
 Unit 3 - 1

Unit 3: Client View of a Component — Values

Preview of Coming Attractions

In this unit be sure to look for

 client view
 implementer/maintainer view
 the elements of a client view
 mathematical modeling
 abstract value and abstract state space
 type and subtype
 interface and class
 constraint
 programming language type
 constructor and initial value

What Can It Do for Me?

It may seem obvious, but let's say it anyway: Before a software developer can use a

component, the developer must understand the component! Specifically, the developer

must understand what the component can do and how to use it. Understanding what a

component can do and how to use it is called the client view of a component.

We did not say that a software developer must, before using a component, understand

how a component does what it does. And, there is a good reason why not.

Imagine what it would be like if everyone who wanted to surf the web first

had to read and understand the millions of lines of source code that explain in

complete detail how a browser does its job. Or imagine what it would be like

if everyone who uses e-mail first had to read and understand the millions of

lines of source code that explain in complete detail how e-mail software does

its job. Under those circumstances, cyberspace would be sparsely populated.

Of course, those software engineers who develop and maintain a software component do

need to be aware of how the component does its job. Understanding how a component

 Unit 3 - 2

does its job is called the implementer/maintainer view of a component. Eventually we'll

look at components from the implementer/maintainer view, but for now we are concerned

only with the client view.

3-1. Name two things that you understand how to use and, yet, you

do not understand the internal details of how these things work.

3-2. Consider two possibilities. First, people understand all details

of how something works before they use it. Second, people figure out

what to do to use something before trying to figure out all details of

how something works. As a general rule, which of these two possibilities do you think is

most prominent in society? Can you think of any reason why the same should not apply

to using software components?

What to Tell a Client?

When programmers, acting as clients, use a component (or primitive type) in a piece of

software, they declare variables corresponding to the component and then initialize them

to some value of the component type. For example, looking back at Code Segment 2-2,

we see the four variable declarations

SimpleReader input;
SimpleWriter output;
String yourName;
int yourAge;

Obviously, the programmer of Code Segment 2-2 must understand how to use the

variables input, output, yourName, and yourAge. There are three things that

must be described so that clients understand what a component can do and how to use

variables of its type:

 the values a variable can assume

 the initial value of a variable or how a variable can be initialized

 the operations that can be applied to a variable of a given type

That's it. Together, these three things make up the interface of a component.

Still Awake?

 Unit 3 - 3

How to Tell a Client?

For primitive types (those types that are built-in to the Java language), the language itself

describes what values a variable can assume, what the initial value will be, and what

kinds of operations can be used to manipulate a variable of a given type. For instance, a

variable of type int can take an integer value in the range –231…231–1, its initial value is

undefined in general, and you can apply the usual arithmetic operations, +, –, *, /, etc.

However, for components (i.e., non-primitive types), the language itself does not provide

this information. We need some other way and place to describe these essential aspects

of new components.

Clients are people and when a software component is described to a person, it would be

kind of silly to speak in a programming language only. After all, programming languages

are intended for communicating with computers, not people! This leaves us with a slight

problem: What language should be used to describe components to clients, who are

people?

Before giving you our surprising answer to this question, let's make an observation.

When describing a component to a client, the description must be understandable. If it is

not, the client may not choose to use the component or, worse yet, may use the

component incorrectly, possibly leading to software failure and even to loss of

life, if the software happens to be safety critical. At the same time, we cannot

sacrifice precision for understandability. Ambiguity in a description could have

the same consequences as misunderstanding.

To address the twin concerns of precision and understandability, we will use the language

of mathematics to describe software components from the client perspective.

Mathematics is well known for precision and, with a little practice, it will prove to be

understandable as well.

 Unit 3 - 4

The idea of using mathematics to describe something of interest is called mathematical

modeling, an idea that is centuries old. Simply stated, mathematicians create formal,

mathematical descriptions (models) of a phenomenon of interest. Then, the models can

be manipulated using mathematical techniques in order to better understand the

phenomenon and to make predictions about its behavior. A famous example is e mc 2 ,

an equation that models the relationship between energy and mass. In software

development, you have been using the idea of mathematical modeling without even

realizing it. For example, consider an expression like i + j, where i and j are

variables of type int. All but the most warped among us think of i and j as plain old

integers, like 82 and 9947, and think of + as being the usual addition of integers. But this

is the client perspective, because the real story of how the computer is representing

integer values (for example, 32-bit twos-complement representation) and adding them

through electronic circuitry is quite different.

3-3. Give two additional examples of mathematical models. The

examples need not be from computer science.

3-4. Why do you think scientists and engineers use mathematics to

describe or model things that are of interest to them? Explain.

Describing Values to a Client – An Example

Let's look at a description of a software component for a clock that keeps time using am

and pm (as opposed to a 24-hour or military clock). (We know, you're thinking boring,

boring, boring! But consider this: A software component for keeping the time should be

about the same complexity as a component for keeping the date. And yet, do you

remember all of the fuss over Y2K? Well, you probably don’t and may not even know

what it is, but you may want to look it up on Wikipedia—

http://en.wikipedia.org/wiki/Year_2000_problem.) Remember, from the client

perspective, we need only describe the values a clock variable can assume, the initial

value of a clock variable, and the operations that can be applied to a clock variable. In

Still Awake?

 Unit 3 - 5

this unit we'll describe the values a clock variable can assume, including the initial value,

and in the next two units we'll describe the operations.

The value of a variable, when viewed through the mathematical model for the variable’s

type, is called its abstract value. The set all of abstract values that a variable can assume

is called the abstract state space of the type. So, what we are about to do is to describe

the abstract state space of an am-pm-clock component; that is, the values that an am-pm

clock can assume as seen through the eyes of a client.

To get started, let's consider a typical clock face:

A Clock Face

Our task is to capture, through a mathematical model, the important features of such a

clock face. The clocks we have in mind show the hour, minute, and second and whether

it is am or pm. Thus, the state of such a clock is a particular value for the hour, a

particular value for the minute, a particular value for the second, and a particular value

for whether it is am or pm. So, in this case, the mathematical model will be fairly

straightforward to write down.

Interface for AM_PM_Clock: Part 1 of a Client Description

The background is set and we're ready to look at our first client description of a

component. The entire description is presented in two parts: Part 1 is presented in this

unit and it is concerned with the mathematical model for describing values of am-pm

12 : 57 : 17
am
pm

 Unit 3 - 6

clock variables. Part 2 is presented in the next unit, and it is concerned with the

operations that can be applied to am-pm-clock variables. Here we go!

Whoa! That Was Different!

We're pretty sure that the description of the AMPMClock component is different from

what you are used to! Don't worry. We'll carefully work our way through the

description, paying close attention to the idea of mathematical modeling and how it

public interface AMPMClock
extends Standard<AMPMClock>

AMPMClock number component with primary methods.

Mathematical Subtypes:

 HOUR_MODEL is integer
 exemplar h
 constraint 1 <= h <= 12

 MINUTE_SECOND_MODEL is integer
 exemplar m
 constraint 0 <= m <= 59

 AM_PM_CLOCK_MODEL is (
 hours: HOUR_MODEL
 minutes: MINUTE_SECOND_MODEL
 seconds: MINUTE_SECOND_MODEL
 am: boolean
)

Mathematical Model (abstract value and abstract invariant of this):

 type AMPMClock is modeled by AM_PM_CLOCK_MODEL

Constructor(s) (initial abstract value(s) of this):

 default:
 ensures
 this.hours = 12 and
 this.minutes = 0 and
 this.seconds = 0 and
 this.am = true

// AMPMClock TO BE CONTINUED...

Math definitions used
to describe the
mathematical model
of AMPMClock values.

public interface signifies a client
description; AMPMClock is the
component name.

Every variable described by AMPMClock has
newInstance, transferFrom, and clear operations.

Every variable described by
AMPMClock has this initial value.

The component AMPMClock
defines a new programming type
with the same name and modeled
by the math subtype
AM_PM_CLOCK_MODEL.

 Unit 3 - 7

appears in the AMPMClock component. This example will become the model (sorry for

the pun) for how we do mathematical modeling in software components.

public interface AMPMClock

This line is telling us (the reader) that the component to be described is a Java

interface (i.e., a client view description), it is publicly accessible (as it should be for

a client view), and that its name is AMPMClock. In later examples we’ll see that a Java

class is used to describe the implementer/maintainer view of a component.

extends Standard<AMPMClock>

This line indicates that AMPMClock includes the functionality described in another

component called Standard. As we will see, Standard defines three fundamental

operations that will be common to the components in the course libraries:

newInstance, transferFrom, and clear. The details here are really off-topic for

what we are discussing, so we'll delay their explanation until later.

AMPMClock component with primary methods.

This is an informal comment providing a compact description of this component. As we

will see in the next unit, primary methods are the basic operations that can be performed

on variables of this component type.

Mathematical Subtypes:

This heading announces the start of the mathematical description of this component;

namely, the mathematical types needed to model the values of variables of this

component type. Let’s look at each one of them carefully.

HOUR_MODEL is integer
 exemplar h
 constraint 1 <= h <= 12

 Unit 3 - 8

This little piece of mathematics defines a mathematical model for hours. The syntax will

probably look unfamiliar, but here’s how you can read it. HOUR_MODEL is the name of a

new mathematical subtype, and you can think of a subtype as just a set of values.

HOUR_MODEL is integer says that the set of values for the subtype HOUR_MODEL

will be all integers; that is, {0, +1, –1, +2, –2, …}. But wait a minute! In a clock, how

can the value of the hour be something like 296638 or –88? Shouldn’t the value of an

hour be between 1 and 12 inclusive? Yes it should, and that is the purpose of the lines:

exemplar h
constraint 1 <= h <= 12

exemplar h just means “let h be a mathematical variable of type HOUR_MODEL”.

The constraint then specifies that the value of h must satisfy the condition 1 <= h

<= 12, which is exactly what we want for our mathematical model of the idea of hours.

In general, the purpose of a constraint is to place additional restrictions on a set of

values. Normally, the effect of a constraint is to throw away unwanted values from an

original set of values. The next figure illustrates this for HOUR_MODEL.

MINUTE_SECOND_MODEL is integer
 exemplar m
 constraint 0 <= m <= 59

The definition of the MINUTE_SECOND_MODEL is similar to the definition of the

HOUR_MODEL, and it just provides a mathematical model for the idea of minutes and of

seconds.

 Unit 3 - 9

The Effect of a Constraint

AM_PM_CLOCK_MODEL is (
 hours: HOUR_MODEL
 minutes: MINUTE_SECOND_MODEL
 seconds: MINUTE_SECOND_MODEL
 am: boolean
)

AM_PM_CLOCK_MODEL is an interesting model. Values for this subtype are actually 4-

tuples; that is, each value has four parts:

 one part, named hours, that can assume values of math subtype HOUR_MODEL

(integer values in the range 1 through 12 inclusive)

 one part, named minutes, that can assume values of math subtype

MINUTE_SECOND_MODEL (integer values in the range 0 through 59 inclusive)

 one part, named seconds, that can assume values of math subtype

MINUTE_SECOND_MODEL (integer values in the range 0 through 59 inclusive)

 one part, named am, that can assume values of type boolean (true or false).

Thus, we might write down a typical value of type AM_PM_CLOCK_MODEL as (2, 56,

24, true) meaning that the current time is 2:56:24 am. Notice that there is no constraint

integer
HOUR_MODEL

 .1 .2 .3 .4 .5

 .6 .7 .8

 .9 .10 .11 .12

 Unit 3 - 10

clause in the definition of AM_PM_CLOCK_MODEL because we have no additional

restrictions to impose on the value of an am-pm clock.

This completes the section of the interface where we defined three mathematical subtypes

in order to define formally a mathematical model for the values that am-pm clocks can

assume. That mathematical model is named AM_PM_CLOCK_MODEL.

Mathematical Model (abstract value and abstract invariant of this):

 type AMPMClock is modeled by AM_PM_CLOCK_MODEL

In this section of the interface we define a new programming type provided by the

AMPMClock component. This is important! There is another type floating around in

this component and its name is AMPMClock, the same name as the component name.

Being the name of a component (a Java interface), AMPMClock is considered to be a

programming type, not a mathematical type.

The line

type AMPMClock is modeled by AM_PM_CLOCK_MODEL

is crucial because it links together the two types: the mathematical model

AM_PM_CLOCK_MODEL and the programming type AMPMClock. The statement

essentially says “Hey! If you have a variable in your program of type AMPMClock and

would like to know what values it can assume, take a look at the definition of

AM_PM_CLOCK_MODEL. That’s where you’ll find your answer.”

Constructor(s) (initial abstract value(s) of this):

This line introduces the last section of this part of the AMPMClock component. This is

where we describe the possible initial value(s) for new variables of type AMPMClock

and how they can be constructed. In this case, there is only one way a client can

construct an AMPMClock value.

 Unit 3 - 11

default:
 ensures
 this.hours = 12 and
 this.minutes = 0 and
 this.seconds = 0 and
 this.am = true

These lines specify the default initial value that a newly declared variable described by

AMPMClock can be given. For example, if myClock is such a variable, then the

statement

AMPMClock myClock = new AMPMClock1();

will assign the value (12, 0, 0, true) to myClock; that is, myClock.hours = 12,

myClock.minutes = 0, myClock.seconds = 0, and myClock.am = true.

(Actually, we just slipped in some additional mathematical notation, the dot notation used

to refer to the individual entries in a tuple value. The next figure explains dot notation.)

a tuple value:

clock = (12, 0, 0, true)
dot notation for

tuple entries:

clock.hours clock.minutes clock.seconds clock.am

Mathematical Notation for Tuple Entries

3-5. Give three example values that lie in the gray-shaded region in

the figure “The Effect of a Constraint”.

3-6. There is no constraint in the definition of the math subtype

AM_PM_CLOCK_MODEL. Why not?

Still Awake?

 Unit 3 - 12

Unit Wrap-up

Comment 1: For most of us, after looking at the picture of the clock face presented

earlier in this unit, our intuition would tell us that the value of the hours portion of an am-

pm clock will be one of 1, 2, 3, …, 12. Our intuition would be similar for minutes,

seconds, and am. So, you might ask, what's the big deal with the mathematical model? It

just says what is obvious!

True enough— this simple example of a mathematical model pretty much does state the

obvious. However, for other software components, the values that variables can assume

may not be obvious at all. In those instances, a mathematical model can be

indispensable. Do not be misled by this simple example— it is only a warm up.

Comment 2: Comment 2 appears in the next figure. IT IS FUNDAMENTALLY

IMPORTANT. Make sure you understand it completely. Put it into an accessible, long-

term part of your memory!

The client description of a component must describe the values that variables of that type

can assume. Such a description can be presented in different ways. A good description

will be precise (no margin for error) and understandable (by human readers). The

mechanism that is used in CSE 2221/2231 to make such a precise and understandable

description is mathematical modeling.

Comment 2 is FUNDAMENTALLY important!

Make sure you understand it completely!

