
Set

22 March 2021 OSU CSE 1

Set

• The Set component family allows you to
manipulate finite sets of elements of any
(arbitrary) type

22 March 2021 OSU CSE 2

Interfaces and Classes

22 March 2021 OSU CSE 3

Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Interfaces and Classes

22 March 2021 OSU CSE 4

Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Standard has contracts
for three methods:

clear
newInstance
transferFrom

Interfaces and Classes

22 March 2021 OSU CSE 5

Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

SetKernel
has contracts for five methods:

add
remove

removeAny
contains
size

Interfaces and Classes

22 March 2021 OSU CSE 6

Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Set
has contracts for three

other methods:
add

remove
isSubset

Mathematical Model

• The value of a Set variable is modeled as
a (finite) set of elements of type T

• Formally:
type Set is modeled by
finite set of T

22 March 2021 OSU CSE 7

Constructors

• There is one constructor for each
implementation class for Set

• As always:
– The name of the constructor is the name of

the implementation class
– The constructor has its own contract (which is

in the kernel interface SetKernel)

22 March 2021 OSU CSE 8

No-argument Constructor

• Ensures:
this = { }

22 March 2021 OSU CSE 9

Example

22 March 2021 OSU CSE 10

Code State

Set<Integer> si =
new Set1L<>();

Example

22 March 2021 OSU CSE 11

Code State

Set<Integer> si =
new Set1L<>();

si = { }

Methods for Set

• All the methods for Set are instance
methods, i.e., you call them as follows:
s.methodName(arguments)

where s is an initialized non-null variable
of type Set<T> for some T

22 March 2021 OSU CSE 12

add

void add(T x)

• Adds x to this.
• Aliases: reference x
• Updates: this
• Requires:
x is not in this

• Ensures:
this = #this union {x}

22 March 2021 OSU CSE 13

Example

22 March 2021 OSU CSE 14

Code State
si = { 49, 3 }
k = 70

si.add(k);

Example

22 March 2021 OSU CSE 15

Code State
si = { 49, 3 }
k = 70

si.add(k);

si = { 49, 3, 70 }
k = 70

Example

22 March 2021 OSU CSE 16

Code State
si = { 49, 3 }
k = 70

si.add(k);

si = { 49, 3, 70 }
k = 70

Note the aliasing here
between the “70s”, not

shown in the tracing table
but visible if you draw a
diagram of this situation.

remove

T remove(T x)

• Removes x from this, and returns it.
• Updates: this
• Requires:
x is in this

• Ensures:
this = #this \ {x} and
remove = x

22 March 2021 OSU CSE 17

Example

22 March 2021 OSU CSE 18

Code State
si = { 49, 3, 70 }
k = 3
m = -17

m = si.remove(k);

Example

22 March 2021 OSU CSE 19

Code State
si = { 49, 3, 70 }
k = 3
m = -17

m = si.remove(k);

si = { 49, 70 }
k = 3
m = 3

Example

22 March 2021 OSU CSE 20

Code State
si = { 49, 3, 70 }
k = 3
m = -17

m = si.remove(k);

si = { 49, 70 }
k = 3
m = 3

The precondition for
remove (x is in this)
is satisfied whether or not
there is aliasing involving
the “3s” in this situation.

Why?

removeAny

T removeAny()

• Removes and returns an arbitrary element from
this.

• Updates: this
• Requires:
|this| > 0

• Ensures:
removeAny is in #this and
this = #this \ {removeAny}

22 March 2021 OSU CSE 21

Example

22 March 2021 OSU CSE 22

Code State
si = { 49, 3, 70 }
k = 134

k = si.removeAny();

Example

22 March 2021 OSU CSE 23

Code State
si = { 49, 3, 70 }
k = 134

k = si.removeAny();

si = { 3, 70 }
k = 49

Example

22 March 2021 OSU CSE 24

Code State
si = { 49, 3, 70 }
k = 134

k = si.removeAny();

si = { 3, 70 }
k = 49

Other possible outcomes are:
si = { 49, 70 }

k = 3
or:

si = { 49, 3 }
k = 70

contains

boolean contains(T x)

• Reports whether x is in this.
• Ensures:
contains = (x is in this)

22 March 2021 OSU CSE 25

Example

22 March 2021 OSU CSE 26

Code State
si = { 49, 3, 70 }
k = –58

boolean b =
si.contains(k);

Example

22 March 2021 OSU CSE 27

Code State
si = { 49, 3, 70 }
k = –58

boolean b =
si.contains(k);

si = { 49, 3, 70 }
k = –58
b = false

Example

22 March 2021 OSU CSE 28

Code State
si = { 49, 3, 70 }
k = 70

boolean b =
si.contains(k);

Example

22 March 2021 OSU CSE 29

Code State
si = { 49, 3, 70 }
k = 70

boolean b =
si.contains(k);

si = { 49, 3, 70 }
k = 70
b = true

Example

22 March 2021 OSU CSE 30

Code State
si = { 49, 3, 70 }
k = 70

boolean b =
si.contains(k);

si = { 49, 3, 70 }
k = 70
b = true

The condition checked by
contains (x is in this)

is satisfied whether or not
there is aliasing involving the

“70s” in this situation.
Why?

size

int size()

• Reports the size (cardinality) of this.
• Ensures:
size = |this|

22 March 2021 OSU CSE 31

Example

22 March 2021 OSU CSE 32

Code State
si = { 49, 3, 70 }
n = –45843

n = si.size();

Example

22 March 2021 OSU CSE 33

Code State
si = { 49, 3, 70 }
n = –45843

n = si.size();

si = { 49, 3, 70 }
n = 3

Overloading
• A method with the same name as another

method, but with a different parameter
profile (number, types, and order of formal
parameters) is said to be overloaded

• A method may not be overloaded on the
basis of its return type

• Java disambiguates between overloaded
methods based on the number, types, and
order of arguments at the point of a call

22 March 2021 OSU CSE 34

add

void add(Set<T> s)

• Adds to this all elements of s that are
not already in this, also removing just
those elements from s.

• Updates: this, s
• Ensures:
this = #this union #s and
s = #this intersection #s

22 March 2021 OSU CSE 35

add

void add(Set<T> s)

• Adds to this all elements of s that are
not already in this, also removing just
those elements from s.

• Updates: this, s
• Ensures:
this = #this union #s and
s = #this intersection #s

22 March 2021 OSU CSE 36

The add method for receivers
of type Set<T> is overloaded:

• one method takes an
argument of type T, and

• one method takes an
argument of type Set<T>.

Example

22 March 2021 OSU CSE 37

Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}

s1.add(s2);

Example

22 March 2021 OSU CSE 38

Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}

s1.add(s2);

s1 = { 1, 2, 3, 4, 5, 6 }
s2 = { 3, 4 }

Example

22 March 2021 OSU CSE 39

Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}

s1.add(s2);

s1 = { 1, 2, 3, 4, 5, 6 }
s2 = { 3, 4 }

In other words, this moves all
elements of #s2 \ #s1

from s2 into s1;
it “conserves” objects of type T.

remove

Set<T> remove(Set<T> s)

• Removes from this all elements of s that
are also in this, leaving s unchanged, and
returns the elements actually removed.

• Updates: this
• Ensures:
this = #this \ s and
remove = #this intersection s

22 March 2021 OSU CSE 40

remove

Set<T> remove(Set<T> s)

• Removes from this all elements of s that
are also in this, leaving s unchanged, and
returns the elements actually removed.

• Updates: this
• Ensures:
this = #this \ s and
remove = #this intersection s

22 March 2021 OSU CSE 41

The remove method for receivers
of type Set<T> is overloaded:

• one method takes an argument
of type T, and

• one method takes an argument
of type Set<T>.

Example

22 March 2021 OSU CSE 42

Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}
s3 = { 10 }

s3 = s1.remove(s2);

Example

22 March 2021 OSU CSE 43

Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}
s3 = { 10 }

s3 = s1.remove(s2);

s1 = { 1, 2 }
s2 = { 3, 4, 5, 6}
s3 = { 3, 4 }

Example

22 March 2021 OSU CSE 44

Code State
s1 = { 1, 2, 3, 4 }
s2 = { 3, 4, 5, 6}
s3 = { 10 }

s3 = s1.remove(s2);

s1 = { 1, 2 }
s2 = { 3, 4, 5, 6}
s3 = { 3, 4 }

In other words, this “conserves”
all elements of #s1 and #s2;

they all wind up in some Set<T>
rather than being “lost”.

isSubset

boolean isSubset(Set<T> s)

• Reports whether this is a subset of s.
• Ensures:
isSubset = this is subset of s

22 March 2021 OSU CSE 45

Example

22 March 2021 OSU CSE 46

Code State
s1 = { 2, 4 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);

Example

22 March 2021 OSU CSE 47

Code State
s1 = { 2, 4 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);

s1 = { 2, 4 }
s2 = { 1, 2, 3, 4 }
b = true

Example

22 March 2021 OSU CSE 48

Code State
s1 = { 3, 4, 5 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);

Example

22 March 2021 OSU CSE 49

Code State
s1 = { 3, 4, 5 }
s2 = { 1, 2, 3, 4 }

boolean b =
s1.isSubset(s2);

s1 = { 3, 4, 5 }
s2 = { 1, 2, 3, 4 }
b = false

Iterating Over a Set

• Suppose you want to do something with
each of the elements of a Set<T> s

• How might you do that?

22 March 2021 OSU CSE 50

Iterating With removeAny
Set<T> temp = s.newInstance();

temp.transferFrom(s);

while (temp.size() > 0) {

T x = temp.removeAny();

// do something with x

s.add(x);

}

22 March 2021 OSU CSE 51

Iterating With removeAny
Set<T> temp = s.newInstance();

temp.transferFrom(s);

while (temp.size() > 0) {

T x = temp.removeAny();

// do something with x

s.add(x);

}

22 March 2021 OSU CSE 52

Recall that newInstance returns a
new object of the same object type
(dynamic type) as the receiver, as if
it were a no-argument constructor;

but we don’t need to know the object
type of s to get this new object.

Iterating With removeAny
Set<T> temp = s.newInstance();

temp.transferFrom(s);

while (temp.size() > 0) {

T x = temp.removeAny();

// do something with x

s.add(x);

}

22 March 2021 OSU CSE 53

Why transferFrom rather than
copyFrom?

• Performance: there is no need for
a copy, and transferFrom is far
more efficient.

• We really want s to be empty to
start the iteration, and this does it.

Iterating With removeAny

• This code has the following properties:
– It introduces no dangerous aliases, so it is relatively

easy to reason about; just think about values, not
references

– If what you want to do with each element is to change
it, then the approach works because you may change
the value of x each time through the loop body

– It is reasonably efficient (making no copies of
elements of type T, though it does use removeAny
and add, and these could be slow)

22 March 2021 OSU CSE 54

Iterating With removeAny

• This code has the following properties:
– It introduces no dangerous aliases, so it is relatively

easy to reason about; just think about values, not
references

– If what you want to do with each element is to change
it, then the approach works because you may change
the value of x each time through the loop body

– It is reasonably efficient (making no copies of
elements of type T, though it does use removeAny
and add, and these could be slow)

22 March 2021 OSU CSE 55

It does introduce an alias
(where?)

but it is of no consequence
(why?).

Iterators

• Conventional Java style for iterating over a
“collection” like a Set is to use an iterator
so you can do this without taking the
collection apart and reconstituting it

22 March 2021 OSU CSE 56

One More Interface

22 March 2021 OSU CSE 57

Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Iterable

extends

One More Interface

22 March 2021 OSU CSE 58

Set

Set1L

implements implements

SetKernel

extends

Standard

extends

Set2 Set3

Iterable

extends

Iterable has a contract
for one method:
iterator

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 59

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 60

Iterator is yet
another interface in the

Java libraries (in the
package java.util).

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 61

We will return to
decipher the contract

after seeing the easiest
way for this method to

be used...

For-Each Loops

• Since Set<T> extends the interface
Iterable (so it inherits the iterator
method), you may write a for-each loop to
“see” all elements of Set<T> s :
for (T x : s) {

// do something with x, but do

// not call methods on s, or

// change the value of x or s

}

22 March 2021 OSU CSE 62

For-Each Loops

• Since Set<T> extends the interface
Iterable (so it inherits the iterator
method), you may write a for-each loop to
“see” all elements of Set<T> s :
for (T x : s) {

// do something with x, but do

// not call methods on s, or

// change the value of x or s

}

22 March 2021 OSU CSE 63

This declares x as a local
variable of type T in the loop;

on each iteration, x is
aliased to a different element

of s.

For-Each Loop Example
• Count the number of strings of length 5 in a
Set<String>:
Set<String> dictionary = …
...
int count = 0;
for (String word : dictionary) {
if (word.length() == 5) {
count++;

}
}

22 March 2021 OSU CSE 64

In Which Order?

• The kernel interface (SetKernel in this
case) contains the contract for the
iterator method, as specialized for the
type Set<T>

• This contract specifies the order in which
the elements are seen

22 March 2021 OSU CSE 65

iterator Contract

• Two new mathematical variables are
involved in the contract:
– The string of T called ~this.seen

contains, in order, those values already “seen”
in the for-each loop iterations up to any point

– The string of T called ~this.unseen
contains, in order, those values not yet “seen”
in the for-each loop iterations up to that point

22 March 2021 OSU CSE 66

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 67

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 68

The concatenation of the
string of T values

already seen and the values
not yet seen...

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 69

The finite set of T of
values already seen and not

yet seen...

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 70

The finite set of T of
values already seen and not

yet seen...
is equal to the entire set

this.

iterator

Iterator<T> iterator()

• Returns an iterator over a set of elements
of type T.

• Ensures:
entries(~this.seen * ~this.unseen) = this
and

|~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE 71

What else must be said?
What does the second clause mean?

Why is it important?

Iterating With iterator

• The for-each code has the following properties:
– It introduces aliases, so you must be careful to “follow

the rules”; specifically, the loop body should not call
any methods on s

– If what you want to do to each element is to change it
(when T is a mutable type), then the approach does
not work because the loop body should not change x

– It may be more efficient than using removeAny (i.e., it
also makes no copies of elements of type T, though it
does use iterator methods to carry out the for-
each loop, and these could be slow)

22 March 2021 OSU CSE 72

Resources

• OSU CSE Components API: Set
– http://web.cse.ohio-state.edu/software/common/doc/

• Java Libraries API: Iterable and
Iterator
– http://docs.oracle.com/javase/8/docs/api/

22 March 2021 OSU CSE 73

http://web.cse.ohio-state.edu/software/common/doc/
http://docs.oracle.com/javase/8/docs/api/

	Set
	Set
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	Mathematical Model
	Constructors
	No-argument Constructor
	Example
	Example
	Methods for Set
	add
	Example
	Example
	Example
	remove
	Example
	Example
	Example
	removeAny
	Example
	Example
	Example
	contains
	Example
	Example
	Example
	Example
	Example
	size
	Example
	Example
	Overloading
	add
	add
	Example
	Example
	Example
	remove
	remove
	Example
	Example
	Example
	isSubset
	Example
	Example
	Example
	Example
	Iterating Over a Set
	Iterating With removeAny
	Iterating With removeAny
	Iterating With removeAny
	Iterating With removeAny
	Iterating With removeAny
	Iterators
	One More Interface
	One More Interface
	iterator
	iterator
	iterator
	For-Each Loops
	For-Each Loops
	For-Each Loop Example
	In Which Order?
	iterator Contract
	iterator
	iterator
	iterator
	iterator
	iterator
	Iterating With iterator
	Resources

