
Queue

22 March 2021 OSU CSE 1

Queue

• The Queue component family allows you
to manipulate strings of entries of any
(arbitrary) type in FIFO (first-in-first-out)
order
– "First" here refers to the temporal order in

which entries are put into the string and taken
out of it, not about the left-to-right or right-to-
left order in the string when it is written down

22 March 2021 OSU CSE 2

Interfaces and Classes

22 March 2021 OSU CSE 3

Queue

Queue1L Queue2

implements implements

QueueKernel

extends

Standard

extends

Interfaces and Classes

22 March 2021 OSU CSE 4

Queue

Queue1L Queue2

implements implements

QueueKernel

extends

Standard

extends
Standard has contracts

for three methods:
clear

newInstance
transferFrom

Interfaces and Classes

22 March 2021 OSU CSE 5

Queue

Queue1L Queue2

implements implements

QueueKernel

extends

Standard

extends

QueueKernel has
contracts for three methods:

enqueue
dequeue
length

Interfaces and Classes

22 March 2021 OSU CSE 6

Queue

Queue1L Queue2

implements implements

QueueKernel

extends

Standard

extends

Queue
has contracts for six other

methods:
append
flip
front

replaceFront
sort
rotate

Mathematical Model

• The value of a Queue variable is modeled
as a string of entries of type T

• Formally:
type Queue is modeled by

string of T

22 March 2021 OSU CSE 7

Generics

• Note that Queue is a generic type (also
called a parameterized type)

• The actual type of the entries is selected
only later by the client when the type
Queue is used to declare or instantiate a
variable, e.g.:
Queue<Integer> qi =

new Queue1L<Integer>();

22 March 2021 OSU CSE 8

Generics

• Note that Queue is a generic type (also
called a parameterized type)

• The actual type of the entries is selected
only later by the client when the type
Queue is used to declare or instantiate a
variable, e.g.:
Queue<Integer> qi =

new Queue1L<Integer>();

22 March 2021 OSU CSE 9

The formal type
parameter was called T;
here, the actual type or

argument type is
Integer.

Generics

• Note that Queue is a generic type (also
called a parameterized type)

• The actual type of the entries is selected
only later by the client when the type
Queue is used to declare or instantiate a
variable, e.g.:
Queue<Integer> qi =

new Queue1L<Integer>();

22 March 2021 OSU CSE 10

As of Java 7, generic
arguments in a constructor
call are inferred from the

declared type...

Generics

• Note that Queue is a generic type (also
called a parameterized type)

• The actual type of the entries is selected
only later by the client when the type
Queue is used to declare or instantiate a
variable, e.g.:
Queue<Integer> qi =

new Queue1L<>();

22 March 2021 OSU CSE 11

... so this diamond
operator means the same

thing as the constructor
with explicit generic

arguments.

Wrapper Types

• Note the use of Integer here, not int
• Java demands that generic arguments

must be reference types
• Each of the primitive types has a

corresponding wrapper type that is a
reference type (in part to satisfy this
requirement)

22 March 2021 OSU CSE 12

Wrapper Types

22 March 2021 OSU CSE 13

primitive type wrapper type

boolean Boolean

char Character

int Integer

double Double

Wrapper Types

• Each wrapper type is an immutable type
• There is a constructor from the

corresponding primitive type
• Java includes features called auto-boxing

and auto-unboxing so wrapper types can
be used with primitive-type syntax almost
as if they were primitive types
– Details later (for now, look it up if it seems to

matter to your code)
22 March 2021 OSU CSE 14

Constructors

• There is one constructor for each
implementation class for Queue

• As always:
– The name of the constructor is the name of

the implementation class
– The constructor has its own contract (which is

in the kernel interface QueueKernel)

22 March 2021 OSU CSE 15

No-argument Constructor

• Ensures:
this = < >

22 March 2021 OSU CSE 16

Example

22 March 2021 OSU CSE 17

Code State

Queue<Integer> qi =
new Queue1L<>();

Example

22 March 2021 OSU CSE 18

Code State

Queue<Integer> qi =
new Queue1L<>();

qi = < >

Methods for Queue

• All the methods for Queue are instance
methods, i.e., you call them as follows:
q.methodName(arguments)

where q is an initialized non-null variable
of type Queue<T> for some T

22 March 2021 OSU CSE 19

enqueue

void enqueue(T x)

• Adds x at the back (right end) of this.
• Aliases: reference x
• Updates: this
• Ensures:
this = #this * <x>

22 March 2021 OSU CSE 20

enqueue

void enqueue(T x)

• Adds x at the back (right end) of this.
• Aliases: reference x
• Updates: this
• Ensures:
this = #this * <x>

22 March 2021 OSU CSE 21

The list of references that might
be aliases upon return from the

method is advertised here,
because aliasing is important and

otherwise is not specified.

Example

22 March 2021 OSU CSE 22

Code State
qi = < 49, 3 >
k = 70

qi.enqueue(k);

Example

22 March 2021 OSU CSE 23

Code State
qi = < 49, 3 >
k = 70

qi.enqueue(k);

qi = < 49, 3, 70 >
k = 70

Meaning of “Aliases: ...”

22 March 2021 OSU CSE 24

49 3 70 Before...

Meaning of “Aliases: ...”

22 March 2021 OSU CSE 25

49 3 70 After...

Meaning of “Aliases: ...”

• The tracing table notation with ➞ gives us
no easy way to describe this situation
– The picture is, however, a handy way to see

what’s going on, so draw pictures!
• Since Integer is immutable, there is no

consequence to this case of aliasing
– But consider:
Queue<NaturalNumber> qn = ...

22 March 2021 OSU CSE 26

dequeue

T dequeue()

• Removes and returns the entry at the front
(left end) of this.

• Updates: this
• Requires:
this /= < >

• Ensures:
#this = <dequeue> * this

22 March 2021 OSU CSE 27

Example

22 March 2021 OSU CSE 28

Code State
qi = < 49, 3, 70 >
k = –584

k = qi.dequeue();

Example

22 March 2021 OSU CSE 29

Code State
qi = < 49, 3, 70 >
k = –584

k = qi.dequeue();

qi = < 3, 70 >
k = 49

length

int length()

• Reports the length of this.
• Ensures:
length = |this|

22 March 2021 OSU CSE 30

Example

22 March 2021 OSU CSE 31

Code State
qi = < 49, 3, 70 >
n = –45843

n = qi.length();

Example

22 March 2021 OSU CSE 32

Code State
qi = < 49, 3, 70 >
n = –45843

n = qi.length();

qi = < 49, 3, 70 >
n = 3

front

T front()

• Returns the entry at the the front (left end)
of this.

• Aliases: reference returned by front
• Requires:
this /= < >

• Ensures:
<front> is prefix of this

22 March 2021 OSU CSE 33

Example

22 March 2021 OSU CSE 34

Code State
qi = < 49, 3, 70 >
k = –58

k = qi.front();

Example

22 March 2021 OSU CSE 35

Code State
qi = < 49, 3, 70 >
k = –58

k = qi.front();

qi = < 49, 3, 70 >
k = 49

Meaning of “Aliases: ...”

22 March 2021 OSU CSE 36

49 3 70-58 Before...

Meaning of “Aliases: ...”

22 March 2021 OSU CSE 37

49 3 70-58 After...

replaceFront

T replaceFront(T x)

• Replaces the front of this with x, and returns the old
front.

• Aliases: reference x
• Updates: this
• Requires:

this /= < >

• Ensures:
<replaceFront> is prefix of #this and
this = <x> * #this[1, |#this|)

22 March 2021 OSU CSE 38

Example

22 March 2021 OSU CSE 39

Code State
qi = < 49, 70 >
k = –58
j = 16

k = qi.replaceFront(j);

Example

22 March 2021 OSU CSE 40

Code State
qi = < 49, 70 >
k = –58
j = 16

k = qi.replaceFront(j);

qi = < 16, 70 >
k = 49
j = 16

Meaning of “Aliases: ...”

22 March 2021 OSU CSE 41

49 70-58 Before...16

Meaning of “Aliases: ...”

22 March 2021 OSU CSE 42

49 70-58 After...16

Another Example

22 March 2021 OSU CSE 43

Code State
qi = < 49, 70 >
j = 16

j = qi.replaceFront(j);

Another Example

22 March 2021 OSU CSE 44

Code State
qi = < 49, 70 >
j = 16

j = qi.replaceFront(j);

qi = < 16, 70 >
j = 49

Another Example

22 March 2021 OSU CSE 45

Code State
qi = < 49, 70 >
j = 16

j = qi.replaceFront(j);

qi = < 16, 70 >
j = 49

This use of the method
avoids creating an alias: it

swaps j with the entry
previously at the front.

append

void append(Queue<T> q)

• Concatenates (“appends”) q to the end of
this.

• Updates: this
• Clears: q
• Ensures:
this = #this * #q

22 March 2021 OSU CSE 46

Example

22 March 2021 OSU CSE 47

Code State
q1 = < 4, 3, 2 >
q2 = < 1, 0 >

q1.append(q2);

Example

22 March 2021 OSU CSE 48

Code State
q1 = < 4, 3, 2 >
q2 = < 1, 0 >

q1.append(q2);

q1 = < 4, 3, 2, 1, 0 >
q2 = < >

flip

void flip()

• Reverses (“flips”) this.
• Updates: this
• Ensures:
this = rev(#this)

22 March 2021 OSU CSE 49

Example

22 March 2021 OSU CSE 50

Code State

qi = < 18, 6, 74 >

qi.flip();

Example

22 March 2021 OSU CSE 51

Code State

qi = < 18, 6, 74 >

qi.flip();

qi = < 74, 6, 18 >

sort
void sort(Comparator<T> order)

• Sorts this according to the ordering provided
by the compare method from order.

• Updates: this
• Requires:

[the relation computed by order.compare

is a total preorder]

• Ensures:
this = [#this ordered by the relation

computed by order.compare]

22 March 2021 OSU CSE 52

Comparators

• The Java interface Comparator<T> is:
public interface Comparator<T> {

/**

* Returns a negative integer, zero, or

* a positive integer as the first

* argument is less than, equal to, or

* greater than the second.

*/

int compare(T o1, T o2);

}

22 March 2021 OSU CSE 53

Comparators

• The notion of “less than” and “greater
than” is quite flexible

• The notion of “equal to” is not flexible
– It is based on mathematical equality, not on a

flexible notion of being “equivalent to”
• There are important technicalities...

22 March 2021 OSU CSE 54

sort
void sort(Comparator<T> order)

• Sorts this according to the ordering provided
by the compare method from order.

• Updates: this
• Requires:

[the relation computed by order.compare

is a total preorder]

• Ensures:
this = [#this ordered by the relation

computed by order.compare]

22 March 2021 OSU CSE 55

A total preorder means that any
two values of type T are

comparable, and that there are
no “cycles”, e.g., nothing like

a < b < c < a.

Creating a Comparator
private static class IntegerLT

implements Comparator<Integer> {
@Override

public int compare(Integer o1, Integer o2) {

if (o1 < o2) {

return -1;

} else if (o1 > o2) {
return 1;

} else {

return 0;

}

}

}

22 March 2021 OSU CSE 56

Creating a Comparator
private static class IntegerLT

implements Comparator<Integer> {
@Override

public int compare(Integer o1, Integer o2) {

if (o1 < o2) {

return -1;

} else if (o1 > o2) {
return 1;

} else {

return 0;

}

}

}

22 March 2021 OSU CSE 57

A class that implements
Comparator is usually a

nested class (i.e., declared for
local use inside another class),

and if so should be declared
private static.

An Easy Comparator
private static class IntegerLT

implements Comparator<Integer> {
@Override

public int compare(Integer o1, Integer o2) {

return o1.compareTo(o2);

}

}

22 March 2021 OSU CSE 58

Since a generic parameter must be a reference
type, and each wrapper type T (here, Integer)

implements the interface Comparable<T>,
each has a compareTo method that can be

called like this to simplify the code for compare
in a Comparator<T> implementation.

Example

22 March 2021 OSU CSE 59

Code State

qi = < 8, 6, 92, 1 >

Comparator<Integer> ci =
new IntegerLT ();

qi.sort(ci);

Example

22 March 2021 OSU CSE 60

Code State

qi = < 8, 6, 92, 1 >

Comparator<Integer> ci =
new IntegerLT ();

qi.sort(ci);

qi = < 1, 6, 8, 92 >

rotate

void rotate(int distance)
• Rotates this.
• Updates: this
• Ensures:

if #this = <> then
this = #this

else
this =

#this[distance mod |#this|, |#this|) *
#this[0, distance mod |#this|)

22 March 2021 OSU CSE 61

Example

22 March 2021 OSU CSE 62

Code State

qi = < 8, 6, 92, 3 >

qi.rotate(1);

Example

22 March 2021 OSU CSE 63

Code State

qi = < 8, 6, 92, 3 >

qi.rotate(1);

qi = < 6, 92, 3, 8 >

Example

22 March 2021 OSU CSE 64

Code State

qi = < 8, 6, 92, 3 >

qi.rotate(3);

Example

22 March 2021 OSU CSE 65

Code State

qi = < 8, 6, 92, 3 >

qi.rotate(3);

qi = < 3, 8, 6, 92 >

Example

22 March 2021 OSU CSE 66

Code State

qi = < 8, 6, 92, 3 >

qi.rotate(-1);

Example

22 March 2021 OSU CSE 67

Code State

qi = < 8, 6, 92, 3 >

qi.rotate(-1);

qi = < 3, 8, 6, 92 >

Resources

• OSU CSE Components API: Queue
– http://web.cse.ohio-state.edu/software/common/doc/

• Java Libraries API: Comparator,
Comparable
– http://docs.oracle.com/javase/8/docs/api/

22 March 2021 OSU CSE 68

http://web.cse.ohio-state.edu/software/common/doc/
http://docs.oracle.com/javase/7/docs/api/

	Queue
	Queue
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	Mathematical Model
	Generics
	Generics
	Generics
	Generics
	Wrapper Types
	Wrapper Types
	Wrapper Types
	Constructors
	No-argument Constructor
	Example
	Example
	Methods for Queue
	enqueue
	enqueue
	Example
	Example
	Meaning of “Aliases: ...”
	Meaning of “Aliases: ...”
	Meaning of “Aliases: ...”
	dequeue
	Example
	Example
	length
	Example
	Example
	front
	Example
	Example
	Meaning of “Aliases: ...”
	Meaning of “Aliases: ...”
	replaceFront
	Example
	Example
	Meaning of “Aliases: ...”
	Meaning of “Aliases: ...”
	Another Example
	Another Example
	Another Example
	append
	Example
	Example
	flip
	Example
	Example
	sort
	Comparators
	Comparators
	sort
	Creating a Comparator
	Creating a Comparator
	An Easy Comparator
	Example
	Example
	rotate
	Example
	Example
	Example
	Example
	Example
	Example
	Resources

