Mathematical String Notation

String Theory

- A mathematical model that we will use often is that of mathematical strings
- A string can be thought of as a series of zero of more entries of any other mathematical type, say, T
$-T$ is called the entry type
- We will call this math type string of T

$$
\text { String } \neq \text { string }
$$

- String is a programming type in Java, and string is a mathematical type (often used to model program types)
- Since we call the mathematical model of the Java primitive type char by the name character, we have:
type String is modeled by
string of character

Math Notation for Strings

- The following notations are used when we write mathematics (e.g., in contract specifications) involving strings
- Notice two important features of strings:
- There may be duplicate entries (in fact, there may be arbitrarily many of a given entry value)
- The order of the entries is important

The Empty String

- The empty string, a string with no entries at all, is denoted by $<>$ or by empty_string

Denoting a Specific String

- A particular string can be described by listing its entries between < and > separated by commas
- Examples:

$$
\begin{aligned}
& <1,2,3,2> \\
& <'^{\prime}, G^{\prime},> \\
& <>
\end{aligned}
$$

Denoting a Specific String

- A particular stı listing its entri separated by cumly
- Examples:

$$
\begin{aligned}
& <1,2,3,2> \\
& <'^{\prime}, O^{\prime},> \\
& <>
\end{aligned}
$$

Denoting a Specific String

- A particular stı listing its entri

Astring of character value whose entries are the character values ' G ' and ' O '. separated by currio

- Examples:

$$
\begin{aligned}
& <1,2,3,2 \\
& <'^{\prime}, \text { 'o' } \\
& <>
\end{aligned}
$$

Denoting a Specific String

- A particular stı

We may also use the special notation "Go" for the same listing its entris string of charactervalue. separated by curri!

- Examples:

$$
\begin{aligned}
& <1,2,3,2 \\
& <\quad \text { 'G', '0' } \\
& <>
\end{aligned}
$$

Denoting a Specific String

- A particular stı

Now it can be seen that this notation for empty_string is a special listing its entric case of the string literal notation. separated by cumly

- Examples:
< 1, 2,
$<' G 1$ 'O' >

Concatenation

- The concatenation of strings s and t, a string consisting of the entries of s followed by the entries of t, is denoted by $s * t$
- Examples:

$$
\begin{aligned}
& <1,2>*<3,2>=<1,2,3,2> \\
& <{ }^{\prime} G{ }^{\prime},{ }^{\prime} O^{\prime}>\star<>=<{ }^{\prime} G^{\prime},{ }^{\prime} 0^{\prime}> \\
& <>*<5,2,13>=5,2,13> \\
& <>*<>=<>
\end{aligned}
$$

Concatenation

- The concater As before, we may use the special string consistil by the entries notation for a string of character value and say:
"Go" * "" = "Go"
- Examples:

$$
\begin{aligned}
& <1,2>*<2>=<1,2,3,2> \\
& <'^{\prime}, G^{\prime}>*<>=<G^{\prime}, 10^{\prime}> \\
& <>*<5,2,13>=<5,2,13> \\
& <>*<>=<>
\end{aligned}
$$

Concatenation

- The concatenation of strings s and t, a string consisting of the entries of s followed by the entries of t, is denoted by $s * t$
- Examples:

The concatenation of Java String values uses + instead!

$$
\begin{aligned}
& <' G ', \quad O^{\prime}> \\
& <5,2,13>
\end{aligned}
$$

Substring, Prefix, Suffix

- We say s is substring of t iff the entries of s appear consecutively in t
- We say s is prefix of t iff the entries of s appear consecutively at the beginning of t
- We say s is suffix of t iff the entries of s appear consecutively at the end of t

Substring, Prefix, Suffix

- We say s is s entries of s appe We say is not ...for the negation of each.
- We say s is p of s appear consecutively at the beginning of t
- We say s is suffix of t iff the entries of s appear consecutively at the end of t

Length

- The length of a string s, ie., the number of entries in s, is denoted by $|s|$
- Examples:

$$
\begin{aligned}
& \text { |<1, 2, 3, } 2>1=4 \\
& 1<' G ', ' 0 \text { ' >1 = } 2 \\
& 1<>1=0
\end{aligned}
$$

Concise Notation for Substrings

- The substring of s starting at position i (inclusive) and ending at position j (exclusive) is denoted by $s[i, j$)

Concise Notation for Substrings

- The substring of s starting at position i (inclusive) and ending at position j (exclusive) is denatalioy $s[i, j$)

The position k of an entry in a string is a number satisfying

$$
0<=k<|s| .
$$

Concise Notation for Substrings

- The substring of s starting at position i (inclusive) and ending at position j (exclusive) is denoted by $s[i, j$)

This notation is well-defined whenever

$$
0<=i<=j<=|s| ;
$$

for all other cases, the designated substring may be defined to be
(though we will avoid using this).

Concise Notation for Substrings

- The substring of s starting at position i (inclusive) and ending at position j (exclusive) is denoted by $s[i, j$)
- Examples with $s=$ "GoBucks":

$$
\begin{aligned}
& s[0,|s|)=\text { GoBucks" } \\
& s[2,|s|-1)=\text { "Buck" } \\
& s[1,1)=" " \\
& s[2,3) * s(5,7)=\text { "Bks" }
\end{aligned}
$$

Reverse

- The reverse of a string s, i.e., the string with the same entries as s but in the opposite order, is denoted by rev (s)
- Examples:

$$
\begin{aligned}
& \operatorname{rev}(<1,2,3,2>)=<2,3,2,1> \\
& \operatorname{rev}\left(<'^{\prime} G '^{\prime}, O^{\prime}>\right)=<\prime^{\prime},{ }^{\prime} G{ }^{\prime}> \\
& \operatorname{rev}(<>)=<>
\end{aligned}
$$

Permutations

- The question whether strings s1 and s2 are permutations, i.e., whether they are simply reorderings of one another, is denoted by perms (s1, s2)
- Examples:
perms (<1, 2, $3>,<3,1,2>$) not perms (< 2, 2, 1 >, < 2, 1 >) perms (< >, < >)

Occurence Count

- The occurence count of an entry x in a string s, i.e., the number of times x appears as an entry in s, is denoted by count (s, x)
- Examples:
count (< 2, 2, 2, $1>, 2)=3$ count (< 2, 2, 2, $1>, 4)=0$ count(< 'G', 'O' >, 'G') = 1 count (< >, 13) = 0

