
Recursion: Why It Works

7 January 2019 OSU CSE 1

Question Considered Before

• How should you think about recursion
so you can use it to develop elegant
recursive methods to solve certain
problems?

• Answer: Pretend there is a FreeLunch
class with a method that has the same
contract as the code you’re trying to write
(but it works only for smaller problems)

7 January 2019 OSU CSE 2

Question Considered Now

• Why do those recursive methods work?

7 January 2019 OSU CSE 3

Question Considered Only Later

• How do those recursive methods work?
– Don’t worry; we will come back to this
– If you start by insisting on knowing the answer

to this question, you may never be fully
capable of developing elegant recursive
solutions to problems!

7 January 2019 OSU CSE 4

Example #1
private static String reversedString(String s) {

if (s.length() == 0) {
return s;

} else {
String sub = s.substring(1);
String revSub = reversedString(sub);
String result = revSub + s.charAt(0);
return result;

}
}

7 January 2019 OSU CSE 5

Example #1
private static String reversedString(String s) {

if (s.length() == 0) {
return s;

} else {
String sub = s.substring(1);
String revSub = reversedString(sub);
String result = revSub + s.charAt(0);
return result;

}
}

7 January 2019 OSU CSE 6

There is no reason to declare
the variable result, only to

return it in the next statement.

Example #1 Slightly Simplified
private static String reversedString(String s) {

if (s.length() == 0) {
return s;

} else {
String sub = s.substring(1);
String revSub = reversedString(sub);
return revSub + s.charAt(0);

}
}

7 January 2019 OSU CSE 7

Confidence-Building Approach

• We can make an intuitive confidence-
building argument that the code is correct
(i.e., correctly implements its contract)

• Consider the size metric that allows you
to argue that a smaller problem is being
solved by each recursive call in your code
– In this example, recall we used as a measure

of problem size |s|, the length of the value of
parameter s

7 January 2019 OSU CSE 8

First, a Smallest Problem

• First, consider each smallest problem
according to that metric
– In this example, there is exactly one smallest

problem: |s| = 0, i.e., s = < >
• Convince yourself that your code works

correctly for each smallest problem
– Trace the code (though you could also

execute it as if testing it on these cases)

7 January 2019 OSU CSE 9

Trace Code With |s| = 0

7 January 2019 OSU CSE 10

s = ""

if (s.length() == 0) {

s = ""

return s;

Trace Code With |s| = 0

7 January 2019 OSU CSE 11

s = ""

if (s.length() == 0) {

s = ""

return s;

The code in this case returns the value
""

(since s = "")
and this satisfies the postcondition
reversedString = rev(s)

so it works when |s| = 0.

Then, a Next-Smallest Problem

• Now, consider a next-smallest problem
according to that metric
– In this example, there are many next-smallest

problems, but all have |s| = 1, e.g., these
include s = "a", s = "X", s = "%", etc.

• Convince yourself that your code works
correctly for each of these next-smallest
problems
– Maybe one such problem is convincing...

7 January 2019 OSU CSE 12

Trace Code With |s| = 1

7 January 2019 OSU CSE 13

s = "X"

if (s.length() == 0) { ... } else {

s = "X"

String sub = s.substring(1);

s = "X"
sub = ""

String revSub = reversedString(sub);

s = "X"
sub = ""
revSub = ""

return revSub + s.charAt(0);

Trace Code With |s| = 1

7 January 2019 OSU CSE 14

s = "X"

if (s.length() == 0) { ... } else {

s = "X"

String sub = s.substring(1);

s = "X"
sub = ""

String revSub = reversedString(sub);

s = "X"
sub = ""
revSub = ""

return revSub + s.charAt(0);

How do we know what this recursive call
does? We just convinced ourselves it

satisfies its contract in this case because
|sub| = 0

in this recursive call.

Trace Code With |s| = 1

7 January 2019 OSU CSE 15

s = "X"

if (s.length() == 0) { ... } else {

s = "X"

String sub = s.substring(1);

s = "X"
sub = ""

String revSub = reversedString(sub);

s = "X"
sub = ""
revSub = ""

return revSub + s.charAt(0);

The code in this case returns the value
"X"

(since revSub = "" and s = "X")
and this satisfies the postcondition
reversedString = rev(s)

so it works when |s| = 1.

Trace Code With |s| = 1

7 January 2019 OSU CSE 16

s = "X"

if (s.length() == 0) { ... } else {

s = "X"

String sub = s.substring(1);

s = "X"
sub = ""

String revSub = reversedString(sub);

s = "X"
sub = ""
revSub = ""

return revSub + s.charAt(0);

Note that concluding
“it works when |s| = 1”

demands that we generalize from the
one case we traced/tested, realizing
that there was nothing at all special

about the assumption
s = "X".

Then, a Next-Smallest Problem

• Now, consider a next-smallest problem
according to that metric
– In this example, there are many next-smallest

problems, but all have |s| = 2, e.g., these
include s = "rx", s = "PU", etc.

• Convince yourself that your code works
correctly for each of these next-smallest
problems
– Maybe one such problem is convincing...

7 January 2019 OSU CSE 17

Trace Code With |s| = 2

7 January 2019 OSU CSE 18

s = "PU"

if (s.length() == 0) { ... } else {

s = "PU"

String sub = s.substring(1);

s = "PU"
sub = "U"

String revSub = reversedString(sub);

s = "PU"
sub = "U"
revSub = "U"

return revSub + s.charAt(0);

Trace Code With |s| = 2

7 January 2019 OSU CSE 19

s = "PU"

if (s.length() == 0) { ... } else {

s = "PU"

String sub = s.substring(1);

s = "PU"
sub = "U"

String revSub = reversedString(sub);

s = "PU"
sub = "U"
revSub = "U"

return revSub + s.charAt(0);

How do we know what this recursive call
does? We just convinced ourselves it

satisfies its contract in this case because
|sub| = 1

in this recursive call.

Trace Code With |s| = 2

7 January 2019 OSU CSE 20

s = "PU"

if (s.length() == 0) { ... } else {

s = "PU"

String sub = s.substring(1);

s = "PU"
sub = "U"

String revSub = reversedString(sub);

s = "PU"
sub = "U"
revSub = "U"

return revSub + s.charAt(0);

The code in this case returns the value
"UP"

(revSub = "U" and s = "PU")
and this satisfies the postcondition
reversedString = rev(s)

so it seems to work when |s| = 2.

Trace Code With |s| = 2

7 January 2019 OSU CSE 21

s = "PU"

if (s.length() == 0) { ... } else {

s = "PU"

String sub = s.substring(1);

s = "PU"
sub = "U"

String revSub = reversedString(sub);

s = "PU"
sub = "U"
revSub = "U"

return revSub + s.charAt(0);

Note that concluding
“it works when |s| = 2”

demands that we generalize from the
one case we traced/tested, realizing
that there was nothing at all special

about the assumption
s = "PU".

Then, a Next-Smallest Problem

• Now, consider a next-smallest problem
according to that metric
– In this example, there are many next-smallest

problems, but all have |s| = 3, e.g., these
include s = "cse", s = "OSU", etc.

• Convince yourself that your code works
correctly for each of these next-smallest
problems
– Maybe one such problem is convincing...

7 January 2019 OSU CSE 22

Trace Code With |s| = 3

7 January 2019 OSU CSE 23

s = "OSU"

if (s.length() == 0) { ... } else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String revSub = reversedString(sub);

s = "OSU"
sub = "SU"
revSub = "US"

return revSub + s.charAt(0);

Trace Code With |s| = 3

7 January 2019 OSU CSE 24

s = "OSU"

if (s.length() == 0) { ... } else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String revSub = reversedString(sub);

s = "OSU"
sub = "SU"
revSub = "US"

return revSub + s.charAt(0);

How do we know what this recursive call
does? We just convinced ourselves it

satisfies its contract in this case because
|sub| = 2

in this recursive call.

Trace Code With |s| = 3

7 January 2019 OSU CSE 25

s = "OSU"

if (s.length() == 0) { ... } else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String revSub = reversedString(sub);

s = "OSU"
sub = "SU"
revSub = "US"

return revSub + s.charAt(0);

The code in this case returns the value
"USO"

(revSub = "US" and s = "OSU")
and this satisfies the postcondition
reversedString = rev(s)

so it seems to work when |s| = 3.

Trace Code With |s| = 3

7 January 2019 OSU CSE 26

s = "OSU"

if (s.length() == 0) { ... } else {

s = "OSU"

String sub = s.substring(1);

s = "OSU"
sub = "SU"

String revSub = reversedString(sub);

s = "OSU"
sub = "SU"
revSub = "US"

return revSub + s.charAt(0);

Note that concluding
“it works when |s| = 3”

demands that we generalize from the
one case we traced/tested, realizing
that there was nothing at all special

about the assumption
s = "OSU".

And So On...

• You should see that this reasoning
process could continue long enough to
reach any finite integer length, with the
conclusion that the code works for any
value of s
– Because s must have a finite length; why?

7 January 2019 OSU CSE 27

Proof by Induction

• A formal version of this argument follows
the proof technique known as
mathematical induction
– Recursion and induction are entirely parallel

concepts

7 January 2019 OSU CSE 28

Proof by Contradiction

• Another formal proof technique known as
proof by contradiction can also be used
– “Suppose the code does not work for some s.

Then there must be a shortest s for which it
does not work. So, assume |s| = n. Now
let’s show that this assumption leads to the
conclusion that the code must not work for
some string of length n–1. This is a
contradiction. Hence, there cannot be any
such s for which the code does not work.”

7 January 2019 OSU CSE 29

Proof by Contradiction

• Another formal proof technique known as
proof by contradiction can also be used
– “Suppose the code does not work for some s.

Then there must be a shortest s for which it
does not work. So, assume |s| = n. Now
let’s show that this assumption leads to the
conclusion that the code must not work for
some string of length n–1. This is a
contradiction. Hence, there cannot be any
such s for which the code does not work.”

7 January 2019 OSU CSE 30

Some people find this kind of
proof easier to understand than

induction, but it does not seem to
have a simplified intuitive basis

like induction does.

Example #2
private static void increment (NaturalNumber n) {

int onesDigit = n.divideBy10();
onesDigit++;
if (onesDigit == 10) {
onesDigit = 0;
increment(n);

}
n.multiplyBy10(onesDigit);

}

7 January 2019 OSU CSE 31

First, a Smallest Problem

• First, consider each smallest problem
according to the size metric: the value of
the parameter n
– In this example, there is exactly one smallest

problem: n = 0
• Convince yourself that your code works

correctly for each smallest problem
– Trace through the code with n = 0

7 January 2019 OSU CSE 32

Then, a Next-Smallest Problem

• Next, consider a next-smallest problem
according to that metric
– In this example, there is exactly one next-

smallest problem: n = 1
• Convince yourself that your code works

correctly for each of these next-smallest
problems
• Trace through the code with n = 1

7 January 2019 OSU CSE 33

And So On...

• On this example, the intuitive confidence-
building argument may be slightly more
convincing because every value of
parameter n is covered directly in one of
the steps

• But it takes 9 steps before anything
interesting even happens!

7 January 2019 OSU CSE 34

Conclusion

• The purpose of the confidence-building
method is (as its name suggests) to give
you confidence that the code works
– A nice feature is that it suggests some test

cases, should you decide to run the code on
the computer rather than tracing it manually

– However, you still need to have traced it —
albeit perhaps only mentally — in order to
have written the code in the first place!

7 January 2019 OSU CSE 35

Conclusion

• The purpose of the confidence-building
method is (as its name suggests) to give
you confidence that the code works
– A nice feature is that it suggests some test

cases, should you decide to run the code on
the computer rather than tracing it manually

– However, you still need to have traced it —
albeit perhaps only mentally — in order to
have written the code in the first place!

7 January 2019 OSU CSE 36

You might be surprised how many
people who should know better
seem not to have noticed this

rather obvious conclusion!

	Recursion: Why It Works
	Question Considered Before
	Question Considered Now
	Question Considered Only Later
	Example #1
	Example #1
	Example #1 Slightly Simplified
	Confidence-Building Approach
	First, a Smallest Problem
	Trace Code With |s| = 0
	Trace Code With |s| = 0
	Then, a Next-Smallest Problem
	Trace Code With |s| = 1
	Trace Code With |s| = 1
	Trace Code With |s| = 1
	Trace Code With |s| = 1
	Then, a Next-Smallest Problem
	Trace Code With |s| = 2
	Trace Code With |s| = 2
	Trace Code With |s| = 2
	Trace Code With |s| = 2
	Then, a Next-Smallest Problem
	Trace Code With |s| = 3
	Trace Code With |s| = 3
	Trace Code With |s| = 3
	Trace Code With |s| = 3
	And So On...
	Proof by Induction
	Proof by Contradiction
	Proof by Contradiction
	Example #2
	First, a Smallest Problem
	Then, a Next-Smallest Problem
	And So On...
	Conclusion
	Conclusion

