aaaaaaa

Recursion: Why It Works

OSU CSE

Question Considered Before

 How should you think about recursion
SO you can use it to develop elegant
recursive methods to solve certain
problems?

« Answer: Pretend there is a FreelLunch

class with a method that has the same
contract as the code you're trying to write
(but it works only for smaller problems)

Question Considered Now

« Why do those recursive methods work?

Question Considered Only Later

« How do those recursive methods work?
— Don’t worry; we will come back to this

— If you start by insisting on knowing the answer
to this question, you may never be fully
capable of developing elegant recursive
solutions to problems!

Example #1

private static String reversedString(String s) {

if (s.length() == 0) {
return s;
} else {
String sub = s.substring(l);
String revSub = reversedString(sub):;

String result = revSub + s.charAt(0);
return result;

7 January 2019 OSU CSE

Example #1

private static Strin. There is no reason to declare

if

7 January 2019

(s.length () the variable result, only to
return s; return it in the next statement.
else {

String sub = s.g ~ang(l);

String revSub /_a€eversedString(sub);
String result = revSub + s.charAt (0);
return result;

OSU CSE

Example #1 Slightly Simplified

private static String reversedString(String s) {

if (s.length() == 0) {
return s;
} else {
String sub = s.substring(l);
String revSub = reversedString(sub):;

return revSub + s.charAt (0);

7 January 2019 OSU CSE

Confidence-Building Approach

* We can make an intuitive confidence-
building argument that the code is correct
(.e., correctly implements its contract)

« Consider the size metric that allows you
to argue that a smaller problem is being
solved by each recursive call in your code

— In this example, recall we used as a measure
of problem size | s |, the length of the value of
parameter s

First, a Smallest Problem

* First, consider each smallest problem
according to that metric
— In this example, there is exactly one smallest
problem: |s| = 0,l.e., s = < >
» Convince yourself that your code works
correctly for each smallest problem

— Trace the code (though you could also
execute it as if testing it on these cases)

Trace Code With | s|

if

(s.length ()

== 0)

{

return s;

Trace Code With | s|

0

— i
S =

(s.length ()

— i
S =

return s;

The code in this case returns the value

(since s = "")

and this satisfies the postcondition
reversedString

so it works when | s| = 0.

rev(s)

Then, a Next-Smallest Problem

* Now, consider a next-smallest problem
according to that metric

— In this example, there are many next-smallest
problems, but all have | s| = 1, e.g., these
iInclude s = "a", s = "X",s = "3%" efc.

« Convince yourself that your code works
correctly for each of these next-smallest
problems
— Maybe one such problem is convincing...

1

Trace Code With | s|

g = nmxn
if (s.length() == 0) { ... } else {

g = nmxn
String sub = s.substring(l);

g = nmxn

Sub — i
String revSub = reversedString(sub) ;

S = "X"

Sub — i

revSub = ""
return revSub + s.charAt(0);

How do we know what this recursive call

does? We just convinced ourselves it e
satisfies its contract in this case because
| sub| = 0 L
In this recursive call.
SR _ g = "mxn
\“\»\,\\\\\\ sub = """
String revSub = reversedString(sub);
S — HX"
sub = "n
revSub = ""
return revSub + s.charAt (0);

The code in this case returns the value
"X r

s = "X"

(since revsub = ""and s = "X")
and this satisfies the postcondition s = nxn

reversedString = rev(s)

so it works when |s| = 1. o = myn
(sub = ""

i Str 6 = reversedString (sub) ;
y 4 s = "x"
y cup = mn

V4 revSub = ""

return revSub + s.charAt (0);

Trace Code With | s|

1

s = "X"
if (s.length() == 0) { ... } else {
s = "X"
String sub = s.substringl’
s = "X"
Note that concluding sub = "
“itworks when |s| = 1°
demands that we generalize from the 5 = "x”
one case we traced/tested, realizing [*° ~ "

that there was nothing at all special

about the assumption
g = I"xm

Then, a Next-Smallest Problem

* Now, consider a next-smallest problem
according to that metric

— In this example, there are many next-smallest
problems, but all have | s| = 2, e.qg., these
include s = "rx", s = "PU", etc.

« Convince yourself that your code works
correctly for each of these next-smallest
problems
— Maybe one such problem is convincing...

2

Trace Code With | s|

s = "mpygr
if (s.length() == 0) { ... } else {

s = "mpyr
String sub = s.substring(l);

s = "mpygr

sub = "U"
String revSub = reversedString(sub) ;

s = "mpygr

sub = "U"

revSub = "U"
return revSub + s.charAt(0);

How do we know what this recursive call — 2

does? We just convinced ourselves it T
satisfies its contract in this case because
| Su.b| = 1 py"
In this recursive call.
e _ S — "PU"
\“\»\,\\\\\\ sub = "y
String revSub = reversedString(sub);
s = "pynr
sub = "U"
revSub = "U"
return revSub + s.charAt (0);

o 5| = 2
The code In this case returns the value ‘
"UP" s = npyn
(revSub = "U"and s = "PU")
and this satisfies the postcondition s = "py"
reversedString = rev(s)
so it seems to work when | s| = 2. s = "py"
sub = "U"
oLY S = reversedstring(sub) ;
s = ""py"
sub = "U"
revSub = "g"

return revSub + s.charAt (0);

7 January 2019 OSU CSE

Trace Code With | s| 2

s = "pyu"
if (s.length() == 0) { ... } else { |
s = "pU”
String sub = s.substringl’
s = "pyu"
Note that concluding sub = "U"
‘it works when |s| = 27
demands that we generalize fromthe 5 = "ru”
one case we traced/tested, realizing *° = "7"
~evSub = "U"

that there was nothing at all special

about the assumption
s = "pPU".

Then, a Next-Smallest Problem

* Now, consider a next-smallest problem
according to that metric

— In this example, there are many next-smallest
problems, but all have | s| = 3, e.g., these

Include s = "cse”, s = "OSU", efc.

« Convince yourself that your code works
correctly for each of these next-smallest
problems
— Maybe one such problem is convincing...

Trace Code With | s|

3

s = "OSU"
if (s.length() == 0) { ... } else {
s = "OSU"
String sub = s.substring(l);
s = "OSU"
sub = "sU"
String revSub = reversedString(sub) ;
s = "OSU"
sub = "sU"
revSub = "US"

return revSub + s.charAt (0);

How do we know what this recursive call — 3

does? We just convinced ourselves it SU"
satisfies its contract in this case because
| sub| = 2 T
In this recursive call.
B, Ny s = "osu"
»\,\\\\\\\ su b — SU n
String revSub = reversedString(sub);
s = "osu"
sub = "SU"
revSub = "Us"
return revSub + s.charAt (0);

o 5| = 3
The code In this case returns the value ‘
"uso" s = "Oosu"
(revSub = "US"and s = "OSU")
and this satisfies the postcondition s = "OSU"
reversedString = rev(s)
so it seems to work when | s| = 3. s = "OSU"
[sub = "su”
oLY S = reversedstring(sub) ;
s = "OsU"
sub = "sg"
revSub = "ygs"

return revSub + s.charAt (0);

7 January 2019 OSU CSE

Trace Code With | s| 3

s = "OSU"
if (s.length() == 0) { ... } else { ’
| s = "osu”
String sub = s.substringl’
s = "OSU"
Note that concluding sub = "SU"
‘it works when |s| = 3"

demands that we generalize fromthe > = "osu”

one case we traced/tested, realizing *° ~ "7V
revSub = "US"

that there was nothing at all special

about the assumption
s = "OSU".

And So On...

* You should see that this reasoning
process could continue long enough to
reach any finite integer length, with the
conclusion that the code works for any
value of s

— Because s must have a finite length; why?

Proof by Induction

* A formal version of this argument follows
the proof technique known as
mathematical induction

— Recursion and induction are entirely parallel
concepts

7 January 2019 OSU CSE

Proof by Contradiction

* Another formal proof technique known as
proof by contradiction can also be used

— “Suppose the code does not work for some s.
Then there must be a shortest s for which it
does not work. So, assume | s| = n. Now

let’'s show that this assumption leads to the

conclusion that the code must not work for
some string of length n—-1. Thisis a

contradiction. Hence, there cannot be any
such s for which the code does not work.”

Proof by Contradiction

* Another formal proof technique known as
proof by contradiction can also be used
— “Suppose the coaw '~as not work for some s.
Then there mus*” — T

does not work., Some people find this kind of
let's show that | proof easier to understand than
conclusion that induction, but it does not seem to
some string of have a simplified intuitive basis

. like induction does.
contradiction. |
such s for which the code does not wWork.”

Example #2

private static void increment (NaturalNumber n)
int onesDigit = n.divideBy10 ()
onesDigit++;
if (onesDigit == 10) {

onesDigit = 0;
increment (n) ;

}
n.multiplyByl0 (onesDigit);

7 January 2019 OSU CSE

{

31

First, a Smallest Problem

* First, consider each smallest problem
according to the size metric: the value of
the parameter n

— In this example, there is exactly one smallest
problem: n = 0

« Convince yourself that your code works
correctly for each smallest problem
— Trace through the code with n = 0

Then, a Next-Smallest Problem

* Next, consider a next-smallest problem

according to that metric
— In this example, there is exactly one next-
smallest problem: n = 1

« Convince yourself that your code works
correctly for each of these next-smallest

problems
* Trace through the code with n = 1

And So On...

* On this example, the intuitive confidence-
building argument may be slightly more
convincing because every value of
parameter n is covered directly in one of

the steps

» But it takes 9 steps before anything
interesting even happens!

Conclusion

* The purpose of the confidence-building
method is (as its name suggests) to give
you confidence that the code works

— A nice feature is that it suggests some test
cases, should you decide to run the code on
the computer rather than tracing it manually

— However, you still need to have traced it —
albeit perhaps only mentally — in order to
have written the code in the first place!

Conclusion

You might be surprised how many 2nce-building

people who should know better ggests) to give
seem not to have noticed this

rather obvious conclusion! de works
Jests some test
Ce 1ould you decide to run the code on

the cu. \uter rather than tracing it manually

— However, you still need to have traced it —
albeit perhaps only mentally — in order to
have written the code in the first place!

	Recursion: Why It Works
	Question Considered Before
	Question Considered Now
	Question Considered Only Later
	Example #1
	Example #1
	Example #1 Slightly Simplified
	Confidence-Building Approach
	First, a Smallest Problem
	Trace Code With |s| = 0
	Trace Code With |s| = 0
	Then, a Next-Smallest Problem
	Trace Code With |s| = 1
	Trace Code With |s| = 1
	Trace Code With |s| = 1
	Trace Code With |s| = 1
	Then, a Next-Smallest Problem
	Trace Code With |s| = 2
	Trace Code With |s| = 2
	Trace Code With |s| = 2
	Trace Code With |s| = 2
	Then, a Next-Smallest Problem
	Trace Code With |s| = 3
	Trace Code With |s| = 3
	Trace Code With |s| = 3
	Trace Code With |s| = 3
	And So On...
	Proof by Induction
	Proof by Contradiction
	Proof by Contradiction
	Example #2
	First, a Smallest Problem
	Then, a Next-Smallest Problem
	And So On...
	Conclusion
	Conclusion

