Mathematical Set Notation
Set Theory

• A mathematical model that we will use often is that of mathematical sets

• A (finite) set can be thought of as a collection of zero or more elements of any other mathematical type, say, T
 – T is called the element type
 – We call this math type finite set of T
Math Notation for Sets

• The following notations are used when we write mathematics (e.g., in contract specifications) involving sets

• Notice two important features of sets:
 – There are no *duplicate* elements
 – There is no *order* among the elements
The Empty Set

- The *empty set*, a set with no elements at all, is denoted by \{ \} or by `empty_set`
Denoting a Specific Set

• A particular set can be described by listing its elements between \{ \text{ and } \} separated by commas

• Examples:

\[
\begin{align*}
\{ & 1, \ 42, \ 13 \} \\
\{ & \ 'G', \ 'o' \} \\
\{ & \ } \\
\end{align*}
\]
Denoting a Specific Set

- A particular set can be described by listing its elements between { and }, separated by commas.
- Examples:

 \[
 \{ 1, 42, 13 \} \\
 \{ 'G', 'o' \} \\
 \{ \} \\
 \]

A finite set of integer value whose elements are the integer values 1, 42, and 13; equal to the set \{ 1, 13, 42 \}.
Denoting a Specific Set

• A particular set can be described by listing its elements between

 \{ \text{and} \} \text{ separated by commas}

• Examples:

 \{ 1, 42, 13 \}

 \{ 'G', 'o' \}

 \{ \}

A finite set of character value whose elements are the character values 'G' and 'o'; this is not the same as the string of character value < 'G', 'o' > = "Go".
Denoting a Specific Set

• A particular set can be described by listing its elements between { } separated by commas.

• Examples:

- \{ 1, 42, 63 \}
- \{ 'G', 'o' \}
- \{ \}
- \{ \}

Now it can be seen that this notation for empty set is a special case of the set literal notation.
Membership

• We say \(x \) is in \(S \) iff \(x \) is an element of \(S \)

• Examples:

 33 is in \{ 1, 33, 2 \}
 'G' is in \{ 'G', 'o' \}
 33 is not in \{ 5, 2, 13 \}
 5 is not in \{ \}
Membership

• We say x is in S iff x is an element of S.

• Examples:
 33 is in $\{1, 33, 2\}$
 'G' is in $\{ 'G', 'o' \}$
 33 is not in $\{ 5, 2, 13 \}$
 5 is not in $\{ \}$

The usual mathematical notation for this is \in.
Union

• The **union** of sets s and t, a set consisting of the elements that are in either s or t or both, is denoted by s **union** t

• Examples:

$$\{ 1, 2 \} \text{ **union** } \{ 3, 2 \} = \{ 1, 2, 3 \}$$
$$\{ 'G', 'o' \} \text{ **union** } \{ \} = \{ 'G', 'o' \}$$
$$\{ \} \text{ **union** } \{ 5, 2, 13 \} = \{ 5, 2, 13 \}$$
$$\{ \} \text{ **union** } \{ \} = \{ \}$$
Union

- The **union** of sets s and t, a set consisting of the elements that are in either s or t or both, is denoted by $s \cup t$.

- Examples:

 - $\{1, 2\} \cup \{3, 2\} = \{1, 2, 3\}$
 - $\{G, o\} \cup \{} = \{G, o\}$
 - $\{} \cup \{5, 2, 13\} = \{5, 2, 13\}$
 - $\{} \cup \{} = \{}$

The usual mathematical notation for this is \cup.

31 August 2017 OSU CSE
Intersection

• The *intersection* of sets \(s \) and \(t \), a set consisting of the elements in both \(s \) and \(t \), is denoted by \(s \ intersect t \)

• Examples:

\[
\begin{align*}
\{ 1, 2 \} \ intersection \ \{ 3, 2 \} &= \{ 2 \} \\
\{ 'G', 'o' \} \ intersection \ \{ \} &= \{ \} \\
\{ 5, 2 \} \ intersection \ \{ 13, 7 \} &= \{ \} \\
\{ \} \ intersection \ \{ \} &= \{ \}
\end{align*}
\]
Intersection

• The **intersection** of sets s and t, a set consisting of the elements in both s and t, is denoted by $s \text{ intersection } t$

• Examples:

 \[
 \{ 3, 2 \} \text{ intersection } \{ 3, 2 \} = \{ 2 \}
 \]

 \[
 \{ \} \text{ intersection } \{ \} = \{ \}
 \]

 \[
 \{ 3, 2 \} \text{ intersection } \{ 13, 7 \} = \{ \}
 \]

 \[
 \{ \} \text{ intersection } \{ \} = \{ \}
 \]

The usual mathematical notation for this is \cap.

31 August 2017 OSU CSE
Difference

- The **difference** of sets s and t, a set consisting of the elements of s that are not in t, is denoted by $s \setminus t$ (or by $s - t$).

- Examples:

 $\{ 1, 2, 3, 4 \} \setminus \{ 3, 2 \} = \{ 1, 4 \}$
 $\{ 'G', 'o' \} \setminus \{ \} = \{ 'G', 'o' \}$
 $\{ 5, 2 \} \setminus \{ 13, 5 \} = \{ 2 \}$
 $\{ \} \setminus \{ 9, 6, 18 \} = \{ \}$
Difference

• The **difference** of sets s and t, a set consisting of the elements of s that are not in t, is denoted by $s \setminus t$ (or by $s - t$)

• Examples:

$\{ 1, 2 \} \setminus \{ 13, 5 \} = \{ 2 \}$

$\{ \} \setminus \{ 9, 6, 18 \} = \{ \}$

This may be pronounced “s without t".
Subset

- We say \textit{s is subset of} \textit{t} iff every element of \textit{s} is also in \textit{t}.

 \textit{s is proper subset of} \textit{t} does not allow \textit{s} = \textit{t}.
Subset

- We say \(s \) is subset of \(t \) iff every element of \(s \) is also in \(t \)

\[s \text{ is proper subset of } t \]

\(s = t \)

The usual mathematical notations are \(\subset \) (for proper) and \(\subseteq \); we say \(is not \) ... for the negation of each.
Size (Cardinality)

• The *size* or *cardinality* of a set s, i.e., the number of elements in s, is denoted by $|s|$

• Examples:

 $|\{ 1, 15, -42, 18 \}| = 4$
 $|\{ 'G', 'o' \}| = 2$
 $|\{ \}| = 0$
Entries of a String

• The set whose elements are exactly the entries of a string \(s \) (i.e., the string’s entries without duplicates and ignoring order) is denoted by \(\text{entries}(s) \)

• Examples:

\[
\text{entries}(\langle 2, 2, 2, 1 \rangle) = \{ 1, 2 \}
\]

\[
\text{entries}(\langle \rangle) = \{ \}
\]
Venn Diagrams

\[\text{Diagram with circles labeled } s \text{ and } t \]
Venn Diagrams

$S \cup T$
Venn Diagrams

\begin{itemize}
\item s intersection t
\end{itemize}
Venn Diagrams

\[s \setminus t \]

\[s \quad t \]
s is proper subset of t