
Recursion on Trees

7 January 2019 OSU CSE 1

Structure of Trees

• Two views of a tree:
– A tree is made up of:

• A root node
• A string of zero or more child nodes of the root,

each of which is the root of its own tree
– A tree is made up of:

• A root node
• A string of zero or more subtrees of the root, each

of which is another tree

7 January 2019 OSU CSE 2

Structure of Trees

• Two views of a tree:
– A tree is made up of:

• A root node
• A string of zero or more child nodes of the root,

each of which is the root of its own tree
– A tree is made up of:

• A root node
• A string of zero or more subtrees of the root, each

of which is another tree

7 January 2019 OSU CSE 3

This way of viewing a
tree treats it as a

collection of nodes.

Structure of Trees

• Two views of a tree:
– A tree is made up of:

• A root node
• A string of zero or more child nodes of the root,

each of which is the root of its own tree
– A tree is made up of:

• A root node
• A string of zero or more subtrees of the root, each

of which is another tree

7 January 2019 OSU CSE 4

This way of viewing a
tree fully reveals its
recursive structure.

7 January 2019 OSU CSE 5

R

BK

A C

T

L

G

S

H E P

This way of viewing a
tree treats it as a

collection of nodes.

7 January 2019 OSU CSE 6

This way of viewing a
tree fully reveals its
recursive structure.

A tree...

... and the
subtrees of its
root, which are

also trees.

Recursive Algorithms

• The “in-your-face” recursive structure of
trees (in the second way to view them)
allows you to implement some methods
that operate on trees using recursion
– Indeed, this is sometimes the only sensible

way to implement those methods

7 January 2019 OSU CSE 7

XMLTree

• The methods for XMLTree are named
using the collection-of-nodes view of a
tree, because most uses of XMLTree
(e.g., the XML/RSS projects) do not need
to leverage the recursive structure of trees

• But some uses of XMLTree demand that
you use the recursive view...

7 January 2019 OSU CSE 8

Example
/**

* Reports the size of an XMLTree.

* ...

* @ensures
* size = [number of nodes in t]

*/

private static int size(XMLTree t) {...}

7 January 2019 OSU CSE 9

7 January 2019 OSU CSE 10

The number of
nodes in this

tree, t ...

7 January 2019 OSU CSE 11

... is 1 (the root)
plus the total

number of
nodes in all the
subtrees of the

root of t.

Example
private static int size(XMLTree t) {

int totalNodes = 1;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

totalNodes += size(t.child(i));

}

}

return totalNodes;

}

7 January 2019 OSU CSE 12

Example
private static int size(XMLTree t) {

int totalNodes = 1;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

totalNodes += size(t.child(i));

}

}

return totalNodes;

}

7 January 2019 OSU CSE 13

This recursive call
reports the size of a
subtree of the root.

Example
/**

* Reports the height of an XMLTree.

* ...

* @ensures
* height = [height of t]

*/

private static int height(XMLTree t) {...}

7 January 2019 OSU CSE 14

Example
private static int height(XMLTree t) {

int maxSubtreeHeight = 0;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

int subtreeHeight = height(t.child(i));

if (subtreeHeight > maxSubtreeHeight) {

maxSubtreeHeight = subtreeHeight;

}

}

}

return maxSubtreeHeight + 1;

}

7 January 2019 OSU CSE 15

Example
private static int height(XMLTree t) {

int maxSubtreeHeight = 0;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

int subtreeHeight = height(t.child(i));

if (subtreeHeight > maxSubtreeHeight) {

maxSubtreeHeight = subtreeHeight;

}

}

}

return maxSubtreeHeight + 1;

}

7 January 2019 OSU CSE 16

This recursive call
reports the height of a

subtree of the root.

Example
private static int height(XMLTree t) {

int maxSubtreeHeight = 0;

if (t.isTag()) {

for (int i = 0; i < t.numberOfChildren();

i++) {

int subtreeHeight = height(t.child(i));

if (subtreeHeight > maxSubtreeHeight) {

maxSubtreeHeight = subtreeHeight;

}

}

}

return maxSubtreeHeight + 1;

}

7 January 2019 OSU CSE 17

Why is it a good idea
to store the result of

the recursive call in a
variable here?

Expression Trees

• There are many other uses for XMLTree
• Consider an expression tree, which is a

representation of a formula you might type
into a Java program or into a calculator,
such as:
(1 + 3) * 5 – (4 / 2)

7 January 2019 OSU CSE 18

Expression Trees

• There are many other uses for XMLTree
• Consider an expression tree, which is a

representation of a formula you might type
into a Java program or into a calculator,
such as:
(1 + 3) * 5 – (4 / 2)

7 January 2019 OSU CSE 19

What is the value of this
expression? Computing this

value is what we mean by
evaluating the expression.

Order of Evaluation

• What is the order of evaluation of
subexpressions in this expression?
(1 + 3) * 5 – (4 / 2)

7 January 2019 OSU CSE 20

Order of Evaluation

• What is the order of evaluation of
subexpressions in this expression?
(1 + 3) * 5 – (4 / 2)

• Let’s fully parenthesize it to help:
((1 + 3) * 5) – (4 / 2)

7 January 2019 OSU CSE 21

Order of Evaluation

• What is the order of evaluation of
subexpressions in this expression?
(1 + 3) * 5 – (4 / 2)

• Let’s fully parenthesize it to help:
((1 + 3) * 5) – (4 / 2)

7 January 2019 OSU CSE 22

The fully parenthesized version is
based on a convention regarding

the precedence of operators (e.g.,
“ * before – ” in ordinary math).

Order of Evaluation

• What is the order in which the
subexpressions in this expression are
evaluated?
((1 + 3) * 5) – (4 / 2)

7 January 2019 OSU CSE 23

First
(= 4)

Order of Evaluation

• What is the order in which the
subexpressions in this expression are
evaluated?
((1 + 3) * 5) – (4 / 2)

7 January 2019 OSU CSE 24

Second
(= 20)

First
(= 4)

Order of Evaluation

• What is the order in which the
subexpressions in this expression are
evaluated?
((1 + 3) * 5) – (4 / 2)

7 January 2019 OSU CSE 25

Second
(= 20)

First
(= 4)

Third
(= 2)

Order of Evaluation

• What is the order in which the
subexpressions in this expression are
evaluated?
((1 + 3) * 5) – (4 / 2)

7 January 2019 OSU CSE 26

Second
(= 20)

First
(= 4)

Third
(= 2)

Fourth
(= 18)

Order of Evaluation

• What is the order in which the
subexpressions in this expression are
evaluated?
((1 + 3) * 5) – (4 / 2)

7 January 2019 OSU CSE 27

Second
(= 20)

First
(= 4)

Third
(= 2)

Fourth
(= 18)

“Inner-most” parentheses first, but
there may be some flexibility in the
order of evaluation (e.g., / before +
would work just as well, but not *

before +, in this expression).

Tree Representation of Expression

• Key: Each operand of an operator must
be evaluated before that operator can be
evaluated

7 January 2019 OSU CSE 28

Tree Representation of Expression

• Key: Each operand of an operator must
be evaluated before that operator can be
evaluated

7 January 2019 OSU CSE 29

+
–
*
/

1
2
3
4
5

Tree Representation of Expression

• So, this approach works:
– Last operator evaluated is in root node
– Each operator’s left and right operands are its

two subtrees (i.e., each operator has two
subtrees, each of which is a subexpression in
the larger expression)

7 January 2019 OSU CSE 30

7 January 2019 OSU CSE 31

–

*

+

1

5

3

/

4 2

((1 + 3) * 5) – (4 / 2)

Evaluation of Expression Trees

• To evaluate any expression tree:
– If the root is an operator, then first evaluate

the expression trees that are its left (first)
and right (second) subtrees; then apply that
operator to these two values, and the result is
the value of the expression represented by
the tree

– If the root has no subtrees, then it must be an
operand, and that operand is the value of the
expression represented by the tree

7 January 2019 OSU CSE 32

7 January 2019 OSU CSE 33

To evaluate the
expression tree
rooted here ... –

*

+

1

5

3

/

4 2

7 January 2019 OSU CSE 34

... first evaluate
this expression

tree
(= 20) ... –

*

+

1

5

3

/

4 2

7 January 2019 OSU CSE 35

–

*

+

1

5

3

/

4 2

... then evaluate
this expression

tree
(= 2) ...

7 January 2019 OSU CSE 36

... then apply
the operator in

the root
(= 18). –

*

+

1

5

3

/

4 2

XML Encoding of Expressions
• The difference between an operator and an

operand can be encoded in XML tags (e.g.,
"<operator>" and "<operand>")
– The specific operator (e.g., "+", "–", "*", "/") can be

either an attribute of an operator tag, or its content
– Similarly, the value of an operand (e.g., "1",

"34723576", etc.) ...
• Given such details for a specific XML encoding of

expressions, you should be able to evaluate an
expression given an XMLTree for its encoding

7 January 2019 OSU CSE 37

	Recursion on Trees
	Structure of Trees
	Structure of Trees
	Structure of Trees
	Slide Number 5
	Slide Number 6
	Recursive Algorithms
	XMLTree
	Example
	Slide Number 10
	Slide Number 11
	Example
	Example
	Example
	Example
	Example
	Example
	Expression Trees
	Expression Trees
	Order of Evaluation
	Order of Evaluation
	Order of Evaluation
	Order of Evaluation
	Order of Evaluation
	Order of Evaluation
	Order of Evaluation
	Order of Evaluation
	Tree Representation of Expression
	Tree Representation of Expression
	Tree Representation of Expression
	Slide Number 31
	Evaluation of Expression Trees
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	XML Encoding of Expressions

