
Testing

5 March 2020 OSU CSE 1

Importance of Testing

• Testing is a ubiquitous and expensive
software engineering activity
– It is not unusual to spend 30-40% of total

project effort on testing
– For big and/or life-critical systems (e.g., flight

control), testing cost can be several times the
cost of all other software engineering activities
combined

5 March 2020 OSU CSE 2

How Big is Big?
• The method bodies we have been writing

average maybe a dozen lines of code
• Claim: Boeing 787 Dreamliner avionics (flight

control) software has about ...

35 March 2020 OSU CSE

How Big is Big?
• The method bodies we have been writing

average maybe a dozen lines of code
• Claim: Boeing 787 Dreamliner avionics (flight

control) software has about 6.5 million lines of
code

• Claim: Microsoft Windows 10 has about ...

45 March 2020 OSU CSE

How Big is Big?
• The method bodies we have been writing

average maybe a dozen lines of code
• Claim: Boeing 787 Dreamliner avionics (flight

control) software has about 6.5 million lines of
code

• Claim: Microsoft Windows 10 has about 50
million lines of code

• Claim: a modern car has about ...

55 March 2020 OSU CSE

How Big is Big?
• The method bodies we have been writing

average maybe a dozen lines of code
• Claim: Boeing 787 Dreamliner avionics (flight

control) software has about 6.5 million lines of
code

• Claim: Microsoft Windows 10 has about 50
million lines of code

• Claim: a modern car has about 100 million lines
of code (though this figure is highly dubious)

65 March 2020 OSU CSE

Unit Testing: Dealing with Scale

• Best practice is to test individual units or
components of software (one class, one
method at a time)
– This is known as unit testing
– Testing what happens when multiple

components are put together into a larger
system is known as integration testing

– Testing a whole end-user system is known as
system testing

5 March 2020 OSU CSE 7

Unit Testing: Dealing with Scale

• Best practice is to test individual units or
components of software (one class, one
method at a time)
– This is known as unit testing
– Testing what happens when multiple

components are put together into a larger
system is known as integration testing

– Testing a whole end-user system is known as
system testing

5 March 2020 OSU CSE 8

This is the kind of testing we will
do in this course and the next.

Unit Testing: Dealing with Scale

• Best practice is to test individual units or
components of software (one class, one
method at a time)
– This is known as unit testing
– Testing what happens when multiple

components are put together into a larger
system is known as integration testing

– Testing a whole end-user system is known as
system testing

5 March 2020 OSU CSE 9

The unit being tested is known
as the UUT, or unit under test.

Testing Functional Correctness

• What does it mean for a program unit (let’s
say a method) to be correct?
• It does what it is supposed to do.
• It doesn’t do what it is not supposed to do.

5 March 2020 OSU CSE 10

“Supposed To Do”?

• How do we know what a method is
supposed to do, and what it is not
supposed to do?
– We look at its contract, which is a

specification of its intended behavior

5 March 2020 OSU CSE 11

Behaviors

5 March 2020 OSU CSE 12

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Behaviors

5 March 2020 OSU CSE 13

Each point in this space is a
legal input

with a corresponding
allowable result.

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Example Method Contract
/**
* Reports some factor of a number.
* ...
* @requires
* n > 0
* @ensures
* aFactor > 0 and
* n mod aFactor = 0

*/
private static int aFactor(int n) {...}

5 March 2020 OSU CSE 14

Example Method Contract
/**
* Reports some factor of a number.
* ...
* @requires
* n > 0
* @ensures
* aFactor > 0 and
* n mod aFactor = 0

*/
private static int aFactor(int n) {...}

5 March 2020 OSU CSE 15

This means:
“n is divisible by aFactor”.

Example Method Body
private static int aFactor(int n) {
return 1;

}

5 March 2020 OSU CSE 16

Example Method Body
private static int aFactor(int n) {
return 1;

}

5 March 2020 OSU CSE 17

Is this method body correct?

Behaviors

5 March 2020 OSU CSE 18

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Behaviors

5 March 2020 OSU CSE 19

Contract for aFactor allows:
n = 12

aFactor = 4

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

(12,4)

Behaviors

5 March 2020 OSU CSE 20

Contract for aFactor forbids:
n = 12

aFactor = 5

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

(12,4)

(12,5)

Behaviors

5 March 2020 OSU CSE 21

Contract for aFactor allows:
n = 12

aFactor = 6

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

(12,4)

(12,5)

(12,6)

Behaviors

5 March 2020 OSU CSE 22

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Contract for aFactor allows:
n = 12

aFactor = 1

(12,4)

(12,5)

(12,6)

(12,1)

Behaviors

5 March 2020 OSU CSE 23

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Body for aFactor gives:
n = 12

aFactor = 1

(12,4)

(12,5)

(12,6)

(12,1)

Definition of Correctness
• Body is correct if actual is a subset of allowed.

5 March 2020 OSU CSE 24

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

“Implements” Revisited

• If you write class C implements I,
the Java compiler checks that for each
method in I there is some method body
for it in C

• We really care about much more: that for
each method in I the method body for it in
C is correct in the sense just defined

5 March 2020 OSU CSE 25

“Implements” Revisited

• If you write class C implements I,
the Java compiler checks that for each
method in I there is some method body
for it in C

• We really care about much more: that for
each method in I the method body for it in
C is correct in the sense just defined

5 March 2020 OSU CSE 26

How can you decide whether
this is the case for a given

method body?

Testing

• Testing is a technique for trying to refute
the claim that a method body is correct for
the method contract

• In other words, the goal of testing is to
show that the method body does not
correctly implement the contract, i.e., that
it is defective
– As a tester, you really want to think this way!

5 March 2020 OSU CSE 27

Psychology of Testing
• Design and coding are creative activities
• Testing is a destructive activity

– The primary goal is to “break” the software,
i.e., to show that it has defects

• Very often the same person does both
coding and testing (not a best practice)
– You need a “split personality”: when you start

testing, become paranoid and malicious
– It’s surprisingly hard to do: people don’t like

finding out that they made mistakes
5 March 2020 OSU CSE 28

Testing vs. Debugging

• Goal of testing: given some code, show
by executing it that it has a defect (i.e.,
there is at least one situation where the
code’s actual behavior is not an allowed
behavior)

• Goal of debugging: given some source
code that has a defect, find the defect and
repair it

5 March 2020 OSU CSE 29

Incorrect (Defective) Code
• If actual behaviors are not a subset of allowed...

5 March 2020 OSU CSE 30

Allowed
behaviors

of the method
(see contract)

Actual
behaviors of
the method
(see body)

Incorrect (Defective) Code

Actual
behaviors of
the method
(see body)

• ... and we start trying some inputs and observing
results ...

5 March 2020 OSU CSE 31

Allowed
behaviors

of the method
(see contract)

Incorrect (Defective) Code
• ... one might lie outside the allowed behaviors!

5 March 2020 OSU CSE 32

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Incorrect (Defective) Code
• ... one might lie outside the allowed behaviors!

5 March 2020 OSU CSE 33

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

If this happens, testing has
succeeded (in revealing a
defect in the method body).

Test Cases

• Each input value and corresponding
allowed/expected result is a test case

• Test cases that do not reveal a defect in
the code do not help us refute a claim of
correctness

• Test cases like that last one should be
cherished!

5 March 2020 OSU CSE 34

Test Plan/Test Fixture

• A set of test cases for a given unit is called
a test plan or a test fixture for that unit

5 March 2020 OSU CSE 35

Correct Code
• If actual behaviors are a subset of allowed...

5 March 2020 OSU CSE 36

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Correct Code
• ... and we start trying some inputs and observing

results ...

5 March 2020 OSU CSE 37

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Correct Code
• ... then we will never find a defect.

5 March 2020 OSU CSE 38

Actual
behaviors of
the method
(see body)

Allowed
behaviors

of the method
(see contract)

Severe Limitation of Testing

• “Program testing can be used to show the
presence of bugs, but never to show their
absence!”

— Edsger W. Dijkstra (1972)

5 March 2020 OSU CSE 39

Designing a Test Plan

• To make testing most likely to succeed in
revealing defects, best practices include:
– Test boundary cases: “smallest”, “largest”,

“special” values based on the contract
– Test routine cases
– Test challenging cases, i.e., ones that, if you

were writing the code (maybe you didn’t write
the code being tested!), you might find difficult
or error-prone

5 March 2020 OSU CSE 40

Example Method Contract #1
/**
* Returns some factor of a number.
* ...
* @requires
* n > 0
* @ensures
* aFactor > 0 and
* n mod aFactor = 0
*/

private static int aFactor(int n) {...}

5 March 2020 OSU CSE 41

Partial Test Plan

5 March 2020 OSU CSE 42

Inputs Results Reason
n = 1 aFactor = 1 boundary

n = 2
aFactor = 1
aFactor = 2

routine
challenging? (prime)

n = 4
aFactor = 1
aFactor = 2
aFactor = 4

challenging? (square)

n = 12

aFactor = 1
aFactor = 2
aFactor = 3
aFactor = 4
aFactor = 6
aFactor = 12

routine

Example Method Contract #2
/**
* Decrements the given NaturalNumber.
* ...
* @updates n
* @requires
* n > 0
* @ensures
* n = #n – 1
*/
private static void decrement(NaturalNumber n) {...}

5 March 2020 OSU CSE 43

Partial Test Plan

5 March 2020 OSU CSE 44

Inputs Results Reason
#n = 1 n = 0 boundary
#n = 2 n = 1 routine
#n = 10 n = 9 challenging? (borrow)
#n = 42 n = 41 routine

Partial Test Plan

5 March 2020 OSU CSE 45

Inputs Results Reason
#n = 1 n = 0 boundary
#n = 2 n = 1 routine
#n = 10 n = 9 challenging? (borrow)
#n = 42 n = 41 routine
#n = 0

What about this “boundary” case,
which is on the illegal side of the
“boundary” between legal and

illegal inputs?

Partial Test Plan

5 March 2020 OSU CSE 46

Inputs Results Reason
#n = 1 n = 0 boundary
#n = 2 n = 1 routine
#n = 10 n = 9 challenging? (borrow)
#n = 42 n = 41 routine
#n = 0

This test case is worthless: it
violates the requires clause, so it
cannot possibly reveal a defect in

the method body. Why not?

Resources
• Software Testing (Brian Hambling, et al., 2010)

– https://library.ohio-state.edu/record=b8532947~S7

5 March 2020 OSU CSE 47

https://library.ohio-state.edu/record=b8532947%7ES7

	Testing
	Importance of Testing
	How Big is Big?
	How Big is Big?
	How Big is Big?
	How Big is Big?
	Unit Testing: Dealing with Scale
	Unit Testing: Dealing with Scale
	Unit Testing: Dealing with Scale
	Testing Functional Correctness
	“Supposed To Do”?
	Behaviors
	Behaviors
	Example Method Contract
	Example Method Contract
	Example Method Body
	Example Method Body
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Behaviors
	Definition of Correctness
	“Implements” Revisited
	“Implements” Revisited
	Testing
	Psychology of Testing
	Testing vs. Debugging
	Incorrect (Defective) Code
	Incorrect (Defective) Code
	Incorrect (Defective) Code
	Incorrect (Defective) Code
	Test Cases
	Test Plan/Test Fixture
	Correct Code
	Correct Code
	Correct Code
	Severe Limitation of Testing
	Designing a Test Plan
	Example Method Contract #1
	Partial Test Plan
	Example Method Contract #2
	Partial Test Plan
	Partial Test Plan
	Partial Test Plan
	Resources

