variables. (It should be as plain as day that there is no way that

clients can understand the changes methods make to the values of variables if they don’t

understand what values the variables can assume! That’s why we first carefully define

the mathematical type that is used to model the programming type for the component.)

The essential idea of a method is simple:

• A method has a fixed number of parameters, sometimes called formal parameters or

just formals.

• Clients supply a method with “incoming” values (often in the form of variables),

called arguments, sometimes called actual parameters, which correspond to the

parameters.

• Depending on the incoming values, the method performs its task and may change the

values of the variables resulting in “outgoing” values for some of the client’s

variables.

That’s it. So, our descriptions of methods will describe:

• the number and types of the formal parameters

• the allowable incoming values of the client-supplied variables

• the resulting outgoing values of the client-supplied variables.

4-1. Carefully consider what kinds of methods you’d like to have

available for a clock variable. What do you think a client should be

able to do with a clock variable?

Still Awake?

 Unit 4 - 3

Describing Methods – An Example

The first method we’ll look at is a method that can be used to set the hours of a clock

variable. The figure titled “Client Description of setHours for AMPMClock” provides

the description for this method.

Client Description of setHours for AMPMClock

// CONTINUATION OF AMPMClock

 void setHours(int newHours)

 Sets this.hours to newHours.

 Parameters:

 newHours – the new hours for this

 Updates:

 this.hours

 Requires:

 1 <= newHours <= 12

 Ensures:

 this.hours = newHours

// AMPMClock TO BE CONTINUED...

There is quite a bit to understand in this little method description, so we’ll take our time

and discuss it carefully.

setHours is the name of the method

the parameter list

Requires signifies a precondition
clients must meet

Ensures signifies a postcondition
the method must meet

method header

method contract

Updates lists the parameters
that may be modified

 Unit 4 - 4

The Method Header

The line
void setHours(int newHours)

is called the method header or method signature or method prototype. It specifies the

name of the method and the parameter list. The name is setHours, appearing just after

the keyword void. (The keyword void indicates that this method is a procedure, i.e., it

does not return a value explicitly.) In this case the parameter list contains a single

parameter and has the following structure:

Anatomy of the Parameter List

 int newHours

 type of name of
 parameter parameter

Note that there is no code here. The actual implementation of the method setHours

will appear in some other component (a class). This is just what we want, since the

component AMPMClock presents a client view of the method setHours, and clients do

not need to know how methods do what they do. (The code that actually implements a

method is called the method body.)

The Method Contract

The second crucial piece of the client description of setHours is the specification

Updates:

 this.hours

Requires:

 1 <= newHours <= 12

Ensures:

 this.hours = newHours

 Unit 4 - 5

describing a contract between clients of setHours and the setHours method

itself. To get you into the spirit of things, here is another example of a contract:

requires

 students show up for class, stay awake, and ask questions

ensures

 the instructor delivers an incredible lecture

Contracts are agreements between clients of a service and providers of the service.

Contracts have two parts: the requires clause specifies obligations that clients must meet

and the ensures clause specifies obligations providers must meet. There is a little catch,

however. Providers are obligated to meet their obligations only if clients meet their

obligations. In the second example, the obligation of the students (the client) is to come

to the class, to stay awake, and to ask questions. If students meet their obligations, the

instructor (the provider) is then obligated to deliver an incredible lecture. On the other

hand, if the students do not show up for class or fall asleep in class or sit there like bumps

on logs, the instructor can do anything she wants, since she is no longer bound to her

obligations. So, the instructor might deliver an incredible lecture, or she might tell the

story of Goldilocks and the Three Bears, or she might go to aerobics.

In the case of methods, the requires clause specifies conditions that incoming parameter

values must satisfy. Since clients provide incoming values, this is an obligation of the

client. The ensures clause specifies conditions that outgoing parameter values must

meet. This is the obligation of the method. Of course, if a client provides incoming

parameter values that do not satisfy the requires clause, then the method can supply

anything it wants for outgoing values, or it might even fail to terminate its execution!

As you might expect, the operation setHours can be used to set the hours of an am-pm

clock. Clients supply the desired new value for the hours through the formal parameter

newHours. This explains the client obligation for the incoming value of newHours:

 Unit 4 - 6

Requires:

 1 <= newHours <= 12

Assuming that a client supplies a good value for newHours, method setHours should

change the value of the clock so that its hours are the same as the incoming value of

newHours. But what clock variable is to be changed? There is no clock parameter in

the parameter list! Well, at least not explicitly. The operation setHours is specified in

the interface AMPMClock and is considered to be an instance method. Instance methods

must be applied to variables of a component type. This means that clients must invoke the

operation setHours with a statement like myClock.setHours(myHours) or like

yourClock.setHours(yourHours), where myClock and yourClock are

variables of a component type, described by AMPMClock, to which setHours will be

applied. (More intuitively, they are the clocks whose values are to be changed.) So,

myClock and yourClock are actually additional arguments in the call to method

setHours, but they appear just before the name of the method. In the contract for a

method, the distinguished parameter is implicit and always goes by the name this. In a

client call, the distinguished argument appears explicitly (e.g., myClock or

yourClock above). The distinguished argument is also called the receiver of the

method call.

We’re all set to examine the obligation of the setHours method:

Ensures:

 this.hours = newHours

The assertion this.hours = newHours just says that the outgoing value of

this.hours will be the (outgoing) value of newHours. (Remember that this refers

to a variable described by AMPMClock and that values of variables described by

AMPMClock are 4-tuples.) But, you might ask, what about the outgoing values of

this.minutes, this.seconds, and this.am? Clearly setHours is not

supposed to change the minutes, seconds, and am/pm indicator of the given clock and our

 Unit 4 - 7

contract would be incomplete if we did not explicitly state that they cannot change. Here

is where a convention comes into play. Any arguments that might be changed by a

method must be listed in the contract under a heading that describes how they might be

changed. Observe these lines in the contract:

Updates:

 this.hours

Updates is known as a parameter mode. It simply says that the parameters listed after it

may be modified by the method and usually we’ll look at the ensures clause to see how

they might be modified. In this case, the only argument listed is this.hours and this

indicates that setHours is only allowed to modify the value of this.hours. In other

words, the other arguments (or parts of the other arguments) must have the same

outgoing value as their incoming value: this.minutes, this.seconds, this.am,

and newHours all have the same value after the call to setHours that they had before

the call. Again, this is a convention that we will follow in all our descriptions of

components. (Later on we will see that there are a few other parameter modes, e.g.,

Replaces and Clears, describing other kinds of modifications that can occur to

parameters.)

There is one more important aspect of the contract for setHours that we should

discuss. Whenever a parameter is mentioned in the requires clause, the name clearly

refers to the incoming value of the parameter. For example, in the assertion 1 <=

newHours <= 12, we are imposing a constraint on the value provided by the client,

i.e., the incoming value of newHours. The requires clause never talks about the

outgoing value of any of the parameters. However, in the ensures clause where we

usually want to describe the outgoing values of those parameters that can be modified by

the method, sometimes we may need to refer to the incoming value of some of the

parameters as well. How can we distinguish an incoming value from an outgoing value?

We simply add a ‘#’ symbol at the front of the name of the parameter to refer to the

incoming value, and assume that when no ‘#’ is present, we are referring to the outgoing

value. As an example of this notation, if we had wanted to explicitly state in the ensures

 Unit 4 - 8

clause of setHours that the value of this.minutes was not going to change, we

could have written it as
this.minutes = #this.minutes

simply saying that the outgoing value of this.minutes is equal to the incoming value

of the minutes of this, written as #this.minutes.

4-2. How do we know that variables described by AMPMClock have

values that are 4-tuples?

4-3. Do you think that requires clauses are concerned with incoming

values or with outgoing values of parameters? Explain. If your

answer is incoming values, explain why the requires clause for setHours is not

specified as 1 <= #new_hours <= 12.

4-4. Suppose that myClock = (11,25,48,true) and that newHours = 3.

What will be the value of myClock and newHours after the method call

myClock.setHours(newHours)?

Three More "Set" Methods

An am-pm-clock component will need also methods to set the minutes, seconds, and am

parts of a clock variable. Here are the specifications of two of these methods. The third

method is left for you to specify.

Still Awake?

 Unit 4 - 9

Client Description of setMinutes and setAM Methods

// CONTINUATION OF AMPMClock

 void setMinutes(int newMinutes)

 Sets this.minutes to newMinutes.

 Parameters:

 newMinutes – the new minutes for this

 Updates:

 this.minutes

 Requires:

 0 <= newMinutes <= 59

 Ensures:

 this.minutes = newMinutes

// --

 void setAM(boolean am)

 Sets this.am to am.

 Parameters:

 am – the new am for this

 Updates:

 this.am

 Ensures:

 this.am = am

// AMPMClock TO BE CONTINUED...

 Unit 4 - 10

4-5. Give the complete client description of setSeconds.

4-6. Suppose that myClock = (11,25,48,true) and that

newMinutes = 31. What will be the value of myClock and

newMinutes after the method call

myClock.setMinutes(newMinutes)? How about after the method call

myClock.setMinutes(52)?

4-7. Suppose that myClock = (11,25,48,true) and am = true. What will be

the value of myClock and am after the method call myClock.setAM(am)?

What Time Is It?

We’re almost finished with the first complete example of a client

description of a component. So far, the clock methods include

setHours, setMinutes, setSeconds, and setAM. With

this selection of methods, clock variables can be assigned any

legal clock value, as specified in AMPMClock. But suppose you

would like to know the time according to yourClock, where yourClock is an

AMPMClock variable. How can you find out? None of the current methods allow us to

inspect or observe the value of an AMPMClock variable. For this purpose, we need four

additional methods: hours, minutes, seconds, and isAM. Following are the client

descriptions of hours and isAM. We'll let you take care of minutes and seconds.

Still Awake?

 Unit 4 - 11

Client Description of hours and isAM Methods

// CONTINUATION OF AMPMClock

 int hours()

 Reports this.hours.

 Returns:

 this.hours

 Ensures:

 hours = this.hours

// --

 boolean isAM()

 Reports this.am.

 Returns:

 this.am

 Ensures:

 isAM = this.am

// THIS IS THE END OF AMPMClock

As usual, the description of these methods involves some new stuff. We’ll work through

the hours method; isAM is similar.

The function header is
int hours()

Each of the “set” methods such as setHours was specified as a procedure. On the

other hand, the hours method is specified as a function. The idea of a function is

No requires clause signifies no
precondition for clients to meet.

Returns/Ensures explain the
return value of the function.

The parameter list is empty.

hours is the name of
the method.

This method is a function;
it will return an integer value.

 Unit 4 - 12

borrowed from mathematics. Here’s an example: xy yxyxf +=),(. Clients of this little

math function supply values for the parameters x and y, and the function returns the

single value xy yx + , computed from the supplied values for x and y. Notice that ƒ

returns a single value without changing the values of parameters x and y.

The essential idea of a function is similar to that of a procedure in that:

• A function has a fixed number of formal parameters.

• Clients supply a function with incoming values (often in the form of variables), which

correspond to the formal parameters.

• The function may change the values of the variables resulting in “outgoing” values

for the client’s variables (this is inconsistent with the behavior of mathematical

functions, but it is unavoidable at times in Java functions).

However, one thing that differentiates a function from a procedure is that a function

computes and explicitly returns a single value to the client.

So, to describe a function to a client, we'll describe:

• the number and types of the formal parameters

• the allowable incoming values of the client-supplied variables

• the type of the resulting single value the function is computing for the client

• the resulting single value the function is computing for the client

• the resulting outgoing values of the client-supplied variables.

We can now understand the structure of the function header for hours:

Anatomy of the Function Header
int hours()

 type of the return value name of parameter list
 signifying a function the function

 Unit 4 - 13

4-8. What is the type of the return value for the function isAM?

Explain why this is the type.

The function contract is

Returns:

 this.hours

Ensures:

 hours = this.hours

Notice anything unusual? To start with, there is no requires clause! With a little

explanation, this is understandable. Since the parameter list is empty, the only formal

parameter for hours is the distinguished argument this, a variable with a value

described by AMPMClock. Whatever clock value a client might supply for this,

hours will be able to return the hours portion of the value (this.hours). So, there

is no need to impose any restrictions on incoming values.

There is also no Updates section, indicating that this function will not modify the value

of any of its arguments. The description of outgoing values is quite simple since this is

the only parameter and hours is not modifying any of its parameters. So we know that

this = #this.

Last, the name of the function appears in the ensures clause:

Ensures:

 hours = this.hours

This will always be the case for all functions. We simply let the name of the function, in

the ensures clause, stand for the single value to be returned by the function. A good way

Still Awake?

 Unit 4 - 14

to read the assertion hours = this.hours is “the value to be returned by hours is

this.hours”.

We should also point out that there is some redundancy in this contract. As you can see,

the Returns and Ensures entries say pretty much the same thing. This is because of how

simple this function is. For more complex functions, the Returns entry will provide a

short, informal description of the value returned by the function while the Ensures clause

usually will provide a precise mathematical description of the entire behavior of the

function.

4-9. Explain how to read the ensures clause of isAM.

4-10. In the function isAM, what is the outgoing value of this?

4-11. Provide a complete client description of the minutes method.

4-12. Provide a complete client description of the seconds method.

Client View Components

Now is an excellent time to step back and review what's happened so far. AMPMClock

is a Java interface that provides us with a client-view description of the behavior of an

am-pm clock. In this sense, it is an abstraction of the behavior of a clock component.

Just like all interfaces it provides two things: a type (designating a set of values) and

methods that can be applied to variables whose values come from the type (i.e., from the

set of values).

Still Awake?

 Unit 4 - 15

The Emperor Has No Clothes

And now for a big surprise: It will not be sufficient for

clients to order only AMPMClock from a library!

AMPMClock provides descriptions that clients use to

understand what am-pm clocks are and can do.

AMPMClock does not provide a single piece of executable

code specifying how the methods do their job. But in a

program using AMPMClock variables, Java will need such

executable code! As a result, clients will also order, from a

library, a class component delivering the necessary

executable code. For AMPMClock, this will be a component

with a name that reads something like AMPMClock1; that is, AMPMClock1is a

component providing executable code that implements the behavior described by

AMPMClock. Think of it this way: AMPMClock describes, like an instruction manual, a

part that a client would like to use, and AMPMClock1 is the part number. In a Java

program, then, clients would declare and initialize an am-pm-clock variable as
AMPMClock myClock = new AMPMClock1();

For Peace of Mind Try Tracing

The general specification of what methods do is provided abstractly in a method’s

contract through the requires and ensures clauses. To aid our understanding of these

specifications of methods, it is often helpful to see examples of the effects of methods

when applied to specific variable values. To do this, we use tracing tables. Here’s an

example:

 Unit 4 - 16

Statement Variable Values

 myClock = (2,18,57,false)

newHours = 7

myClock.setHours(newHours);

 myClock = (7,18,57,false)

newHours = 7

In this example, myClock is a variable of type AMPMClock and newHours is a

variable of type int. Declarations of these variables may look like this:

AMPMClock myClock;
int newHours;

The tracing table shows the effect of a call to the setHours operation on specific values

for the variables myClock and newHours. The “incoming” values of these variables

are myClock = (2,18,57,false) and newHours = 7; the “outgoing” values

are myClock = (7,18,57,false) and newHours = 7.

Tracing tables can trace more than a single method call, as the next example shows. In

this example, isMorning is a variable of type boolean.

Specific variable values before the
method call — “incoming” values.

Specific variable values after the
method call — “outgoing” values.

The method call.

 Unit 4 - 17

Statement Variable Values

 myClock = (2,18,57,false)

newHours = 7

isMorning = true

myClock.setHours(newHours);

 myClock = (7,18,57,false)

newHours = 7

isMorning = true

isMorning = myClock.isAM();

 myClock = (7,18,57,false)

newHours = 7

isMorning = false

Unit Wrap-up

Comment 1: In the second tracing table notice the difference between the two statements

being traced. The statement myClock.setHours(newHours) is a call to the

procedure setHours. The effects of the procedure call are made known to the caller,

the client, through changes in the values of the client-supplied actual parameters,

myClock and newHours. (Of course, only the value of myClock is changed.) On the

other hand, the statement isMorning = myClock.isAM() is an assignment

statement, one part of which is the call to the function isAM and the other part being the

assignment of the value returned by isAM to the variable isMorning. We could have

just called the function isAM using the statement myClock.isAM() and left out the

assignment of the return value to isMorning. But this would not make much sense in

this case! isAM does not change the value of any of its parameters. So why would a

client bother to call isAM if the client does nothing with the return value? This would be

like sending someone to the ticket office to buy movie tickets, and telling them to just

leave the tickets at the ticket office! REMEMBER, usually you’ll want to make use of

the return value of a function call!

 Unit 4 - 18

Comment 2: Comment 2 appears in the next figure. IT IS FUNDAMENTALLY

IMPORTANT. Make sure you understand it completely. Put it into an accessible, long-

term part of your memory!

Client descriptions of methods must describe all assumptions about the incoming values

of all parameters, and must describe the corresponding outgoing values of all parameters.

Such descriptions can be presented in different ways. Good descriptions will be precise

(no margin for error) and understandable (by human readers). The mechanism that is

used in CSE 2221/2231 to make such precise and understandable descriptions of methods

is contracts, where each method contract consists of two sections, a requires clause and

an ensures clause.

Comment 2 is FUNDAMENTALLY important!

Make sure you understand it completely!

 Unit 4 - 19

Comment 3: Comment 3 appears in the next figure. IT IS FUNDAMENTALLY

IMPORTANT. Make sure you understand it completely. Put it into an accessible, long-

term part of your memory!

High quality software components should be organized into two distinct parts. One part

describes what the component can do. We refer to this as the abstract part or interface.

The second part provides code (the how) that implements the behavior described in the

abstract part. We refer to this as the concrete part or class.

Comment 3 is FUNDAMENTALLY important!

Make sure you understand it completely!

high-quality software
components of two kinds:
interface and class

abstract
description
of what

concrete
description
of how

implements

interface

class

 Unit 4 - 20

4-13. Complete the following tracing table.

Statement Variable Values

 myClock = (8,2,43,true)

yourClock = (11,18,6,false)

transferMinutes = 7

transferMinutes = myClock.minutes();

 myClock =

yourClock =

transferMinutes =

yourClock.setMinutes(transferMinutes);

 myClock =

yourClock =

transferMinutes =

Still Awake?

	Unit 4: Client View of a Component — Methods
	Preview of Coming Attractions
	Where We’ve Been, Where We’re Going
	The Before and the After
	Describing Methods – An Example
	Client Description of setHours for AMPMClock
	The Method Header
	The Method Contract
	Three More "Set" Methods
	Client Description of setMinutes and setAM Methods
	What Time Is It?
	Client Description of hours and isAM Methods
	Anatomy of the Function Header

	Client View Components
	The Emperor Has No Clothes
	For Peace of Mind Try Tracing
	Unit Wrap-up

	Variable Values
	Statement
	Variable Values
	Statement
	Statement

