### Sequence



### Sequence

- The Sequence component family allows you to manipulate strings of entries of any (arbitrary) type through direct access by position, similar to an array
  - Another generic type like Queue and Set
  - One possible best practice alternative to the built-in Java array, from the OSU CSE components

### Interfaces and Classes







OSU CSE



25 March 2021

OSU CSE

# Mathematical Model

- The value of a <u>Sequence</u> variable is modeled as a string of entries of type T
- Formally:

type Sequence is modeled by
string of T

# **No-argument Constructor**

- Ensures:
  - this = < >

| Code                                                                     | State |
|--------------------------------------------------------------------------|-------|
|                                                                          |       |
| <pre>Sequence<integer> si =    new Sequence1L&lt;&gt;();</integer></pre> |       |
|                                                                          |       |

| Code                                                                     | State    |
|--------------------------------------------------------------------------|----------|
|                                                                          |          |
| <pre>Sequence<integer> si =    new Sequence1L&lt;&gt;();</integer></pre> |          |
|                                                                          | si = < > |

### add

#### void add(int pos, T x)

- Adds x at position pos of this.
- Aliases: reference x
- Updates: this
- Requires:

0 <= pos and pos <= |this|

• Ensures:

this = #this[0, pos) \* <x> \*
 #this[pos, |#this|)

| Code          | State                    |
|---------------|--------------------------|
|               | si = < 49, 3 ><br>z = 70 |
| si.add(1, z); |                          |
|               |                          |

| Code          | State                        |
|---------------|------------------------------|
|               | si = < 49, 3 ><br>z = 70     |
| si.add(1, z); |                              |
|               | si = < 49, 70, 3 ><br>z = 70 |

Note the alias created here, which you cannot see in the tracing table; you should be able to draw the appropriate diagram showing it.



#### remove

- T remove(**int** pos)
- Removes and returns the entry at position pos of this.
- Updates: this
- Requires:
  - 0 <= pos and pos < |this|
- Ensures:

this = #this[0, pos) \*
 #this[pos+1, |#this|) and
<remove> = #this[pos, pos+1)

| Code                         | State                          |
|------------------------------|--------------------------------|
|                              | si = < 49, 3, 70 ><br>z = -584 |
| <pre>z = si.remove(1);</pre> |                                |
|                              |                                |

| Code              | State                          |
|-------------------|--------------------------------|
|                   | si = < 49, 3, 70 ><br>z = -584 |
| z = si.remove(1); |                                |
|                   | si = < 49, 70 ><br>z = 3       |

### length

#### int length()

- Reports the length of this.
- Ensures:

length = |this|

### entry

#### T entry(**int** pos)

- Reports the entry at position pos of this.
- Aliases: reference returned by entry
- Requires:
  - 0 <= pos and pos < | this |
- Ensures:

<entry> = this[pos, pos+1)

| Code             | State                          |
|------------------|--------------------------------|
|                  | si = < 49, 3, 70 ><br>z = -584 |
| z = si.entry(1); |                                |
|                  |                                |

| Code             | State                          |
|------------------|--------------------------------|
|                  | si = < 49, 3, 70 ><br>z = -584 |
| z = si.entry(1); |                                |
|                  | si = < 49, 3, 70 ><br>z = 3    |

Note the alias created here, which you cannot see in the tracing table; you should be able to draw the appropriate diagram showing it.

### replaceEntry

#### T replaceEntry(**int** pos, T x)

- Replaces the entry at position pos of this with x, and returns the old entry at that position.
- Aliases: reference x
- Updates: *this*
- Requires:

 $0 \le pos$  and  $pos \le |$ this|

• Ensures:

```
this = #this[0, pos) * <x> *
    #this[pos+1, |#this|) and
<replaceEntry> = #this[pos, pos+1)
```

| Code                                  | State                                 |
|---------------------------------------|---------------------------------------|
|                                       | si = < 49, 70 ><br>z = -8<br>w = -584 |
| <pre>w = si.replaceEntry(1, z);</pre> |                                       |
|                                       |                                       |

| Code                                  | State                                 |
|---------------------------------------|---------------------------------------|
|                                       | si = < 49, 70 ><br>z = -8<br>w = -584 |
| <pre>w = si.replaceEntry(1, z);</pre> |                                       |
|                                       | si = < 49, -8 ><br>z = -8<br>w = 70   |

Note the alias created here, which you cannot see in the tracing table; you should be able to draw the appropriate diagram showing it.



### Another Example

| Code                                  | State                     |
|---------------------------------------|---------------------------|
|                                       | si = < 49, 70 ><br>z = -8 |
| <pre>z = si.replaceEntry(1, z);</pre> |                           |
|                                       |                           |

### Another Example

| Code                                  | State                     |
|---------------------------------------|---------------------------|
|                                       | si = < 49, 70 ><br>z = -8 |
| <pre>z = si.replaceEntry(1, z);</pre> |                           |
|                                       | si = < 49, -8 ><br>z = 70 |

# Another Example



### append

#### void append(Sequence<T> s)

- Concatenates ("appends") s to the end of this.
- Updates: this
- Clears: s
- Ensures:

#### this = #this \* $\#_S$

### flip

#### void flip()

- Reverses ("flips") this.
- Updates: this
- Ensures:

this = rev(#this)

### insert

void insert(int pos, Sequence<T> s)

- Inserts s at position pos of this, and clears s.
- Updates: this
- Clears: s
- Requires:

0 <= pos and pos <= |this|

• Ensures:

this = #this[0, pos) \* #s \*
 #this[pos, |#this|)

| Code                           | State                                 |
|--------------------------------|---------------------------------------|
|                                | si1 = < 8, 6, 92 ><br>si2 = < 1, -7 > |
| <pre>si1.insert(2, si2);</pre> |                                       |
|                                |                                       |

| Code                           | State                                  |
|--------------------------------|----------------------------------------|
|                                | sil = < 8, 6, 92 ><br>si2 = < 1, -7 >  |
| <pre>si1.insert(2, si2);</pre> |                                        |
|                                | sil = < 8, 6, 1, -7, 92 ><br>si2 = < > |

### extract

void extract(int pos1, int pos2, Sequence<T> s)

- Removes the substring of this starting at position pos1 and ending at position pos2-1, and puts it in s.
- Updates: this
- Replaces: s
- Requires:

0 <= pos1 and pos1 <= pos2 and pos2 <= |this|

• Ensures:

this = #this[0, pos1) \* #this[pos2, |#this|) and

s = #this[pos1, pos2)

| Code                         | State                                             |
|------------------------------|---------------------------------------------------|
|                              | si1 = < 8, 6, 92, 27, 0 ><br>si2 = < 1, -7, 562 > |
| <pre>si1.extract(1, 3,</pre> |                                                   |
|                              |                                                   |

| Code                         | State                                             |
|------------------------------|---------------------------------------------------|
|                              | si1 = < 8, 6, 92, 27, 0 ><br>si2 = < 1, -7, 562 > |
| <pre>si1.extract(1, 3,</pre> |                                                   |
|                              | si1 = < 8, 27, 0 ><br>si2 = < 6, 92 >             |

### Resources

OSU CSE Components API: Sequence

– <u>http://web.cse.ohio-state.edu/software/common/doc/</u>