SSSSSS

set

 The set component family allows you to

manipulate finite sets of elements of any
(arbitrary) type

iImplements

Interfaces and Classes

Standard

\

Textends

SetKernel

\

Textends

Set

implements

\Y\/\/\

ik

Y

Set1L

22 March 2021

Set2

Set3

OSU CSE

Interfaces and Classes

< Standard >

Textends
Standard has contracts
for three methods: Kernel>
clear
newlnstance Textends
transferFrom
Set |
implements ¢ implements
Set1L Set? Set3

22 March 2021 OSU CSE

Interfaces and Classes

< Standard >

extends

<SetKernel>

SetKernel

has contracts for five methods:

add
remove Implements

removeAny

contailns Set3
size

22 March 2021 OSU CSE

ot and Classes

has contracts for three
other methods: ndard

add

remove Textends
1sSubset
-JtKernel>
Textends
Set |
implements implements

ik

SetiL Set3

Set2

22 March 2021 OSU CSE

Mathematical Model

 The value of a set variable is modeled as
a (finite) set of elements of type T

* Formally:
type Set is modeled by

finite set of T

22 March 2021 OSU CSE

Constructors

e There is one constructor for each
Implementation class for set

* As always:

— The name of the constructor is the name of
the implementation class

— The constructor has its own contract (which is
in the kernel interface SetKernel)

No-argument Constructor

* Ensures:
this = { }

Example

Code State

Set<Integer> si =
new SetlL<>();

22 March 2021 OSU CSE

Example

Code State

Set<Integer> si =
new SetlL<>();

22 March 2021 OSU CSE

Methods for Set

 All the methods for set are instance
methods, i.e., you call them as follows:

s.methodName (arguments)

where s Is an Initialized non-null variable
of type Set<T> for some T

22 March 2021 OSU CSE

add

void add (T x)
 Adds x to this.
» Aliases: reference x
 Updates: this
* Requires:
X 1s not in this
* Ensures:
this = #this union {x}

22 March 2021 OSU CSE

22 March 2021

OSU CSE

14

22 March 2021

OSU CSE

15

Example

Note the aliasing here

between the “70s”, not State
shown in the tracing table
but visible if you draw a si = { 49, 3]
diagram of this situation. . = 70
si.add (k) ;
si = { 49, 3,770 }
k =70

remove

T remove (T Xx)
« Removes x from this, and returns it.
 Updates: this
* Requires:
X 18 i1n this
* Ensures:
this = #this \ {x} and

remove = X

22 March 2021 OSU CSE

70

m = si.remove (k);

22 March 2021 OSU CSE

18

70

m = si.remove (k);

70

22 March 2021 OSU CSE

Example

Code State
si = { 49, 3, 70 }
= |« - 3
The precondition for m= -17

remove (x is in this)
Is satisfied whether or not
there is aliasing involving

the “3s” in this situation. si = { 49, 70 }
Why? = 3
= 3

:>\1\‘

S
|

22 March 2021 OSU CSE

removeAny

T removeAnv ()

 Removes and returns an arbitrary element from
this.

 Updates: this
* Requires:
| this| > 0
* Ensures:
removeAny is in #this and

this = #this \ {removeAny)

22 March 2021 OSU CSE

21

= s1.removeAny () ;

22 March 2021 OSU CSE

= s1.removeAny () ;

22 March 2021 OSU CSE

Example

Other possible outcomes are:
si1 = { 49, 70 }

k = 3
or.
si = { 49, 3 }
k =70

N e @ A ALl

22 March 2021

OSU CSE 24

contalins

boolean contains (T x)
* Reports whether x is Iin this.
* Ensures:

contains = (x 1s in this)

22 March 2021 OSU CSE

25

boolean b =
si.contains (k) ;

22 March 2021 OSU CSE

26

boolean b =
si.contains (k) ;

70

22 March 2021 OSU CSE

boolean b =
si.contains (k) ;

22 March 2021 OSU CSE

28

boolean b =
si.contains (k) ;

70

22 March 2021 OSU CSE

Example

The condition checked by

contains (x is in this) State
IS satisfied whether or not
there is aliasing involving the =2 = { 49, 3, 70
“70s” in this situation. = 70
Why?
si.contalins (.,
si = { 49, 3, 70
k = 70

slize

int size ()
* Reports the size (cardinality) of this.

 Ensures:
size = |this|

22 March 2021 OSU CSE

31

70

22 March 2021 OSU CSE

32

70

22 March 2021 OSU CSE

33

Overloading

* A method with the same name as another
method, but with a different parameter
profile (number, types, and order of formal
parameters) is said to be overloaded

* A method may not be overloaded on the
basis of its return type

« Java disambiguates between overloaded
methods based on the number, types, and
order of arguments at the point of a call

add

volid add (Set<T> s)

 Adds to this all elements of s that are

not already in this, also removing just
those elements from s.

 Updates: this, s
e Ensures:
this = #this union #s and

s = #this intersection #s

22 March 2021 OSU CSE

35

add

volid add (Set<T> s)
e Adds to this 'l¢

not already in ti

The add method for receivers
of type Set<T> is overloaded:

those elements fri * one method takes an

 Updates: this, s .

argument of type T, and
one method takes an

e Ensures: argument of type Set<T>.

this = #this union #s and

S

22 March 2021

= #this intersection #s

OSU CSE 36

Example

Code

State

sl =

S22

W
N

f\f\

~N

SN
N
0 W
N

N
N

sl.add(s2) ;

22 March 2021

OSU CSE

Code State
sl = {1, 2, 3, 4
32 — { 3/ 4 / 5/ 6}
sl.add(s2) ;
sl = {1, 2, 3, 4, 5, 6 }
s2 = { 3, 4 }

22 March 2021

OSU CSE

In other words, this moves all
elements of #s2 \ #s1

from s2 into s1;
it “"conserves” objects of type T. i1te
- »
sl =+{1, 2, 3, 4}

sz = {3, 4, 5, 6}

sl.add(s2);
sl = {1, 2, 3, 4, 5, 6 }
sz = { 3, 4]

22 March 2021 OSU CSE

39

remove

Set<T> remove (Set<T> s)

* Removes from this all elements of s that
are also in this, leaving s unchanged, and

returns the elements actually removed.
 Updates: this

 Ensures:
this = #this \ s and

remove = #this intersection s

22 March 2021 OSU CSE 40

remove

Set<T> remove (Set<T> s)
e Removes from thi. ™“=lements of s that

are also in thi The remove method for receivers
returns the eler of type set<T> is overloaded:

_ . | * one method takes an argument
* Updates: this tiype 7. and

e Ensures: « one method takes an argument
_ | oftype Set<T>.
this = #thi\

remove = #this intersection s

22 March 2021 OSU CSE 41

= sl.remove (s2);

22 March 2021 OSU CSE

= sl.remove (s2);

22 March 2021 OSU CSE

In other words, this “conserves” <
all elements of #s1 and #s2;
they all wind up in some Set<T>
rather than being “lost”. State
Sl = { 1 / 2/ 3/ 4 }
sZ2 = { 3/ 4/ 5/ 6}
s3 = { 10 }
s3 = sl.remove(s2);
sl = { 1, 2 }
s2 = { 3, 4, 5, 6}
s3 = { 3, 4 }

1sSubset

boolean 1sSubset (Set<T> s)

* Reports whether this is a subset of s.
* Ensures:

1sSubset = this 1s subset of s

22 March 2021 OSU CSE

45

Code

boolean b =

22 March 2021

State

sl.isSubset (s2);

OSU CSE

46

Code State

boolean b =

sl.isSubset (s2);

22 March 2021 OSU CSE

47

Example

Code

boolean b =

22 March 2021

State

sl.isSubset (s2);

OSU CSE

48

Code State

boolean b =

sl.isSubset (s2);

22 March 2021 OSU CSE

49

lterating Over a Set

* Suppose you want to do something with
each of the elements of a Set<T> s

* How might you do that?

lterating With removeAny

Set<T> temp = s.newlnstance()
temp.transferFrom(s) ;
while (temp.size () > 0) {
T x = temp.removeAny () ;
// do something with x
s.add (x) ;

22 March 2021 OSU CSE

Iterating With removeAny

Set<T> temp = s.newlnstance()
temp.transferFrom(s) ;

while (temp.size () > 0) {

n

T x = terp
Recall that newInstance returns a
// do sc new object of the same object type
s.add (x) (dynamic type) as the receiver, as if
) it were a no-argument constructor;

but we don’t need to know the object
type of s to get this new object.

22 March 2021 OSU CSE

Iterating With removeAny

Set<T> temp = s.newlInstance()

temp.transferFrom(s) ;

while (temp.S- > 0) {
I x = te Why transferFrom rather than
// do sc copyFrom?
« Performance: there is no need for
s.add (x) a copy, and transferFrom s far
} more efficient.

« We really want s to be empty to
start the iteration, and this does it.

lterating With removeAny

* This code has the following properties:

— It introduces no dangerous aliases, so it is relatively
easy to reason about; just think about values, not
references

— If what you want to do with each element is to change

it, then the approach works because you may change
the value of x each time through the loop body

— It is reasonably efficient (making no copies of
elements of type T, though it does use removeAny

and add, and these could be slow)

lterating With removeAny

* This code has the following properties:

— It introduces no dangerous aliases, so it is relatively
easy to reason about; ji “think about values, not

references

— If what you want to| It does introduce an alias hge
it, then the approac (where?) 1ge
the value of x each put it is of no consequence

— It is reasonably effi (why?).
elements of type T, vy ')

and add, and these could be slow)

Iterators

« Conventional Java style for iterating over a
“collection” like a Set is to use an iterator

SO you can do this without taking the
collection apart and reconstituting it

< Standard

Set
iImplements ¢

One More Interface

Iterable >

Set1L

extends extends
<SetKernel>
Textends
implements
Set3

Set2

22 March 2021

OSU CSE

57

< Standard

iImplements

One More Interface

Set1L

22 March 2021

extends

SetKe

|

Iterable >

Tterable has a contract

for one method:
iterator

ik

/%ments

Set2

Set3

OSU CSE

58

lterator

Tterator<T> iterator ()

 Returns an iterator over a set of elements
of type T.

 Ensures:

entries (~this.seen * ~this.unseen) = this

and
| ~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE

59

lterator

Tterator<T> iterator ()

 Returns an iterator over a set of elements
of type T.

e Ensures: Iterator IS yet
another interface in the

Java libraries (in the
package java.util).

entries (~this. seen is

and

| ~this.seen * ~this\

22 March 2021 OSU CSE 60

lterator

We will return to

Tterator<T> 1terat decipher the contract
after seeing the easiest

* Returns an iterator oV’ way for this method to

of type T. be used...
 Ensures:
entries (~this.seen * ~this.unseen) = this
and

| ~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE

61

For-Each Loops

¢« Since Set<T> extends the interface
Iterable (soitinherits the iterator

method), you may write a for-each loop to
“see” all elements of Set<T> s

for (T x : s) {
// do something with x, but do
// not call methods on s, or

// change the value of x or s

J

22 March 2021 OSU CSE 62

FO r'F This declares x as a local
variable of type T in the loop;
on each iteration, x Is

Since <T>e
St .. aliased to a different element
Iterable (so of s.

method), you may a-TOr-eacrrroop to
‘see” all eleme” o0t Set<T> s

for (T x" : s) {
// do something with x, but do
// not call methods on s, or

// change the value of x or s

J

22 March 2021 OSU CSE 63

For-Each Loop Example

* Count the number of strings of length 5 in a
Set<String>:

Set<String> dictionary = ..

int count = 0;
for (String word : dictionary) {
if (word.length () == 5) {

count++;

In Which Order?

* The kernel interface (SetKernel in this

case) contains the contract for the
iterator method, as specialized for the

type Set<T>

* This contract specifies the order in which
the elements are seen

iterator Contract

e Two new mathematical variables are
iInvolved in the contract:

— The string of Tcalled ~this. seen
contains, in order, those values already “seen”
In the for-each loop iterations up to any point

— The string of Tcalled ~this.unseen

contains, in order, those values not yet “seen”
in the for-each loop iterations up to that point

22 March 2021 OSU CSE 66

lterator

Tterator<T> iterator ()

 Returns an iterator over a set of elements
of type T.

 Ensures:

entries (~this.seen * ~this.unseen) = this

and
| ~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE

67

1T
The concatenation of the
string of T values

Iterator<T> 17 already seen and the values

« Returns an itera not yet seen...
of type T.

 Ensures:

v/

entries (~this.seen * ~this.unseen) = this

and
| ~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE

68

1t
The finite set of Tof
Tterator<T> 1i- values already seen and not

yet seen...
 Returns an itera 3
of type T.
 Ensures:
entries (~this.seen * ~this.unseen) = this
and

| ~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE

69

1€ The finite set of Tof
values already seen and not

Tterator<T> i1 | yetseen...
Is equal to the entire set
 Returns an itera this. 3
of type T.
 Ensures:
entries (~this.seen * ~this.unseen) = this
and

| ~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE

70

lterator

What else must be said?
Iterator<1l Whatdoes the second clause mean?

Why is it important?
 Returns an i ;

of type T.
 Ensures:

entries (~this.seen * ~this.u. /en) = this

and
| ~this.seen * ~this.unseen| = |this|

22 March 2021 OSU CSE

71

lterating With iterator

 The for-each code has the following properties:

— It introduces aliases, so you must be careful to “follow
the rules™; specifically, the loop body should not call
any methods on s

— If what you want to do to each element is to change it
(when T is a mutable type), then the approach does
not work because the loop body should not change x

— It may be more efficient than using removeAny (i.e., it
also makes no copies of elements of type T, though it
does use iterator methods to carry out the for-

each loop, and these could be slow)

Resources

« OSU CSE Components API: set

— http://web.cse.ohio-state.edu/software/common/doc/

« Java Libraries APIl: Tterable and
Iterator

— http://docs.oracle.com/javase/8/docs/api/

22 March 2021 OSU CSE

http://web.cse.ohio-state.edu/software/common/doc/
http://docs.oracle.com/javase/8/docs/api/

	Set
	Set
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	Mathematical Model
	Constructors
	No-argument Constructor
	Example
	Example
	Methods for Set
	add
	Example
	Example
	Example
	remove
	Example
	Example
	Example
	removeAny
	Example
	Example
	Example
	contains
	Example
	Example
	Example
	Example
	Example
	size
	Example
	Example
	Overloading
	add
	add
	Example
	Example
	Example
	remove
	remove
	Example
	Example
	Example
	isSubset
	Example
	Example
	Example
	Example
	Iterating Over a Set
	Iterating With removeAny
	Iterating With removeAny
	Iterating With removeAny
	Iterating With removeAny
	Iterating With removeAny
	Iterators
	One More Interface
	One More Interface
	iterator
	iterator
	iterator
	For-Each Loops
	For-Each Loops
	For-Each Loop Example
	In Which Order?
	iterator Contract
	iterator
	iterator
	iterator
	iterator
	iterator
	Iterating With iterator
	Resources

