
 Unit 2 - 1

Unit 2: Libraries, Packages, Components, Types, and Variables

Preview of Coming Attractions

In this unit be sure to look for

 different types of libraries
 packages
 import command
 primitive types and component types
 variables and their declaration
 input and output components and statements.

They're in a Library

Off-the-shelf software components live in libraries that in Java are organized into

packages. Which packages are available to a software developer depends on things like

where the developer might be working or which classes the developer might be taking.

In the CSE 2221/2231 sequence, you will be using packages from three distinct libraries:

 the course libraries,

 the standard Java libraries, and

 lab and project libraries.

The course libraries contain a special package called components, which is an

extensive collection of components to be used throughout the course sequence. The

standard Java libraries contain a large number of packages that are part of the standard

Java distribution and provide a vast selection of components available to all Java

programmers. The lab and project libraries will contain components needed for specific

assignments; for example, there might be a 2221Lab1 library containing special

components needed for Lab 1 in CSE 2221.

Ordering Components from a Library

When developing software, you’ll want to use specific components from the available

libraries. The process of “ordering from a library” is accomplished in Java through use of

import commands. The following code segment shows an example of a Java main

program ordering components from libraries:

 Unit 2 - 2

Code Segment 2-1

 import java.util.Date;
 import components.text.Text;
 import components.text.Text1L;

 public class Example {
 public static void main(String[] args) {
 // code for body of main goes here
 }
 }

Notice that Code Segment 2-1 uses three separate import commands. To get some

understanding of these statements, let’s begin with the obvious — the names

java.util.Date, components.text.Text, and

components.text.Text1L don’t make a bit of sense. Not to worry, since you’ll

eventually be able to decipher names like these and, when you can, you’ll be well on your

way to computer “geekdom”. Just for now, here’s a short explanation of these

statements. import java.util.Date orders a component named Date from the

package java.util (one of the Java standard libraries). import

components.text.Text and import

components.text.Text1L order,

respectively, a component named Text

and a component named Text1L from the

components.text package (which is

part of the course libraries). For the time

being, any further explanation of these components can remain shrouded in mystery with

no damage done.

Primitive Types

Informally, a type defines a set of values and a set of operations that can be performed on

those values. The Java language provides built-in types for some common kinds of

 Unit 2 - 3

values and it also provides new types in the form of components. Primitive types (as the

built-in types are usually known) differ from component types in a couple of significant

ways: first, Java provides special syntax for the operations (e.g., operators for integer or

real arithmetic such as +, –, *, /, are built-in to the language), and second, because these

types are part of the language itself, we do not have to order them with import

commands. Here are the primitive types available in Java:

 int — for working with integer-valued data like 13 and –24601

 double — for working with real-number-valued data like 13.24601

 boolean — for working with logical-valued data (true or false)

 char — for working with character-valued data like 'a', 'b', and '?'

(There are 4 more primitive types in Java: byte, short, and long which simply

support different ranges of integer values, and float which represents real-numbered-

valued data with lower precision than double; for now, we will only use the types listed

above.)

To summarize, types in Java come in two flavors: built-in, primitive types and types from

components. Primitive types can be used directly while component types must usually be

ordered from a library by importing them from the appropriate package. By the way, the

official technical term for ordering a component from a library is bringing a component

into scope. There is one more thing that is worth mentioning at this time. The Java

standard libraries include a special package called java.lang which contains a number

of components that are used very commonly in Java programs. What is special about it is

that any components defined in this package can be used without the need to explicitly

import them. A particularly useful component in this package is the

java.lang.String component which defines strings of characters. We’ll see an

example of how to use this component in the next section.

And, one final bit of technical detail — how does the compiler know where to find the

various libraries used by a program? The Java compiler uses what is known as the

classpath (or build path) to find and retrieve the needed components. The classpath

 Unit 2 - 4

simply defines a list of locations on the computer file system where the compiler should

look for the imported components. The compiler simply looks at each location in turn

and as soon as the desired component is found it's used and the compiler stops snooping

around.

2-1. What is the purpose of the import command in Java?

2-2. What are the fundamental differences between primitive types

and component types in Java?

2-3. Suppose a program wanted to keep track of whether a water

valve is open. For this purpose, which (primitive or component) type would the

programmer choose?

Using Components

If you go to the trouble of ordering a component, then probably you would like to put it

to use. Here is a short example showing the use of a primitive type (int), some

components imported from the class libraries (SimpleReader, SimpleReader1L,

SimpleWriter, and SimpleWriter1L) and also the String component

(implicitly imported from the java.lang package).

Still Awake?

 Unit 2 - 5

Code Segment 2-2

import components.simplereader.SimpleReader;
import components.simplereader.SimpleReader1L;
import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;

public class FirstProgram {

 public static void main(String[] args) {

 SimpleReader input;
 SimpleWriter output;
 String yourName;
 int yourAge;

 input = new SimpleReader1L();
 output = new SimpleWriter1L();

 output.print("What is your name? ");
 yourName = input.nextLine();

 output.print("What is your age? ");
 yourAge = input.nextInteger();

 output.println("Hi " + yourName);

 if ((13 <= yourAge) && (yourAge <= 18)) {
 output.println("Oh no! A teenager!");
 output.println("So sorry!");
 } else {
 output.println("Congratulations! " + yourAge
 + " is a fine age to be!");
 }

 input.close();
 output.close();

 }
}

ordering components

declaring variables

prompting for input and
then getting it

adding 3 items to output

connecting input to the
keyboard and output to the
screen

what does
this do?

disconnecting input and output

naming the program

the “main” program

 Unit 2 - 6

After ordering several components and naming the program (FirstProgram), we enter

the “main” procedure, the one that will be executed when we run the program. The first

thing that must be done is to declare the variables needed by the program. Code

Segment 2-2 has four variable declarations:

SimpleReader input;
SimpleWriter output;
String yourName;
int yourAge;

In Java, you can think of a variable as a container for a value. This container has a name

through which we can gain access to the value kept in the container, and a type that

determines the values that can be stored in the container. Both the name and the type of a

variable are specified when the variable is declared.

Note 1: For convenience we will often use the expression “value of a variable” to refer to

the value stored in the variable.

Note 2: Java variables differ from mathematical variables in that a mathematical variable

stands for exactly one, possibly unknown, but well defined value, while a Java variable

can hold different values at different times in the execution of a program.

Now back to the variables declared in Code Segment 2-2:

 yourAge is the name of a variable that can hold an integer value,

 yourName is the name of a variable that can hold a text-string value,

 input is the name of a variable that can hold an input-stream value (where we will

get the input), and

 output is the name of a variable that can hold an output-stream value (where we

will send the output).

In general, variables in Java are not initialized automatically. In other words, after

declaring a variable, the variable does not contain any specific value, i.e., it is

uninitialized. This is unfortunate but, on the positive side, the Java compiler will

complain whenever you try to use the value of a variable that may be uninitialized. The

fix, of course, is to always initialize variables before using their values.

 Unit 2 - 7

Also note that once a component has been imported with its full name (including the

package name, e.g., components.simplereader.SimpleReader), it can be

used with its simpler, shorter name (e.g., SimpleReader).

Here’s a quick explanation of the other statements in Code Segment 2-2:

input = new SimpleReader1L();

This statement initializes the variable input and “connects” it to the keyboard. Values

entered by the user through the keyboard will become part of the value of input and can

be extracted from input by applying appropriate operations to input. An explanation

of the notation and the use of the new operator is beyond the scope of this unit, but for

the time being, just note the use of another imported component, namely,

SimpleReader1L, to provide a value for the input variable. Similarly,

output = new SimpleWriter1L();

initializes the variable output and “connects” it to the screen (using a similar notation

and the imported component SimpleWriter1L). When the program adds values to

output, these values will appear on the screen.

output.print("What is your name? ");

output.print("What is your age? ");

The first statement adds the text string "What is your name? " to the value of

output, and "What is your name? " also appears on the screen since output

is connected to the screen. The effect of output.print("What is your age?

") is similar.

yourName = input.nextLine();

yourAge = input.nextInteger();

 Unit 2 - 8

One of the earlier statements prompts the user to enter a name. The text string the user

enters, at the keyboard, in response to the prompt becomes part of the value of input,

since input is connected to the keyboard. The statement yourName =

input.nextLine() extracts from input the line typed by the user and assigns it to

yourName (thus initializing this variable). The effect of yourAge =

input.nextInteger() is similar except that the string of characters entered by the

user is converted to the corresponding integer value which is then assigned to yourAge

(so that now this variable is also initialized).

output.println("Hi " + yourName);

This statement adds three things to the value of output: the text string "Hi ", the

value of the variable yourName, and a single newline or end-of-line character to

terminate the line of output. Since output is connected to the screen, "Hi " and the

value of the variable yourName appear on the screen. Subsequent output will appear

on a new line because we are using the println operation (instead of the print

operation employed previously). Note the use of the + operator to concatenate the string

"Hi " and the value of the variable yourName.

The last statement in Code Segment 2-2 is an interesting if-else statement.

See if you can figure out for yourself the effect of this statement, including explaining the

various output statements. Note that the cryptic && symbol in the if condition stands for

the logical and operator.

2-4. Modify Code Segment 2-2 so that if the user enters an age

between 0 and 3 inclusive, the program outputs a message like

"My, just 2 years old!

What a cute little baby."

Still Awake?

 Unit 2 - 9

For all other ages, the program just outputs the boring message

"Thanks for entering your age.".

2-5. In Code Segment 2-2, suppose the condition

(13 <= your_age) && (your_age <= 18)

is changed to

 (13 <= your_age) || (your_age <= 18)

where the equally cryptic symbol || stands for the logical or operator. What message

will the program output if the user enters 4 for their age? 15 for their age? 102 for their

age?

