
Loop Invariants: Part 2

7 January 2019 OSU CSE 1

Maintaining the Loop Invariant

• A claimed loop invariant is valid only if
the loop body actually maintains the
property, i.e., the loop invariant remains
true at the end of each execution of the
loop body

• To show this, you may assume:
– The loop invariant is valid at the start of the

loop body
– The loop condition is true

7 January 2019 OSU CSE 2

The Loop Invariant Picture

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 3

To show the loop invariant true
at this red point...

...assume the invariant is true
at this green point.

Isn’t This Reasoning Circular?

• To justify the assumption that the loop
invariant holds just after the loop condition
test, didn’t we argue that assumption was
valid because the loop invariant holds just
before the test?

• This is not circular reasoning but rather
mathematical induction
– See the confidence-building approach for

reasoning about why recursion works
7 January 2019 OSU CSE 4

The Loop Invariant Picture

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 5

Show the loop invariant is true
at this red point...

...which means it is true
at this green point

on the first iteration...

The Loop Invariant Picture

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 6

Show the loop invariant is true
at this red point

at the end of the first iteration...

...which means it is true
at this green point

on the second iteration...

The Loop Invariant Picture

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 7

Show the loop invariant is true
at this red point

at the end of the k-th iteration...

...which means it is true
at this green point

on the (k+1)-st iteration...

The Loop Invariant Picture

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 8

Show the loop invariant is true
at this red point

at the end of the last iteration...

...which means it is true
at this green point

when the loop terminates.

Example #2

double power(double x, int p)

• Returns x to the power p.
• Requires:

p > 0

• Ensures:
power = x^(p)

7 January 2019 OSU CSE 9

Example #2: Method Body
double result = 1.0;
double factor = x;
int pLeft = p;
/**
* @updates result, factor, pLeft
* @maintains
* pLeft >= 0 and
* result * factor^(pLeft) = x^(p)
* @decreases
* pLeft
*/

while (pLeft > 0) {
...

}
return result;

7 January 2019 OSU CSE 10

7 January 2019 OSU CSE 11

x = 3.0
p = 5
result = 1.0
factor = 3.0
pLeft = 5

/**
* @maintains
* pLeft >= 0 and
* result * factor^(pLeft) = x^(p)
*/
while (pLeft > 0) {

...

}

x = 3.0
p = 5
result =
factor =
pLeft =

What are the
values of the

other variables
here?

What Loop Body Would Work?

• Observation: pLeft is positive at the start
of the loop body, and the loop body has to
decrease it

• How could you decrease pLeft?

7 January 2019 OSU CSE 12

Idea 1: Decrement pLeft
/**
* @updates result, factor, pLeft
* @maintains
* pLeft >= 0 and
* result * factor^(pLeft) = x^(p)
* @decreases
* pLeft
*/
while (pLeft > 0) {
...
pLeft--;

}

7 January 2019 OSU CSE 13

The Rest of the Loop Body

• This is true at the start of the loop body
(for each clause: why?):
pLeft >= 0 and
result * factor^(pLeft) = x^(p) and
pLeft > 0

• This has to be true at the end of the loop
body (for each clause: why?):
pLeft - 1 >= 0 and
result * factor^(pLeft - 1) = x^(p)

7 January 2019 OSU CSE 14

The Rest of the Loop Body

• This is true at the start of the loop body
(why?):
pLeft >= 0 and
result * factor^(pLeft) = x^(p) and
pLeft > 0

• This has to be true at the end of the loop
body (why?):
pLeft - 1 >= 0 and
result * factor^(pLeft - 1) = x^(p)

7 January 2019 OSU CSE 15

Since x and p do not change in
the loop (why?), the two circled
expressions must be equal at

the end of the loop body.

The Rest of the Loop Body

• We need to update result from
resulti to resultf, and/or update
factor from factori to factorf, to
make this true:
resulti * factori^(pLeft) =

resultf * factorf^(pLeft - 1)

• How could you do that?

7 January 2019 OSU CSE 16

The Rest of the Loop Body

• We need to update result from
resulti to resultf, and/or update
factor from factori to factorf, to
make this true:
resulti * factori^(pLeft) =

resultf * factorf^(pLeft - 1)

• How could you do that?

7 January 2019 OSU CSE 17

One line of code that updates result:
result *= factor;

Idea 2: Halve pLeft
/**
* @updates result, factor, pLeft
* @maintains
* pLeft >= 0 and
* result * factor^(pLeft) = x^(p)
* @decreases
* pLeft
*/
while (pLeft > 0) {
...
pLeft /= 2;

}

7 January 2019 OSU CSE 18

The Rest of the Loop Body

• This is true at the start of the loop body
(for each clause: why?):
pLeft >= 0 and
result * factor^(pLeft) = x^(p) and
pLeft > 0

• This has to be true at the end of the loop
body (for each clause: why?):
pLeft/2 >= 0 and
result * factor^(pLeft/2) = x^(p)

7 January 2019 OSU CSE 19

The Rest of the Loop Body

• We need to update result from
resulti to resultf, and/or update
factor from factori to factorf, to
make this true:
resulti * factori^(pLeft) =

resultf * factorf^(pLeft/2)

• How can you do that?
– Remember: pLeft may be even or odd, but

start with the simpler case where it is even
7 January 2019 OSU CSE 20

	Loop Invariants: Part 2
	Maintaining the Loop Invariant
	The Loop Invariant Picture
	Isn’t This Reasoning Circular?
	The Loop Invariant Picture
	The Loop Invariant Picture
	The Loop Invariant Picture
	The Loop Invariant Picture
	Example #2
	Example #2: Method Body
	Slide Number 11
	What Loop Body Would Work?
	Idea 1: Decrement pLeft
	The Rest of the Loop Body
	The Rest of the Loop Body
	The Rest of the Loop Body
	The Rest of the Loop Body
	Idea 2: Halve pLeft
	The Rest of the Loop Body
	The Rest of the Loop Body

