
JUnit

5 March 2020 OSU CSE 1



Primitive Testing

• Write main as a command interpreter 
with console input/output, so user (tester) 
provides inputs and observes actual 
results (as in some recent lab skeletons)

• Tester compares actual results with 
allowed/expected results by inspection

• Pros/cons:
– Simple, easy, intuitive
– Tedious, error-prone, not automated
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Example
String command = getCommand(in, out);

while (!command.equals("q")) {

if (command.equals("i")) {

out.print("Enter a natural number: ");

NaturalNumber n =

new NaturalNumber2(in.nextLine());

out.println("Before increment: n = " + n);

increment(n);

out.println("After increment:  n = " + n);

} else if (command.equals("d")) {...}
command = getCommand(in, out);

}

5 March 2020 OSU CSE 3



More Automated Testing

• Write main to contain sets of inputs and 
expected results in “parallel arrays” of 
argument values and expected results (as 
in some other recent lab skeletons)

• Simple loop in main compares actual 
results with allowed/expected results

• Pros/cons:
– Better, primarily because the process is now 

far more automatic
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Example
final int[] numbers = { 0, 0, 1, 82, 3, 9, 27, 81, 243 };
final int[] roots = { 1, 2, 3, 2, 17, 2, 3, 4, 5};
final int[] results = { 0, 0, 1, 9, 1, 3, 3, 3, 3 };
for (int i = 0; i < numbers.length; i++) {

int x = root(numbers[i], roots[i]);

if (x == results[i]) {

out.println("Test passed: root(" + numbers[i]

+ ", " + roots[i] + ") = " + x);

} else {

out.println("*** Test failed: root(" + numbers[i]

+ ", " + roots[i] + ") expected " + results[i]

+ " but was " + x);

}

}
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Remaining Problems

• One new drawback of this approach is that 
you need to be able to write the values of 
the arguments and expected results using 
Java literals in the array initializations
– This does not work for some types, where 

each set of input values and/or expected 
results must be created by performing a 
series of method calls
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Remaining Problems

• Another drawback of this approach is that, 
if there are multiple allowed results for the 
given arguments, mere equality checking 
with actual results does not work
– Recall the aFactor method; what happens if 

we write in the results array that the
“expected” result is 6, when any of 1, 2, 3, or 
6 (and maybe other results) are also allowed?
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Serious Testing: JUnit

• JUnit is an industry-standard “framework” 
for testing Java code
– A framework is one or more components with 

“holes” in them, i.e., some missing code
– Programmer writes classes following 

particular conventions to fill in the missing 
code

– Result of combining the framework code with 
the programmer’s code is a complete product
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Example
import static org.junit.Assert.*;
import org.junit.Test;

public class NaturalNumberRootTest {

@Test

public void test1327Root3() {
...

}

...

}

...
}
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Example
import static org.junit.Assert.*;
import org.junit.Test;

public class NaturalNumberRootTest {

@Test

public void test1327Root3() {
...

}

...

}

...
}

These imports let you use JUnit features.
The use of a static import allows you to call 
the static methods of org.junit.Assert

without qualifying their names (see, e.g., 
assertEquals in upcoming code).
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Example
import static org.junit.Assert.*;
import org.junit.Test;

public class NaturalNumberRootTest {

@Test

public void test1327Root3() {
...

}

...

}

...
}

A test plan or test fixture is a
public class

with one method per test case.
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Example
@Test

public void test1327Root3() {

NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}

...
}

Each test case is a
public void method

with no parameters.
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Example
@Test

public void test1327Root3() {
NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}

...
}

Each test case has an
@Test annotation

just before it.
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Example
@Test

public void test1327Root3() {
NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}

...
}

There is an easy way to make 
a new test case: copy/paste 

another and then edit slightly.
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Vocabulary Review
• Test case

– Exercises a single unit of code, normally a method (and a 
test case normally makes one call to that method)

– Test cases should be small (i.e., should test one thing)
– Test cases should be independent of each other
– In JUnit: a public method that is annotated with @Test

• Test fixture
– Exercises a single class 
– Is a collection of test cases
– In JUnit: a class that contains @Test methods

• Note: In Eclipse, select “New > JUnit Test Case” to 
create a new JUnit test fixture!
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New Vocabulary
• (JUnit) Assertion

– A claim that some boolean-valued expression is true; 
normally, a comparison between expected and actual 
results (i.e., the equals method says they are equal)

• Passing a test case
– All JUnit assertions in the test case are true when the 

test case is executed (and no error occurred to stop 
program execution)

• Failing a test case
– Some JUnit assertion in the test case is false when 

the test case is executed
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Execution Model

• Separate instances (objects) are created 
from the JUnit test fixture
– JUnit creates one instance per test case (!)

• Implication:
– Do not rely on order of test cases

• Test case listed first in JUnit test fixture is not 
guaranteed to be executed first
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JUnit Assertions
• Two most useful static methods in 
org.junit.Assert to check actual 
results against allowed results:

assertEquals (expected, actual);
assertTrue(expression);

• There is rarely a reason to use any of the 
dozens of other assertion static methods 
in org.junit.Assert
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Timed Tests
• What if you’re worried about an infinite 

loop?
– Parameterize @Test with a timeout: number 

of milliseconds before the test case is 
terminated for running too long
@Test(timeout=100)

– Problem: How do you know what is long 
enough for a test case to run?
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Best Practices

• Some best practices:
– Keep JUnit test fixtures in the same Eclipse 

project as the code, but in a separate source 
folder (for this course: regular code in “src”, 
test classes/fixtures in “test”)

• Tests are then included when project is “built”
• Helps keep test fixtures consistent with other code
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Best Practices

• Name test fixtures consistently
– Example: class NaturalNumberRootTest

tests class NaturalNumberRoot
• Name test cases consistently

– Example: method testFoo13 tests method 
foo with input 13
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Recommended Test Case Style
public void test1327Root3() {
/*

* Set up variables and call method under test

*/

NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

/*

* Assert that values of variables match expectations

*/

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}
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Recommended Test Case Style
public void testDivideBy10NonZero() {
/*

* Set up variables and call method under test

*/

NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(132);

int k = n.divideBy10();

/*

* Assert that values of variables match expectations

*/

assertEquals(nExpected, n);

assertEquals(7, k);

}

Sometimes, you can 
write the expected 

value directly.
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Alternative Test Case Style
public void testDivideBy10NonZero() {
/*

* Set up variables and call method under test

*/

NaturalNumber n = new NaturalNumber2(1327);

int k = n.divideBy10();

/*

* Assert that values of variables match expectations

*/

assertEquals("132", n.toString());

assertEquals(7, k);

}
Use toString?
May be OK, but 
equals is better.
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Resources
• JUnit in Action, Second Edition (Petar Tahchiev, 

et al., 2010)
– https://library.ohio-state.edu/record=b8534108~S7
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