
Loop Invariants: Part 1

7 January 2019 OSU CSE 1

Reasoning About Method Calls
• What a method call does is described by

its contract
– Precondition: a property that is true before the

call is made
– Postcondition: a property that is true after the

call returns

7 January 2019 OSU CSE 2

Reasoning About Loops
• What a while loop does is described by

its loop invariant
– Invariant: a property that is true every time the

code reaches a certain point—in the case of a
loop invariant, the loop condition test

7 January 2019 OSU CSE 3

Reasoning About Loops
• What a while loop does is described by

its loop invariant
– Invariant: a property that is true every time the

code reaches a certain point—in the case of a
loop invariant, the loop condition test

7 January 2019 OSU CSE 4

Why is a loop treated differently
than a method call? Simply put,
experience shows this is a good

way to think about loops.

Reasoning About Loops
• What a while loop does is described by

its loop invariant
– Invariant: a property that is true every time the

code reaches a certain point—in the case of a
loop invariant, the loop condition test

7 January 2019 OSU CSE 5

Just while loops?
Yes; the same idea can be applied

to for loops, but some
modifications are required.

Reasoning About Loops
• What a while loop does is described by

its loop invariant
– Invariant: a property that is true every time the

code reaches a certain point—in the case of a
loop invariant, the loop condition test

7 January 2019 OSU CSE 6

Since a loop invariant is true
every time through the loop, it
says what does not change;

hence it really says what the loop
does not do.

while Statement Control Flow

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 7

while Statement Control Flow

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 8

The loop invariant is a
property that is true both here,
just before the loop begins...

while Statement Control Flow

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 9

... and here, just after every
execution of the loop body.

Example #1

void append(Queue<T> q)

• Concatenates (“appends”) q to the end of
this.

• Updates: this
• Clears: q
• Ensures:
this = #this * #q

7 January 2019 OSU CSE 10

Example #1: Method Body

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 11

Example #1: Method Body

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 12

What is true every time we
test the loop condition?

Lots of things... such as?

7 January 2019 OSU CSE 13

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);

}

7 January 2019 OSU CSE 14

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);

}

What is true the first time we
test the loop condition?

Lots of things... such as?

7 January 2019 OSU CSE 15

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3 >
q = < 4, 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3 >
q = < 5, 6 >
x = 4

this.enqueue(x);

this = < 1, 2, 3, 4 >
q = < 5, 6 >
x = 4

}

7 January 2019 OSU CSE 16

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3 >
q = < 4, 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3 >
q = < 5, 6 >
x = 4

this.enqueue(x);

this = < 1, 2, 3, 4 >
q = < 5, 6 >
x = 4

}

What is true the first and
second times we test the loop

condition?
Fewer things... such as?

7 January 2019 OSU CSE 17

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3 >
q = < 4, 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3 >
q = < 5, 6 >
x = 4

this.enqueue(x);

this = < 1, 2, 3, 4 >
q = < 5, 6 >
x = 4

}

The value of x is not involved
in the loop invariant because
there is no x when we first hit

the loop!

7 January 2019 OSU CSE 18

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4 >
q = < 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4 >
q = < 6 >
x = 5

this.enqueue(x);

this = < 1, 2, 3, 4, 5 >
q = < 6 >
x = 5

}

7 January 2019 OSU CSE 19

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4 >
q = < 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4 >
q = < 6 >
x = 5

this.enqueue(x);

this = < 1, 2, 3, 4, 5 >
q = < 6 >
x = 5

}

What is true the first, second,
and third times we test the

loop condition?
Fewer things still... such as?

7 January 2019 OSU CSE 20

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4, 5 >
q = < 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4, 5 >
q = < >
x = 6

this.enqueue(x);

this = < 1, 2, 3, 4, 5, 6 >
q = < >
x = 6

}

7 January 2019 OSU CSE 21

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4, 5 >
q = < 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4, 5 >
q = < >
x = 6

this.enqueue(x);

this = < 1, 2, 3, 4, 5, 6 >
q = < >
x = 6

}

What is true the first, second,
third, and fourth times we test

the loop condition?
Fewer things still... such as?

7 January 2019 OSU CSE 22

this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4, 5 >
q = < 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4, 5 >
q = < >
x = 6

this.enqueue(x);

this = < 1, 2, 3, 4, 5, 6 >
q = < >
x = 6

}

Whatever is true the last time
we test the loop condition is
also true here, after the loop

finally terminates.

Some Things That Do Not Change
• “The lengths of the strings are non-

negative” does not change
– |this| >= 0 and |q| >= 0 does not

change
– True, but this literally goes without saying; the

length of any string is always non-negative
– It is no more useful than saying, e.g., “17 <
42 does not change”, because it is a
mathematical fact, not something about this
loop in particular

7 January 2019 OSU CSE 23

Some Things That Do Not Change

• “The sum of the lengths of the strings”
does not change
– |this| + |q| does not change
– True, and a useful observation about this

particular loop; but one can say more

7 January 2019 OSU CSE 24

Some Things That Do Not Change

• “The concatentation of the strings” does
not change
– this * q does not change
– True, and a stronger useful observation

about this loop because it implies the previous
observation about the sum of the lengths

• In other words, if this * q does not change, then
|this| + |q| also does not change; but not vice
versa

7 January 2019 OSU CSE 25

How To Express an Invariant

• How do we say “the concatenation of the
strings does not change”?
– We need to talk about both:

• The current values of the variables
• The original values of the variables, just before

the loop condition was first tested (variable names
prefixed with #)

this * q = #this * #q

7 January 2019 OSU CSE 26

Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 27

Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 28

This Javadoc tag
introduces the list of

variables whose values
might change in some

iteration.

Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 29

Any variable in scope that is
not listed as an updates-

mode variable is, by default,
a restores-mode variable,

meaning the loop body does
not change its value.

Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 30

This Javadoc tag
introduces the claim that

the following loop
“maintains” the property,
i.e., it is a loop invariant.

Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 31

Using a Loop Invariant

• If you have a strong enough loop invariant,
you can trace over a loop in a single step,
and predict the values of the variables
when it terminates—without tracing
through the loop body even once

7 January 2019 OSU CSE 32

Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

*/

while (q.length() > 0) {

...

}

7 January 2019 OSU CSE 33

Pretend you cannot
see the loop body.
Can you still trace

over this loop?

7 January 2019 OSU CSE 34

this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this =
q =

When execution reaches
this point, we know two

things...

7 January 2019 OSU CSE 35

this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this =
q =

We know (1) the loop
invariant is true, so:

this * q = #this * #q

7 January 2019 OSU CSE 36

this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this =
q =

We also know (2) the loop
condition is false, so:

|q| <= 0

7 January 2019 OSU CSE 37

this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this = < 1, 2, 3, 4, 5, 6 >
q = < >

Combining (1) and (2), the
only values the variables
can possibly have at this

point are these.

Justification for (1)

• The loop invariant is true just after the loop
terminates—if the code that tests the loop
condition does not change the value of
any variable appearing in the loop
invariant

7 January 2019 OSU CSE 38

The Loop Invariant Picture

test false

true

loop-body

while (test) {

loop-body

}

7 January 2019 OSU CSE 39

If the loop invariant is true
at the two red points,

and “test” updates nothing...

...then the loop invariant is true
at the two green points.

Justification for (1)

• Best practice: Code that tests the loop
condition should not update any variables
appearing in the loop invariant
– Easy way to achieve this: the test should not

update any variables at all

7 January 2019 OSU CSE 40

Justification for (2)

• The loop does not terminate until and
unless the loop condition is false
– However, a loop might never terminate; so

you need to show that it does
– This is similar to how you show a recursive

method terminates

7 January 2019 OSU CSE 41

Loop Termination

• To show that a loop terminates, it is
sufficient to provide a progress metric
(a.k.a. termination function, a.k.a.
variant function)
– An integer-valued function of the variables in

scope (where the loop appears in the code)
– Always non-negative
– Always decreases when the loop body is

executed once

7 January 2019 OSU CSE 42

Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

* @decreases

* |q|

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 43

Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

* @decreases
* |q|

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 44

This Javadoc annotation
claims the loop that

follows “decreases” the
stated progress metric.

Conclusion

• Even if you do not choose to write down a
loop invariant or progress metric, if you
think about loops in these terms it can help
you avoid errors and bad practices in loop
code
– Off-by-one errors
– Wrong/missing code in the loop body
– Declarations of variables outside the loop that

are only used inside the loop body

7 January 2019 OSU CSE 45

	Loop Invariants: Part 1
	Reasoning About Method Calls
	Reasoning About Loops
	Reasoning About Loops
	Reasoning About Loops
	Reasoning About Loops
	while Statement Control Flow
	while Statement Control Flow
	while Statement Control Flow
	Example #1
	Example #1: Method Body
	Example #1: Method Body
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Some Things That Do Not Change
	Some Things That Do Not Change
	Some Things That Do Not Change
	How To Express an Invariant
	Example #1: Method Body
	Example #1: Method Body
	Example #1: Method Body
	Example #1: Method Body
	Example #1: Method Body
	Using a Loop Invariant
	Example #1: Method Body
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Justification for (1)
	The Loop Invariant Picture
	Justification for (1)
	Justification for (2)
	Loop Termination
	Example #1: Method Body
	Example #1: Method Body
	Conclusion

