
JUnit

5 March 2020 OSU CSE 1

Primitive Testing

• Write main as a command interpreter
with console input/output, so user (tester)
provides inputs and observes actual
results (as in some recent lab skeletons)

• Tester compares actual results with
allowed/expected results by inspection

• Pros/cons:
– Simple, easy, intuitive
– Tedious, error-prone, not automated

5 March 2020 OSU CSE 2

Example
String command = getCommand(in, out);

while (!command.equals("q")) {

if (command.equals("i")) {

out.print("Enter a natural number: ");

NaturalNumber n =

new NaturalNumber2(in.nextLine());

out.println("Before increment: n = " + n);

increment(n);

out.println("After increment: n = " + n);

} else if (command.equals("d")) {...}
command = getCommand(in, out);

}

5 March 2020 OSU CSE 3

More Automated Testing

• Write main to contain sets of inputs and
expected results in “parallel arrays” of
argument values and expected results (as
in some other recent lab skeletons)

• Simple loop in main compares actual
results with allowed/expected results

• Pros/cons:
– Better, primarily because the process is now

far more automatic
5 March 2020 OSU CSE 4

Example
final int[] numbers = { 0, 0, 1, 82, 3, 9, 27, 81, 243 };
final int[] roots = { 1, 2, 3, 2, 17, 2, 3, 4, 5};
final int[] results = { 0, 0, 1, 9, 1, 3, 3, 3, 3 };
for (int i = 0; i < numbers.length; i++) {

int x = root(numbers[i], roots[i]);

if (x == results[i]) {

out.println("Test passed: root(" + numbers[i]

+ ", " + roots[i] + ") = " + x);

} else {

out.println("*** Test failed: root(" + numbers[i]

+ ", " + roots[i] + ") expected " + results[i]

+ " but was " + x);

}

}

5 March 2020 OSU CSE 5

Remaining Problems

• One new drawback of this approach is that
you need to be able to write the values of
the arguments and expected results using
Java literals in the array initializations
– This does not work for some types, where

each set of input values and/or expected
results must be created by performing a
series of method calls

5 March 2020 OSU CSE 6

Remaining Problems

• Another drawback of this approach is that,
if there are multiple allowed results for the
given arguments, mere equality checking
with actual results does not work
– Recall the aFactor method; what happens if

we write in the results array that the
“expected” result is 6, when any of 1, 2, 3, or
6 (and maybe other results) are also allowed?

5 March 2020 OSU CSE 7

Serious Testing: JUnit

• JUnit is an industry-standard “framework”
for testing Java code
– A framework is one or more components with

“holes” in them, i.e., some missing code
– Programmer writes classes following

particular conventions to fill in the missing
code

– Result of combining the framework code with
the programmer’s code is a complete product

5 March 2020 OSU CSE 8

Example
import static org.junit.Assert.*;
import org.junit.Test;

public class NaturalNumberRootTest {

@Test

public void test1327Root3() {
...

}

...

}

...
}

5 March 2020 OSU CSE 9

Example
import static org.junit.Assert.*;
import org.junit.Test;

public class NaturalNumberRootTest {

@Test

public void test1327Root3() {
...

}

...

}

...
}

These imports let you use JUnit features.
The use of a static import allows you to call
the static methods of org.junit.Assert

without qualifying their names (see, e.g.,
assertEquals in upcoming code).

5 March 2020 OSU CSE 10

Example
import static org.junit.Assert.*;
import org.junit.Test;

public class NaturalNumberRootTest {

@Test

public void test1327Root3() {
...

}

...

}

...
}

A test plan or test fixture is a
public class

with one method per test case.

5 March 2020 OSU CSE 11

Example
@Test

public void test1327Root3() {

NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}

...
}

Each test case is a
public void method

with no parameters.

5 March 2020 OSU CSE 12

Example
@Test

public void test1327Root3() {
NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}

...
}

Each test case has an
@Test annotation

just before it.

5 March 2020 OSU CSE 13

Example
@Test

public void test1327Root3() {
NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}

...
}

There is an easy way to make
a new test case: copy/paste

another and then edit slightly.

5 March 2020 OSU CSE 14

Vocabulary Review
• Test case

– Exercises a single unit of code, normally a method (and a
test case normally makes one call to that method)

– Test cases should be small (i.e., should test one thing)
– Test cases should be independent of each other
– In JUnit: a public method that is annotated with @Test

• Test fixture
– Exercises a single class
– Is a collection of test cases
– In JUnit: a class that contains @Test methods

• Note: In Eclipse, select “New > JUnit Test Case” to
create a new JUnit test fixture!

5 March 2020 OSU CSE 15

New Vocabulary
• (JUnit) Assertion

– A claim that some boolean-valued expression is true;
normally, a comparison between expected and actual
results (i.e., the equals method says they are equal)

• Passing a test case
– All JUnit assertions in the test case are true when the

test case is executed (and no error occurred to stop
program execution)

• Failing a test case
– Some JUnit assertion in the test case is false when

the test case is executed

5 March 2020 OSU CSE 16

Execution Model

• Separate instances (objects) are created
from the JUnit test fixture
– JUnit creates one instance per test case (!)

• Implication:
– Do not rely on order of test cases

• Test case listed first in JUnit test fixture is not
guaranteed to be executed first

5 March 2020 OSU CSE 17

JUnit Assertions
• Two most useful static methods in
org.junit.Assert to check actual
results against allowed results:

assertEquals (expected, actual);
assertTrue(expression);

• There is rarely a reason to use any of the
dozens of other assertion static methods
in org.junit.Assert

5 March 2020 OSU CSE 18

Timed Tests
• What if you’re worried about an infinite

loop?
– Parameterize @Test with a timeout: number

of milliseconds before the test case is
terminated for running too long
@Test(timeout=100)

– Problem: How do you know what is long
enough for a test case to run?

5 March 2020 OSU CSE 19

Best Practices

• Some best practices:
– Keep JUnit test fixtures in the same Eclipse

project as the code, but in a separate source
folder (for this course: regular code in “src”,
test classes/fixtures in “test”)

• Tests are then included when project is “built”
• Helps keep test fixtures consistent with other code

5 March 2020 OSU CSE 20

Best Practices

• Name test fixtures consistently
– Example: class NaturalNumberRootTest

tests class NaturalNumberRoot
• Name test cases consistently

– Example: method testFoo13 tests method
foo with input 13

5 March 2020 OSU CSE 21

Recommended Test Case Style
public void test1327Root3() {
/*

* Set up variables and call method under test

*/

NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(1327);

NaturalNumber r = new NaturalNumber2(3);

NaturalNumber rExpected = new NaturalNumber2(3);

NaturalNumber rt = NaturalNumberRoot.root(n, r);

NaturalNumber rtExpected = new NaturalNumber2(10);

/*

* Assert that values of variables match expectations

*/

assertEquals(nExpected, n);

assertEquals(rExpected, r);

assertEquals(rtExpected, rt);

}
5 March 2020 OSU CSE 22

Recommended Test Case Style
public void testDivideBy10NonZero() {
/*

* Set up variables and call method under test

*/

NaturalNumber n = new NaturalNumber2(1327);

NaturalNumber nExpected = new NaturalNumber2(132);

int k = n.divideBy10();

/*

* Assert that values of variables match expectations

*/

assertEquals(nExpected, n);

assertEquals(7, k);

}

Sometimes, you can
write the expected

value directly.

5 March 2020 OSU CSE 23

Alternative Test Case Style
public void testDivideBy10NonZero() {
/*

* Set up variables and call method under test

*/

NaturalNumber n = new NaturalNumber2(1327);

int k = n.divideBy10();

/*

* Assert that values of variables match expectations

*/

assertEquals("132", n.toString());

assertEquals(7, k);

}
Use toString?
May be OK, but
equals is better.

5 March 2020 OSU CSE 24

Resources
• JUnit in Action, Second Edition (Petar Tahchiev,

et al., 2010)
– https://library.ohio-state.edu/record=b8534108~S7

5 March 2020 OSU CSE 25

https://library.ohio-state.edu/record=b8534108%7ES7

	JUnit
	Primitive Testing
	Example
	More Automated Testing
	Example
	Remaining Problems
	Remaining Problems
	Serious Testing: JUnit
	Example
	Example
	Example
	Example
	Example
	Example
	Vocabulary Review
	New Vocabulary
	Execution Model
	JUnit Assertions
	Timed Tests
	Best Practices
	Best Practices
	Recommended Test Case Style
	Recommended Test Case Style
	Alternative Test Case Style
	Resources

