Mathematical Set Notation

Set Theory

- A mathematical model that we will use often is that of mathematical sets
- A (finite) set can be thought of as a collection of zero or more elements of any other mathematical type, say, T
$-T$ is called the element type
- We call this math type finite set of T

Math Notation for Sets

- The following notations are used when we write mathematics (e.g., in contract specifications) involving sets
- Notice two important features of sets:
- There are no duplicate elements
- There is no order among the elements

The Empty Set

- The empty set, a set with no elements at all, is denoted by \{ \} or by empty_set

Denoting a Specific Set

- A particular set can be described by listing its elements between \{ and \} separated by commas
- Examples:

$$
\begin{aligned}
& \{1,42,13\} \\
& \{\text { 'G', 'O' \}} \\
& \}
\end{aligned}
$$

Denoting a Specific Set

- A particular se its elements b by commas equal to the set $\{1,13,42\}$.
- Examples:

$$
\begin{aligned}
& \{1,42,13\} \\
& \left\{\begin{array}{l}
\text { G', } \\
\left\{\begin{array}{l}
1
\end{array}\right\} \\
\{
\end{array}\right.
\end{aligned}
$$

A finite set of integer value whose elements are the integer values 1, 42, and 13;

Denoting a Specific Set

A finite set of character

- A particular set its elements bet by commas
- Examples:

$$
\begin{aligned}
& \{1,42,13 \\
& \left\{\begin{array}{l}
\{1, \\
\{
\end{array}\right\} \\
& \text { ' }\}
\end{aligned}
$$ value whose elements are the character values ' G ' and ' O^{\prime} '; this is not the same as the string of character value

< 'G', 'O' > = "GO".

Denoting a Specific Set

- A particular se its elements b

Now it can be seen that this notation for empty_set is a special case of the set literal notation. by commas

- Examples:

```
{ 1, 42
    {'G' 'O' }
```


Membership

- We say x is in s ff x is an element of s
- Examples:

$$
\begin{aligned}
& 33 \text { is in }\{1,33,2\} \\
& \text { 'G' is in }\{' G \text { ', '0' }\} \\
& 33 \text { is not in }\{5,2,13\} \\
& 5 \text { is not in }\}
\end{aligned}
$$

Membership

- We say x is in s iff x is an element of S
- Examples:

The usual mathematical

$$
\begin{aligned}
& 33 \text { is in }\{1,33,2\} \\
& \text { 'G' is in }\{' G \text { ', '0' }\} \\
& 33 \text { is not in }\{5,2,13\} \\
& 5 \text { is not in }\}
\end{aligned}
$$

Union

- The union of sets s and t, a set consisting of the elements that are in either s or t or both, is denoted by s union t
- Examples:
$\{1,2\}$ union $\{3,2\}=\{1,2,3\}$
\{ 'G', 'O' \} union $\}=\{' G ', ~ ' O '\}$
$\}$ union $\{5,2,13\}=\{5,2,13\}$
\{ \} union $\}=\{ \}$

Union

- The union of sets s and t, a set consisting of the elements that are in either s or t or both, is denoted by s union t
- Examples:

The usual mathematical notation for this is U.

$$
\begin{aligned}
& =\{1,2,3\} \\
& =\left\{'^{\prime}, 10^{\prime}\right\} \\
& =\{5,2,13\}
\end{aligned}
$$

\{ \} union \{ \} $=$ \{ \}

Intersection

- The intersection of sets s and t, a set consisting of the elements in both s and t, is denoted by s intersection t
- Examples:
$\{1,2\}$ intersection $\{3,2\}=\{2\}$
\{ 'G', 'O' \} intersection $\}=\{ \}$
$\{5,2\}$ intersection $\{13,7\}=\{ \}$
\{ \} intersection $\}=$ \{ \}

Intersection

- The intersection of sets s and t, a set consisting of the elements in both s and t, is denoted by s intersection t
- Examples:

The usual mathematical notation for this is \cap.
ion $\}=\{ \}$ 13, 7$\}=\{ \}$
\{ \} intersection \{ \} = \{ \}

Difference

- The difference of sets s and t, a set consisting of the elements of s that are not in t, is denoted by s $\mid t$ (or by $s-t$)
- Examples:
$\{1,2,3,4\} \backslash\{3,2\}=\{1,4\}$
\{ 'G', 'O' \} $\backslash\}=\{~ ' G ', ~ ' O ' ~\} ~$
$\{5,2\} \backslash\{13,5\}=\{2\}$
$\} \backslash\{9,6,18\}=\{ \}$

Difference

- The difference of sets s and t, a set consisting of the elements of s that are not in t, is denoted by $s \mid t($ or by $s-t$)
- Examples:

This may be pronounced " s without t ".

$$
\text { 'G', 'O' \} }
$$

$$
\{2\}
$$

$$
\} \mid\{9,6,18\}=\{ \}
$$

Subset

- We say s is subset of t iff every element of s is also in t
$-s$ is proper subset of t does not allow $s=t$

Subset

- We say s is subset of t iff every element of s is also in t
$-s$ is proper subset of t does not allow
$s=t$
The usual mathematical notations are
\subset (for proper) and \subseteq; we say is not . . . for the negation of each.

Size (Cardinality)

- The size or cardinality of a set s, i.e., the number of elements in s, is denoted by
|s|
- Examples:

$$
\begin{aligned}
& \begin{array}{l}
\text { \{ } 1,15,-42,18 \text { \}| }=4 \\
\mid\{\text { 'G', 'o' \}| }=2 \\
|\} \mid=0
\end{array}
\end{aligned}
$$

Entries of a String

- The set whose elements are exactly the entries of a string s (i.e., the string's entries without duplicates and ignoring order) is denoted by entries (s)
- Examples:

$$
\begin{aligned}
& \text { entries }(<2,2,2,1>)=\{1,2\} \\
& \text { entries }(<>)=\{ \}
\end{aligned}
$$

Venn Diagrams

Venn Diagrams

Venn Diagrams

```
s intersection t
```


Venn Diagrams

Venn Diagrams

s is proper subset of t

