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Reasoning About Method Calls
• What a method call does is described by 

its contract
– Precondition: a property that is true before the 

call is made
– Postcondition: a property that is true after the 

call returns
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Reasoning About Loops
• What a while loop does is described by 

its loop invariant
– Invariant: a property that is true every time the 

code reaches a certain point—in the case of a 
loop invariant, the loop condition test
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Reasoning About Loops
• What a while loop does is described by 

its loop invariant
– Invariant: a property that is true every time the 

code reaches a certain point—in the case of a 
loop invariant, the loop condition test

7 January 2019 OSU CSE 4

Why is a loop treated differently 
than a method call?  Simply put, 
experience shows this is a good 

way to think about loops.



Reasoning About Loops
• What a while loop does is described by 

its loop invariant
– Invariant: a property that is true every time the 

code reaches a certain point—in the case of a 
loop invariant, the loop condition test
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Just while loops?
Yes; the same idea can be applied 

to for loops, but some 
modifications are required.



Reasoning About Loops
• What a while loop does is described by 

its loop invariant
– Invariant: a property that is true every time the 

code reaches a certain point—in the case of a 
loop invariant, the loop condition test
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Since a loop invariant is true 
every time through the loop, it 
says what does not change; 

hence it really says what the loop 
does not do.



while Statement Control Flow

test false

true

loop-body

while (test) {

loop-body

}
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while Statement Control Flow

test false

true

loop-body

while (test) {

loop-body

}
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The loop invariant is a 
property that is true both here, 
just before the loop begins...



while Statement Control Flow

test false

true

loop-body

while (test) {

loop-body

}
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... and here, just after every
execution of the loop body.



Example #1

void append(Queue<T> q)

• Concatenates (“appends”) q to the end of 
this.

• Updates: this
• Clears: q
• Ensures:
this = #this * #q
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Example #1: Method Body

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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Example #1: Method Body

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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What is true every time we 
test the loop condition?

Lots of things... such as?
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);

}
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);

}

What is true the first time we 
test the loop condition?

Lots of things... such as?
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3 >
q = < 4, 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3 >
q = < 5, 6 >
x = 4

this.enqueue(x);

this = < 1, 2, 3, 4 >
q = < 5, 6 >
x = 4

}
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3 >
q = < 4, 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3 >
q = < 5, 6 >
x = 4

this.enqueue(x);

this = < 1, 2, 3, 4 >
q = < 5, 6 >
x = 4

}

What is true the first and 
second times we test the loop 

condition?
Fewer things... such as?
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3 >
q = < 4, 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3 >
q = < 5, 6 >
x = 4

this.enqueue(x);

this = < 1, 2, 3, 4 >
q = < 5, 6 >
x = 4

}

The value of x is not involved 
in the loop invariant because 
there is no x when we first hit 

the loop!
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4 >
q = < 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4 >
q = < 6 >
x = 5

this.enqueue(x);

this = < 1, 2, 3, 4, 5 >
q = < 6 >
x = 5

}
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4 >
q = < 5, 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4 >
q = < 6 >
x = 5

this.enqueue(x);

this = < 1, 2, 3, 4, 5 >
q = < 6 >
x = 5

}

What is true the first, second, 
and third times we test the 

loop condition?
Fewer things still... such as?
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4, 5 >
q = < 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4, 5 >
q = < >
x = 6

this.enqueue(x);

this = < 1, 2, 3, 4, 5, 6 >
q = < >
x = 6

}
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4, 5 >
q = < 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4, 5 >
q = < >
x = 6

this.enqueue(x);

this = < 1, 2, 3, 4, 5, 6 >
q = < >
x = 6

}

What is true the first, second, 
third, and fourth times we test 

the loop condition?
Fewer things still... such as?
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

while (q.length() > 0) {

this = < 1, 2, 3, 4, 5 >
q = < 6 >

T x = q.dequeue();

this = < 1, 2, 3, 4, 5 >
q = < >
x = 6

this.enqueue(x);

this = < 1, 2, 3, 4, 5, 6 >
q = < >
x = 6

}

Whatever is true the last time 
we test the loop condition is 
also true here, after the loop 

finally terminates.



Some Things That Do Not Change
• “The lengths of the strings are non-

negative” does not change
– |this| >= 0  and |q| >= 0 does not 

change
– True, but this literally goes without saying; the 

length of any string is always non-negative
– It is no more useful than saying, e.g., “17 < 
42 does not change”, because it is a 
mathematical fact, not something about this 
loop in particular
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Some Things That Do Not Change

• “The sum of the lengths of the strings” 
does not change
– |this| + |q| does not change
– True, and a useful observation about this 

particular loop; but one can say more
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Some Things That Do Not Change

• “The concatentation of the strings” does 
not change
– this * q does not change
– True, and a stronger useful observation 

about this loop because it implies the previous 
observation about the sum of the lengths

• In other words, if this * q does not change, then 
|this| + |q| also does not change; but not vice 
versa
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How To Express an Invariant

• How do we say “the concatenation of the 
strings does not change”?
– We need to talk about both:

• The current values of the variables
• The original values of the variables, just before 

the loop condition was first tested (variable names 
prefixed with #)

this * q = #this * #q
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Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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This Javadoc tag 
introduces the list of 

variables whose values 
might change in some 

iteration.



Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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Any variable in scope that is 
not listed as an updates-

mode variable is, by default, 
a restores-mode variable, 

meaning the loop body does 
not change its value.



Example #1: Method Body
/**

* @updates this, q
* @maintains

* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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This Javadoc tag 
introduces the claim that 

the following loop 
“maintains” the property, 
i.e., it is a loop invariant.



Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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Using a Loop Invariant

• If you have a strong enough loop invariant, 
you can trace over a loop in a single step, 
and predict the values of the variables 
when it terminates—without tracing 
through the loop body even once
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Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

*/

while (q.length() > 0) {

...

}
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Pretend you cannot 
see the loop body.  
Can you still trace 

over this loop?
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this = 
q = 

When execution reaches 
this point, we know two 

things...
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this = 
q = 

We know (1) the loop 
invariant is true, so:

this * q = #this * #q
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this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this = 
q = 

We also know (2) the loop 
condition is false, so:

|q| <= 0



7 January 2019 OSU CSE 37

this = < 1, 2, 3 >
q = < 4, 5, 6 >

/**
* @maintains
* this * q = #this * #q
*/

while (q.length() > 0) {

...

}

this = < 1, 2, 3, 4, 5, 6 >
q = < >

Combining (1) and (2), the 
only values the variables 
can possibly have at this 

point are these.



Justification for (1)

• The loop invariant is true just after the loop 
terminates—if the code that tests the loop 
condition does not change the value of 
any variable appearing in the loop 
invariant
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The Loop Invariant Picture

test false

true

loop-body

while (test) {

loop-body

}
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If the loop invariant is true
at the two red points,

and “test” updates nothing...

...then the loop invariant is true
at the two green points.



Justification for (1)

• Best practice: Code that tests the loop 
condition should not update any variables 
appearing in the loop invariant
– Easy way to achieve this: the test should not 

update any variables at all
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Justification for (2)

• The loop does not terminate until and 
unless the loop condition is false
– However, a loop might never terminate; so 

you need to show that it does
– This is similar to how you show a recursive 

method terminates
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Loop Termination

• To show that a loop terminates, it is 
sufficient to provide a progress metric 
(a.k.a. termination function, a.k.a. 
variant function)
– An integer-valued function of the variables in 

scope (where the loop appears in the code)
– Always non-negative
– Always decreases when the loop body is 

executed once
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Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

* @decreases

* |q|

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}
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Example #1: Method Body
/**

* @updates this, q
* @maintains
* this * q = #this * #q

* @decreases
* |q|

*/

while (q.length() > 0) {

T x = q.dequeue();

this.enqueue(x);
}

7 January 2019 OSU CSE 44

This Javadoc annotation 
claims the loop that 

follows “decreases” the 
stated progress metric.



Conclusion

• Even if you do not choose to write down a 
loop invariant or progress metric, if you 
think about loops in these terms it can help 
you avoid errors and bad practices in loop 
code
– Off-by-one errors
– Wrong/missing code in the loop body
– Declarations of variables outside the loop that 

are only used inside the loop body
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