
Recursion: How It Works

7 January 2019 OSU CSE 1

Question Considered Before

• How should you think about recursion
so you can use it to develop elegant
recursive methods to solve certain
problems?

• Answer: Pretend there is a FreeLunch
class with a method that has the same
contract as the code you’re trying to write
(but it works only for smaller problems)

7 January 2019 OSU CSE 2

Question Considered Before

• Why do those recursive methods work?
• Answer: Following the “confidence-

building” approach, you can argue as
follows:
– Does it work on all “smallest” cases?

7 January 2019 OSU CSE 3

Question Considered Before

• Why do those recursive methods work?
• Answer: Following the “confidence-

building” approach, you can argue as
follows:
– Does it work on all “smallest” cases? ✓
– Does it work on all “next smallest” cases?

7 January 2019 OSU CSE 4

Question Considered Before

• Why do those recursive methods work?
• Answer: Following the “confidence-

building” approach, you can argue as
follows:
– Does it work on all “smallest” cases? ✓
– Does it work on all “next smallest” cases? ✓
– Does it work on all “next smallest” cases?

7 January 2019 OSU CSE 5

Question Considered Before

• Why do those recursive methods work?
• Answer: Following the “confidence-

building” approach, you can argue as
follows:
– Does it work on all “smallest” cases? ✓
– Does it work on all “next smallest” cases? ✓
– Does it work on all “next smallest” cases? ✓
– ... (Formally, proof by mathematical induction)

7 January 2019 OSU CSE 6

Question Considered Now

• How do those recursive methods work?
– As promised, we have come back to this, but

we continue to advise...
– If you insist on thinking about recursion this

way (rather than simply sating your curiosity
about how it works), you may never be fully
capable of developing elegant recursive
solutions to problems!

7 January 2019 OSU CSE 7

Example
private static String reversedString(String s) {

if (s.length() == 0) {
return s;

} else {
String sub = s.substring(1);
String rSub = reversedString(sub);
return rSub + s.charAt(0);

}
}

7 January 2019 OSU CSE 8

Trace reversedString("OSU")

7 January 2019 OSU CSE 9

s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

7 January 2019 OSU CSE 10

s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")

Question:
This is a recursive call, so how does it work?

7 January 2019 OSU CSE 11

s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")

Answer:
Exactly like this one, and every other call!

How Every Call Works

• First, the tracing table for the code making
the call is suspended and that tracing
table is pushed onto the runtime stack
– The runtime stack, often called simply “the

stack”, is effectively just a stack of tracing
tables (think Stack<TracingTable>), each
partially filled in with the results of the code in
that tracing table as executed so far

7 January 2019 OSU CSE 12

How Every Call Works

• A new tracing table is created, containing
the code for the method body being called

• The argument values are copied from the
suspended tracing table into the formal
parameters to start the new tracing table

• Execution in the new tracing table
continues until it calls a method...

7 January 2019 OSU CSE 13

7 January 2019 OSU CSE 14

s = "OSU"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")The currently executing
tracing table gets to here ...

7 January 2019 OSU CSE 15

s = "OSU"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... and the (top of the) stack
of suspended tables is here.

7 January 2019 OSU CSE 16

s = "OSU"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")This call suspends the
current tracing table ...

7 January 2019 OSU CSE 17

Trace reversedString("OSU")... the suspended tracing
table is pushed ...

7 January 2019 OSU CSE 18

this = "OSU"

/*
* Body for length method
* from class String; we
* do not have this, so how
* do we know what it does?
* We look at its contract!
* When it finishes, we know
* it has not changed this
* (it could not even if it
* wanted to), and it returns
* the length of this.
*/

this = "OSU"
length = 3

Trace reversedString("OSU")... and the tracing table for
length begins.

How Every Return Works

• When the currently executing tracing table
reaches a return statement, or for a
void method falls off the end of the body,
the results of the call are reflected in the
tracing table on the top of the stack

• That tracing table is popped off the stack
and it becomes the currently executing
tracing table, resuming execution from the
point where it was suspended

7 January 2019 OSU CSE 19

7 January 2019 OSU CSE 20

this = "OSU"

/*
* Body for length method
* from class String; we
* do not have this, so how
* do we know what it does?
* We look at its contract!
* When it finishes executing
* it has not changed this
* (it could not even if it
* wanted to), and it returns
* the length of this
*/

this = "OSU"
length = 3

Trace reversedString("OSU")When this call returns ...

7 January 2019 OSU CSE 21

Trace reversedString("OSU")... its results are reflected in
the calling table ...

7 January 2019 OSU CSE 22

s = "OSU"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... and that table is popped
to resume execution.

7 January 2019 OSU CSE 23

s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")Execution continues to the
next call ...

7 January 2019 OSU CSE 24

s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... and when that call returns,
to the next call ...

7 January 2019 OSU CSE 25

s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... which is a recursive call!
But it is nothing special.

7 January 2019 OSU CSE 26

Trace reversedString("OSU")The current tracing table is
suspended and pushed ...

7 January 2019 OSU CSE 27

s = "SU"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... and a new table for the
body of the called method ...

7 January 2019 OSU CSE 28

s = "SU"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... begins with its own
variables and values.

7 January 2019 OSU CSE 29

s = "SU"

if (s.length() == 0) { ...
} else {

s = "SU"

String sub = s.substring(1);

s = "SU"
sub = "U"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")Soon, this tracing table
reaches a recursive call!

7 January 2019 OSU CSE 30

Trace reversedString("OSU")The current tracing table is
suspended and pushed ...

7 January 2019 OSU CSE 31

s = "U"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... and a new table for the
body of the called method ...

7 January 2019 OSU CSE 32

s = "U"

if (s.length() == 0) { ...
} else {

String sub = s.substring(1);

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")... begins with its own
variables and values.

7 January 2019 OSU CSE 33

s = "U"

if (s.length() == 0) { ...
} else {

s = "U"

String sub = s.substring(1);

s = "U"
sub = ""

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

Trace reversedString("OSU")Soon, this tracing table
reaches a recursive call!

7 January 2019 OSU CSE 34

Trace reversedString("OSU")The current tracing table is
suspended and pushed ...

7 January 2019 OSU CSE 35

Trace reversedString("OSU")
s = ""

if (s.length() == 0) {

return s;

... and a new table for the
body of the called method ...

7 January 2019 OSU CSE 36

s = ""

if (s.length() == 0) {

return s;

Trace reversedString("OSU")... begins with its own
variables and values.

7 January 2019 OSU CSE 37

Trace reversedString("OSU")
s = ""

if (s.length() == 0) {

s = ""

return s;

Soon, this tracing table
returns ...

7 January 2019 OSU CSE 38

Trace reversedString("OSU")... its results are reflected in
the calling location ...

7 January 2019 OSU CSE 39

Trace reversedString("OSU")
s = "U"

if (s.length() == 0) { ...
} else {

s = "U"

String sub = s.substring(1);

s = "U"
sub = ""

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

... and that table is popped
to resume execution.

7 January 2019 OSU CSE 40

Trace reversedString("OSU")
s = "U"

if (s.length() == 0) { ...
} else {

s = "U"

String sub = s.substring(1);

s = "U"
sub = ""

String rSub =
reversedString(sub);

s = "U"
sub = ""
rSub = ""

return rSub + s.charAt(0);

Soon, this tracing table
returns ...

7 January 2019 OSU CSE 41

Trace reversedString("OSU")... its results are reflected in
the calling location ...

7 January 2019 OSU CSE 42

Trace reversedString("OSU")
s = "SU"

if (s.length() == 0) { ...
} else {

s = "SU"

String sub = s.substring(1);

s = "SU"
sub = "U"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

... and that table is popped
to resume execution.

7 January 2019 OSU CSE 43

Trace reversedString("OSU")
s = "SU"

if (s.length() == 0) { ...
} else {

s = "SU"

String sub = s.substring(1);

s = "SU"
sub = "U"

String rSub =
reversedString(sub);

s = "SU"
sub = "U"
rSub = "U"

return rSub + s.charAt(0);

Soon, this tracing table
returns ...

7 January 2019 OSU CSE 44

Trace reversedString("OSU")... its results are reflected in
the calling location ...

7 January 2019 OSU CSE 45

Trace reversedString("OSU")
s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String rSub =
reversedString(sub);

return rSub + s.charAt(0);

... and that table is popped
to resume execution.

7 January 2019 OSU CSE 46

Trace reversedString("OSU")
s = "OSU"

if (s.length() == 0) { ...
} else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String rSub =
reversedString(sub);

s = "OSU"
sub = "SU"
rSub = "US"

return rSub + s.charAt(0);

Soon, this tracing table
returns ...

Finally!

• The value returned to the original calling
program is the string "USO"
– Phew!
– And it is even correct: the result of reversing

the string "OSU" is the string "USO"

7 January 2019 OSU CSE 47

Conclusion

• Each call to a method—whether
recursive or not—effectively results in the
creation of a new tracing table containing
the body of the called method

• Each tracing table has its own variables:
– Its own formal parameters
– Its own local variables

7 January 2019 OSU CSE 48

Conclusion

• If you really think you can reason about
recursive code by mentally executing this
kind of a series of events to check your
thinking, then ... you’re deluding yourself

7 January 2019 OSU CSE 49

Conclusion

• If you really think you can reason about
recursive code by mentally executing this
kind of a series of events to check your
thinking, then ... you’re deluding yourself

7 January 2019 OSU CSE 50

And if you don’t believe it yet,
try mentally executing this
way for code that makes

multiple recursive calls from
each tracing table.

	Recursion: How It Works
	Question Considered Before
	Question Considered Before
	Question Considered Before
	Question Considered Before
	Question Considered Before
	Question Considered Now
	Example
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	How Every Call Works
	How Every Call Works
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	How Every Return Works
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Trace reversedString("OSU")
	Finally!
	Conclusion
	Conclusion
	Conclusion

