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Set

• The Set component family allows you to 
manipulate finite sets of elements of any 
(arbitrary) type
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Interfaces and Classes

22 March 2021 OSU CSE 3

Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3



Interfaces and Classes
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Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Standard has contracts 
for three methods:

clear
newInstance
transferFrom



Interfaces and Classes
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Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

SetKernel
has contracts for five methods:

add
remove

removeAny
contains
size



Interfaces and Classes
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Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Set
has contracts for three 

other methods:
add

remove
isSubset



Mathematical Model

• The value of a Set variable is modeled as 
a (finite) set of elements of type T

• Formally:
type Set is modeled by
finite set of T
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Constructors

• There is one constructor for each 
implementation class for Set

• As always:
– The name of the constructor is the name of 

the implementation class
– The constructor has its own contract (which is 

in the kernel interface SetKernel)
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No-argument Constructor

• Ensures:
this = { }
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Example
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Code State

Set<Integer> si =
new Set1L<>();



Example
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Code State

Set<Integer> si =
new Set1L<>();

si = { }



Methods for Set

• All the methods for Set are instance 
methods, i.e., you call them as follows:
s.methodName(arguments)

where s is an initialized non-null variable 
of type Set<T> for some T
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add

void add(T x)

• Adds x to this.
• Aliases: reference x
• Updates: this
• Requires:
x is not in this

• Ensures:
this = #this union {x}
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Example
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Code State
si = { 49, 3 }
k = 70

si.add(k);



Example
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Code State
si = { 49, 3 }
k = 70

si.add(k);

si = { 49, 3, 70 }
k = 70



Example
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Code State
si = { 49, 3 }
k = 70

si.add(k);

si = { 49, 3, 70 }
k = 70

Note the aliasing here 
between the “70s”, not 

shown in the tracing table 
but visible if you draw a 
diagram of this situation.



remove

T remove(T x)

• Removes x from this, and returns it.
• Updates: this
• Requires:
x is in this

• Ensures:
this = #this \ {x}  and
remove = x
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Example
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Code State
si = { 49, 3, 70 }
k = 3
m = -17

m = si.remove(k);



Example
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Code State
si = { 49, 3, 70 }
k = 3
m = -17

m = si.remove(k);

si = { 49, 70 }
k = 3
m = 3



Example
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Code State
si = { 49, 3, 70 }
k = 3
m = -17

m = si.remove(k);

si = { 49, 70 }
k = 3
m = 3

The precondition for 
remove (x is in this) 
is satisfied whether or not 
there is aliasing involving 
the “3s” in this situation.

Why?



removeAny

T removeAny()

• Removes and returns an arbitrary element from 
this.

• Updates: this
• Requires:
|this| > 0

• Ensures:
removeAny is in #this  and
this = #this \ {removeAny}
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Example
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Code State
si = { 49, 3, 70 }
k = 134

k = si.removeAny();



Example
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Code State
si = { 49, 3, 70 }
k = 134

k = si.removeAny();

si = { 3, 70 }
k = 49



Example
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Code State
si = { 49, 3, 70 }
k = 134

k = si.removeAny();

si = { 3, 70 }
k = 49

Other possible outcomes are:
si = { 49, 70 }

k = 3
or:

si = { 49, 3 }
k = 70



contains

boolean contains(T x)

• Reports whether x is in this.
• Ensures:
contains = (x is in this)
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Example
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Code State
si = { 49, 3, 70 }
k = –58

boolean b =
si.contains(k);



Example
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Code State
si = { 49, 3, 70 }
k = –58

boolean b =
si.contains(k);

si = { 49, 3, 70 }
k = –58
b = false



Example
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Code State
si = { 49, 3, 70 }
k = 70

boolean b =
si.contains(k);



Example
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Code State
si = { 49, 3, 70 }
k = 70

boolean b =
si.contains(k);

si = { 49, 3, 70 }
k = 70
b = true



Example
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Code State
si = { 49, 3, 70 }
k = 70

boolean b =
si.contains(k);

si = { 49, 3, 70 }
k = 70
b = true

The condition checked by 
contains (x is in this) 

is satisfied whether or not 
there is aliasing involving the 

“70s” in this situation.
Why?



size

int size()

• Reports the size (cardinality) of this.
• Ensures:
size = |this|
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Example
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Code State
si = { 49, 3, 70 }
n = –45843

n = si.size();



Example
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Code State
si = { 49, 3, 70 }
n = –45843

n = si.size();

si = { 49, 3, 70 }
n = 3



Overloading
• A method with the same name as another 

method, but with a different parameter 
profile (number, types, and order of formal 
parameters) is said to be overloaded

• A method may not be overloaded on the 
basis of its return type

• Java disambiguates between overloaded 
methods based on the number, types, and 
order of arguments at the point of a call
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add

void add(Set<T> s)

• Adds to this all elements of s that are 
not already in this, also removing just 
those elements from s.

• Updates: this, s
• Ensures:
this = #this union #s  and
s = #this intersection #s
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add

void add(Set<T> s)

• Adds to this all elements of s that are 
not already in this, also removing just 
those elements from s.

• Updates: this, s
• Ensures:
this = #this union #s  and
s = #this intersection #s
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The add method for receivers 
of type Set<T> is overloaded:

• one method takes an 
argument of type T, and

• one method takes an 
argument of type Set<T>. 



Example
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Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}

s1.add(s2);



Example
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Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}

s1.add(s2);

s1 = { 1, 2, 3, 4, 5, 6 }
s2 = { 3, 4 }



Example
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Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}

s1.add(s2);

s1 = { 1, 2, 3, 4, 5, 6 }
s2 = { 3, 4 }

In other words, this moves all 
elements of #s2 \ #s1

from s2 into s1;
it “conserves” objects of type T.



remove

Set<T> remove(Set<T> s)

• Removes from this all elements of s that 
are also in this, leaving s unchanged, and 
returns the elements actually removed.

• Updates: this
• Ensures:
this = #this \ s  and
remove = #this intersection s
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remove

Set<T> remove(Set<T> s)

• Removes from this all elements of s that 
are also in this, leaving s unchanged, and 
returns the elements actually removed.

• Updates: this
• Ensures:
this = #this \ s  and
remove = #this intersection s
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The remove method for receivers 
of type Set<T> is overloaded:

• one method takes an argument 
of type T, and

• one method takes an argument 
of type Set<T>. 



Example

22 March 2021 OSU CSE 42

Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}
s3 = { 10 }

s3 = s1.remove(s2);



Example
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Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}
s3 = { 10 }

s3 = s1.remove(s2);

s1 = { 1, 2 }
s2 = { 3, 4, 5, 6}
s3 = { 3, 4 }



Example
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Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}
s3 = { 10 }

s3 = s1.remove(s2);

s1 = { 1, 2 }
s2 = { 3, 4, 5, 6}
s3 = { 3, 4 }

In other words, this “conserves” 
all elements of #s1 and #s2; 

they all wind up in some Set<T>
rather than being “lost”.



isSubset

boolean isSubset(Set<T> s)

• Reports whether this is a subset of s.
• Ensures:
isSubset = this is subset of s
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Example
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Code State
s1 = { 2, 4 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);



Example
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Code State
s1 = { 2, 4 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);

s1 = { 2, 4 }
s2 = { 1, 2, 3, 4 }
b = true



Example
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Code State
s1 = { 3, 4, 5 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);



Example
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Code State
s1 = { 3, 4, 5 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);

s1 = { 3, 4, 5 }
s2 = { 1, 2, 3, 4 }
b = false



Iterating Over a Set

• Suppose you want to do something with 
each of the elements of a Set<T> s

• How might you do that?
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Iterating With removeAny
Set<T> temp = s.newInstance();

temp.transferFrom(s);

while (temp.size() > 0) {

T x = temp.removeAny();

// do something with x

s.add(x);

}
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Iterating With removeAny
Set<T> temp = s.newInstance();

temp.transferFrom(s);

while (temp.size() > 0) {

T x = temp.removeAny();

// do something with x

s.add(x);

}
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Recall that newInstance returns a 
new object of the same object type 
(dynamic type) as the receiver, as if 
it were a no-argument constructor; 

but we don’t need to know the object 
type of s to get this new object.



Iterating With removeAny
Set<T> temp = s.newInstance();

temp.transferFrom(s);

while (temp.size() > 0) {

T x = temp.removeAny();

// do something with x

s.add(x);

}
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Why transferFrom rather than 
copyFrom?

• Performance: there is no need for 
a copy, and transferFrom is far 
more efficient.

• We really want s to be empty to 
start the iteration, and this does it.



Iterating With removeAny

• This code has the following properties:
– It introduces no dangerous aliases, so it is relatively 

easy to reason about; just think about values, not 
references

– If what you want to do with each element is to change 
it, then the approach works because you may change 
the value of x each time through the loop body

– It is reasonably efficient (making no copies of 
elements of type T, though it does use removeAny
and add, and these could be slow)
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Iterating With removeAny

• This code has the following properties:
– It introduces no dangerous aliases, so it is relatively 

easy to reason about; just think about values, not 
references

– If what you want to do with each element is to change 
it, then the approach works because you may change 
the value of x each time through the loop body

– It is reasonably efficient (making no copies of 
elements of type T, though it does use removeAny
and add, and these could be slow)
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It does introduce an alias
(where?)

but it is of no consequence
(why?).



Iterators

• Conventional Java style for iterating over a 
“collection” like a Set is to use an iterator
so you can do this without taking the 
collection apart and reconstituting it
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One More Interface
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Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Iterable

extends



One More Interface
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Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Iterable

extends

Iterable has a contract 
for one method:
iterator



iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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Iterator is yet 
another interface in the 

Java libraries (in the 
package java.util).



iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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We will return to 
decipher the contract 

after seeing the easiest 
way for this method to 

be used...



For-Each Loops

• Since Set<T> extends the interface 
Iterable (so it inherits the iterator
method), you may write a for-each loop to 
“see” all elements of Set<T> s :
for (T x : s) {

// do something with x, but do

// not call methods on s, or

// change the value of x or s

}
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For-Each Loops

• Since Set<T> extends the interface 
Iterable (so it inherits the iterator
method), you may write a for-each loop to 
“see” all elements of Set<T> s :
for (T x : s) {

// do something with x, but do

// not call methods on s, or

// change the value of x or s

}
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This declares x as a local 
variable of type T in the loop; 

on each iteration, x is 
aliased to a different element 

of s.



For-Each Loop Example
• Count the number of strings of length 5 in a 
Set<String>:
Set<String> dictionary = …
...
int count = 0;
for (String word : dictionary) {
if (word.length() == 5) {
count++;

}
}
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In Which Order?

• The kernel interface (SetKernel in this 
case) contains the contract for the 
iterator method, as specialized for the 
type Set<T>

• This contract specifies the order in which 
the elements are seen
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iterator Contract

• Two new mathematical variables are 
involved in the contract:
– The string of T called ~this.seen

contains, in order, those values already “seen” 
in the for-each loop iterations up to any point

– The string of T called ~this.unseen
contains, in order, those values not yet “seen” 
in the for-each loop iterations up to that point
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iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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The concatenation of the 
string of T values 

already seen and the values 
not yet seen...



iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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The finite set of T of 
values already seen and not 

yet seen...



iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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The finite set of T of 
values already seen and not 

yet seen...
is equal to the entire set 

this.



iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements 
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|
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What else must be said?
What does the second clause mean? 

Why is it important?



Iterating With iterator

• The for-each code has the following properties:
– It introduces aliases, so you must be careful to “follow 

the rules”; specifically, the loop body should not call 
any methods on s

– If what you want to do to each element is to change it 
(when T is a mutable type), then the approach does 
not work because the loop body should not change x

– It may be more efficient than using removeAny (i.e., it 
also makes no copies of elements of type T, though it 
does use iterator methods to carry out the for-
each loop, and these could be slow)
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Resources

• OSU CSE Components API: Set
– http://web.cse.ohio-state.edu/software/common/doc/

• Java Libraries API: Iterable and
Iterator
– http://docs.oracle.com/javase/8/docs/api/
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http://web.cse.ohio-state.edu/software/common/doc/
http://docs.oracle.com/javase/8/docs/api/
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