
Recursion on Trees
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Structure of Trees

• Two views of a tree:
– A tree is made up of:

• A root node
• A string of zero or more child nodes of the root, 

each of which is the root of its own tree
– A tree is made up of:

• A root node
• A string of zero or more subtrees of the root, each 

of which is another tree
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This way of viewing a 
tree treats it as a 

collection of nodes.
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This way of viewing a 
tree fully reveals its 
recursive structure.
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This way of viewing a 
tree fully reveals its 
recursive structure.

A tree...

... and the 
subtrees of its 
root, which are 

also trees.



Recursive Algorithms

• The “in-your-face” recursive structure of 
trees (in the second way to view them) 
allows you to implement some methods 
that operate on trees using recursion
– Indeed, this is sometimes the only sensible 

way to implement those methods
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XMLTree

• The methods for XMLTree are named 
using the collection-of-nodes view of a 
tree, because most uses of XMLTree
(e.g., the XML/RSS projects) do not need 
to leverage the recursive structure of trees

• But some uses of XMLTree demand that 
you use the recursive view...
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Example
/**

* Reports the size of an XMLTree.

* ...

* @ensures
* size = [number of nodes in t]

*/

private static int size(XMLTree t) {...}
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The number of 
nodes in this 

tree, t ...
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... is 1 (the root) 
plus the total 

number of 
nodes in all the 
subtrees of the 

root of t.



Example
private static int size(XMLTree t) {

int totalNodes = 1;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

totalNodes += size(t.child(i));

}

}

return totalNodes;

}

7 January 2019 OSU CSE 12



Example
private static int size(XMLTree t) {

int totalNodes = 1;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

totalNodes += size(t.child(i));

}

}

return totalNodes;

}

7 January 2019 OSU CSE 13

This recursive call 
reports the size of a 
subtree of the root.



Example
/**

* Reports the height of an XMLTree.

* ...

* @ensures
* height = [height of t]

*/

private static int height(XMLTree t) {...}
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Example
private static int height(XMLTree t) {

int maxSubtreeHeight = 0;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

int subtreeHeight = height(t.child(i));

if (subtreeHeight > maxSubtreeHeight) {

maxSubtreeHeight = subtreeHeight;

}

}

}

return maxSubtreeHeight + 1;

}
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This recursive call 
reports the height of a 

subtree of the root.
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Why is it a good idea 
to store the result of 

the recursive call in a 
variable here?



Expression Trees

• There are many other uses for XMLTree
• Consider an expression tree, which is a 

representation of a formula you might type 
into a Java program or into a calculator, 
such as:
(1 + 3) * 5 – (4 / 2)
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What is the value of this 
expression?  Computing this 

value is what we mean by 
evaluating the expression.



Order of Evaluation

• What is the order of evaluation of 
subexpressions in this expression?
(1 + 3) * 5 – (4 / 2)

7 January 2019 OSU CSE 20



Order of Evaluation

• What is the order of evaluation of 
subexpressions in this expression?
(1 + 3) * 5 – (4 / 2)

• Let’s fully parenthesize it to help:
((1 + 3) * 5) – (4 / 2)
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The fully parenthesized version is 
based on a convention regarding 

the precedence of operators (e.g., 
“ * before – ” in ordinary math).



Order of Evaluation

• What is the order in which the 
subexpressions in this expression are 
evaluated?
((1 + 3) * 5) – (4 / 2)
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First
(= 4)
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(= 20)

First
(= 4)
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First
(= 4)
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(= 2)
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Second 
(= 20)

First
(= 4)

Third
(= 2)

Fourth
(= 18)

“Inner-most” parentheses first, but 
there may be some flexibility in the 
order of evaluation (e.g., / before + 
would work just as well, but not * 

before +, in this expression).



Tree Representation of Expression

• Key: Each operand of an operator must 
be evaluated before that operator can be 
evaluated
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+ 
–
* 
/

1
2
3
4
5



Tree Representation of Expression

• So, this approach works:
– Last operator evaluated is in root node
– Each operator’s left and right operands are its 

two subtrees (i.e., each operator has two 
subtrees, each of which is a subexpression in 
the larger expression)

7 January 2019 OSU CSE 30



7 January 2019 OSU CSE 31

–

*

+

1

5

3

/

4 2

((1 + 3) * 5) – (4 / 2)



Evaluation of Expression Trees

• To evaluate any expression tree:
– If the root is an operator, then first evaluate

the expression trees that are its left (first) 
and right (second) subtrees; then apply that 
operator to these two values, and the result is 
the value of the expression represented by 
the tree

– If the root has no subtrees, then it must be an 
operand, and that operand is the value of the 
expression represented by the tree
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To evaluate the 
expression tree 
rooted here ... –
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... first evaluate 
this expression 

tree
(= 20) ... –

*

+
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... then evaluate 
this expression 

tree
(= 2) ...
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... then apply 
the operator in 

the root
(= 18). –

*
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XML Encoding of Expressions
• The difference between an operator and an 

operand can be encoded in XML tags (e.g., 
"<operator>" and "<operand>")
– The specific operator (e.g., "+", "–", "*", "/") can be 

either an attribute of an operator tag, or its content
– Similarly, the value of an operand (e.g., "1", 

"34723576", etc.) ...
• Given such details for a specific XML encoding of 

expressions, you should be able to evaluate an 
expression given an XMLTree for its encoding
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