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Queue

• The Queue component family allows you 
to manipulate strings of entries of any 
(arbitrary) type in FIFO (first-in-first-out) 
order
– "First" here refers to the temporal order in 

which entries are put into the string and taken 
out of it, not about the left-to-right or right-to-
left order in the string when it is written down
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Interfaces and Classes
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Interfaces and Classes

22 March 2021 OSU CSE 4

Queue

Queue1L Queue2

implements implements

QueueKernel

extends

Standard

extends
Standard has contracts 

for three methods:
clear

newInstance
transferFrom



Interfaces and Classes
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Queue

Queue1L Queue2

implements implements

QueueKernel

extends

Standard

extends

QueueKernel has 
contracts for three methods:

enqueue
dequeue
length



Interfaces and Classes
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Queue

Queue1L Queue2

implements implements

QueueKernel

extends

Standard

extends

Queue
has contracts for six other 

methods:
append
flip
front

replaceFront
sort
rotate



Mathematical Model

• The value of a Queue variable is modeled 
as a string of entries of type T

• Formally:
type Queue is modeled by

string of T
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Generics

• Note that Queue is a generic type (also 
called a parameterized type)

• The actual type of the entries is selected 
only later by the client when the type 
Queue is used to declare or instantiate a 
variable, e.g.:
Queue<Integer> qi =

new Queue1L<Integer>();
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Generics

• Note that Queue is a generic type (also 
called a parameterized type)

• The actual type of the entries is selected 
only later by the client when the type 
Queue is used to declare or instantiate a 
variable, e.g.:
Queue<Integer> qi =

new Queue1L<Integer>();
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The formal type 
parameter was called T; 
here, the actual type or 

argument type is 
Integer.



Generics

• Note that Queue is a generic type (also 
called a parameterized type)

• The actual type of the entries is selected 
only later by the client when the type 
Queue is used to declare or instantiate a 
variable, e.g.:
Queue<Integer> qi =

new Queue1L<Integer>();
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As of Java 7, generic 
arguments in a constructor 
call are inferred from the 

declared type...



Generics

• Note that Queue is a generic type (also 
called a parameterized type)

• The actual type of the entries is selected 
only later by the client when the type 
Queue is used to declare or instantiate a 
variable, e.g.:
Queue<Integer> qi =

new Queue1L<>();
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... so this diamond 
operator means the same 

thing as the constructor 
with explicit generic 

arguments.



Wrapper Types

• Note the use of Integer here, not int
• Java demands that generic arguments 

must be reference types
• Each of the primitive types has a 

corresponding wrapper type that is a 
reference type (in part to satisfy this 
requirement)
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Wrapper Types
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primitive type wrapper type

boolean Boolean

char Character

int Integer

double Double



Wrapper Types

• Each wrapper type is an immutable type
• There is a constructor from the 

corresponding primitive type
• Java includes features called auto-boxing 

and auto-unboxing so wrapper types can 
be used with primitive-type syntax almost
as if they were primitive types
– Details later (for now, look it up if it seems to 

matter to your code)
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Constructors

• There is one constructor for each 
implementation class for Queue

• As always:
– The name of the constructor is the name of 

the implementation class
– The constructor has its own contract (which is 

in the kernel interface QueueKernel)
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No-argument Constructor

• Ensures:
this = < >
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Example
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Code State

Queue<Integer> qi =
new Queue1L<>();



Example

22 March 2021 OSU CSE 18

Code State

Queue<Integer> qi =
new Queue1L<>();

qi = < >



Methods for Queue

• All the methods for Queue are instance 
methods, i.e., you call them as follows:
q.methodName(arguments)

where q is an initialized non-null variable 
of type Queue<T> for some T
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enqueue

void enqueue(T x)

• Adds x at the back (right end) of this.
• Aliases: reference x
• Updates: this
• Ensures:
this = #this * <x>
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enqueue

void enqueue(T x)

• Adds x at the back (right end) of this.
• Aliases: reference x
• Updates: this
• Ensures:
this = #this * <x>
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The list of references that might 
be aliases upon return from the 

method is advertised here, 
because aliasing is important and 

otherwise is not specified.



Example
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Code State
qi = < 49, 3 >
k = 70

qi.enqueue(k);



Example

22 March 2021 OSU CSE 23

Code State
qi = < 49, 3 >
k = 70

qi.enqueue(k);

qi = < 49, 3, 70 >
k = 70



Meaning of “Aliases: ...”
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49 3 70 Before...



Meaning of “Aliases: ...”

22 March 2021 OSU CSE 25

49 3 70 After...



Meaning of “Aliases: ...”

• The tracing table notation with ➞ gives us 
no easy way to describe this situation
– The picture is, however, a handy way to see 

what’s going on, so draw pictures!
• Since Integer is immutable, there is no 

consequence to this case of aliasing
– But consider:
Queue<NaturalNumber> qn = ...
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dequeue

T dequeue()

• Removes and returns the entry at the front 
(left end) of this.

• Updates: this
• Requires:
this /= < >

• Ensures:
#this = <dequeue> * this
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Example
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Code State
qi = < 49, 3, 70 >
k = –584

k = qi.dequeue();



Example
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Code State
qi = < 49, 3, 70 >
k = –584

k = qi.dequeue();

qi = < 3, 70 >
k = 49



length

int length()

• Reports the length of this.
• Ensures:
length = |this|
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Example
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Code State
qi = < 49, 3, 70 >
n = –45843

n = qi.length();



Example
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Code State
qi = < 49, 3, 70 >
n = –45843

n = qi.length();

qi = < 49, 3, 70 >
n = 3



front

T front()

• Returns the entry at the the front (left end) 
of this.

• Aliases: reference returned by front
• Requires:
this /= < >

• Ensures:
<front> is prefix of this
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Example
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Code State
qi = < 49, 3, 70 >
k = –58

k = qi.front();



Example
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Code State
qi = < 49, 3, 70 >
k = –58

k = qi.front();

qi = < 49, 3, 70 >
k = 49



Meaning of “Aliases: ...”
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49 3 70-58 Before...



Meaning of “Aliases: ...”
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49 3 70-58 After...



replaceFront

T replaceFront(T x)

• Replaces the front of this with x, and returns the old 
front.

• Aliases: reference x
• Updates: this
• Requires:

this /= < >

• Ensures:
<replaceFront> is prefix of #this  and
this = <x> * #this[1, |#this|)
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Example
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Code State
qi = < 49, 70 >
k = –58
j = 16

k = qi.replaceFront(j);



Example
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Code State
qi = < 49, 70 >
k = –58
j = 16

k = qi.replaceFront(j);

qi = < 16, 70 >
k = 49
j = 16



Meaning of “Aliases: ...”

22 March 2021 OSU CSE 41

49 70-58 Before...16



Meaning of “Aliases: ...”
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49 70-58 After...16



Another Example
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Code State
qi = < 49, 70 >
j = 16

j = qi.replaceFront(j);



Another Example
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Code State
qi = < 49, 70 >
j = 16

j = qi.replaceFront(j);

qi = < 16, 70 >
j = 49



Another Example
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Code State
qi = < 49, 70 >
j = 16

j = qi.replaceFront(j);

qi = < 16, 70 >
j = 49

This use of the method 
avoids creating an alias: it 

swaps j with the entry 
previously at the front.



append

void append(Queue<T> q)

• Concatenates (“appends”) q to the end of 
this.

• Updates: this
• Clears: q
• Ensures:
this = #this * #q
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Example
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Code State
q1 = < 4, 3, 2 >
q2 = < 1, 0 >

q1.append(q2);



Example
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Code State
q1 = < 4, 3, 2 >
q2 = < 1, 0 >

q1.append(q2);

q1 = < 4, 3, 2, 1, 0 >
q2 = < >



flip

void flip()

• Reverses (“flips”) this.
• Updates: this
• Ensures:
this = rev(#this)
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Example
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Code State

qi = < 18, 6, 74 >

qi.flip();



Example

22 March 2021 OSU CSE 51

Code State

qi = < 18, 6, 74 >

qi.flip();

qi = < 74, 6, 18 >



sort
void sort(Comparator<T> order)

• Sorts this according to the ordering provided 
by the compare method from order.

• Updates: this
• Requires:

[the relation computed by order.compare

is a total preorder]

• Ensures:
this = [#this ordered by the relation

computed by order.compare]
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Comparators

• The Java interface Comparator<T> is:
public interface Comparator<T> {

/**

* Returns a negative integer, zero, or

* a positive integer as the first

* argument is less than, equal to, or

* greater than the second.

*/ 

int compare(T o1, T o2);

}
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Comparators

• The notion of “less than” and “greater 
than” is quite flexible

• The notion of “equal to” is not flexible
– It is based on mathematical equality, not on a 

flexible notion of being “equivalent to” 
• There are important technicalities...
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sort
void sort(Comparator<T> order)

• Sorts this according to the ordering provided 
by the compare method from order.

• Updates: this
• Requires:

[the relation computed by order.compare

is a total preorder]

• Ensures:
this = [#this ordered by the relation

computed by order.compare]
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A total preorder means that any 
two values of type T are 

comparable, and that there are 
no “cycles”, e.g., nothing like

a < b < c < a.



Creating a Comparator
private static class IntegerLT

implements Comparator<Integer> {
@Override

public int compare(Integer o1, Integer o2) {

if (o1 < o2) {

return -1;

} else if (o1 > o2) {
return 1;

} else {

return 0;

}

}

}
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Creating a Comparator
private static class IntegerLT

implements Comparator<Integer> {
@Override

public int compare(Integer o1, Integer o2) {

if (o1 < o2) {

return -1;

} else if (o1 > o2) {
return 1;

} else {

return 0;

}

}

}
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A class that implements 
Comparator is usually a 

nested class (i.e., declared for 
local use inside another class), 

and if so should be declared 
private static.



An Easy Comparator
private static class IntegerLT

implements Comparator<Integer> {
@Override

public int compare(Integer o1, Integer o2) {

return o1.compareTo(o2);

}

}
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Since a generic parameter must be a reference
type, and each wrapper type T (here, Integer) 

implements the interface Comparable<T>, 
each has a compareTo method that can be 

called like this to simplify the code for compare
in a Comparator<T> implementation.



Example
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Code State

qi = < 8, 6, 92, 1 >

Comparator<Integer> ci =
new IntegerLT (); 

qi.sort(ci);



Example
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Code State

qi = < 8, 6, 92, 1 >

Comparator<Integer> ci =
new IntegerLT (); 

qi.sort(ci);

qi = < 1, 6, 8, 92 >



rotate

void rotate(int distance)
• Rotates this.
• Updates: this
• Ensures:

if #this = <> then
this = #this

else
this =

#this[distance mod |#this|, |#this|) *
#this[0, distance mod |#this|)
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Example
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Code State

qi = < 8, 6, 92, 3 >

qi.rotate(1);



Example
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Code State

qi = < 8, 6, 92, 3 >

qi.rotate(1);

qi = < 6, 92, 3, 8 >



Example
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Code State

qi = < 8, 6, 92, 3 >

qi.rotate(3);



Example
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Code State

qi = < 8, 6, 92, 3 >

qi.rotate(3);

qi = < 3, 8, 6, 92 >



Example
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Code State

qi = < 8, 6, 92, 3 >

qi.rotate(-1);



Example
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Code State

qi = < 8, 6, 92, 3 >

qi.rotate(-1);

qi = < 3, 8, 6, 92 >



Resources

• OSU CSE Components API: Queue
– http://web.cse.ohio-state.edu/software/common/doc/

• Java Libraries API: Comparator, 
Comparable
– http://docs.oracle.com/javase/8/docs/api/
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http://web.cse.ohio-state.edu/software/common/doc/
http://docs.oracle.com/javase/7/docs/api/
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