
References

7 January 2019 OSU CSE 1

Primitive vs. Reference Types
• Java types are divided into two different

categories:
– The built-in types are called primitive types

• Includes boolean, char, int, double
– All other types are called reference types (or

class types)
• Includes String, XMLTree, SimpleReader,
SimpleWriter, NaturalNumber, ...

7 January 2019 OSU CSE 2

Primitive vs. Reference Types
• Java types are divided into two different

categories:
– The built-in types are called primitive types

• Includes boolean, char, int, double
– All other types are called reference types (or

class types)
• Includes String, XMLTree, SimpleReader,
SimpleWriter, NaturalNumber, ...

7 January 2019 OSU CSE 3

There is no limit on
the number of other
user-defined types

that can be
developed.

Categories of Types, v. 1

7 January 2019 OSU CSE 4

boolean
char
int

double
(plus 4
others)

String
XMLTree
...

SimpleReader
SimpleWriter
NaturalNumber

...

Reference
Types

Primitive
Types

Primitive vs. Reference Variables
• A primitive variable is a variable of a primitive

type
– This term is used sparingly in practice, and is

introduced here for parsimony to distinguish a
variable of a primitive type from…

• A reference variable is a variable of a reference
type
– A reference variable is fundamentally different from a

primitive variable in ways that can dramatically impact
how you reason about program behavior; beware!

7 January 2019 OSU CSE 5

Examples

7 January 2019 OSU CSE 6

true 'y' 13 3.14 "Go"

Examples

7 January 2019 OSU CSE 7

true 'y' 13 3.14 "Go"

Recall We Said Earlier...

7 January 2019 OSU CSE 8

This is a String variable s
whose value is "Go", i.e.,

s = "Go"

"Go"

... But Here’s the “Real Picture”!

7 January 2019 OSU CSE 9

"Go"

... But Here’s the “Real Picture”!

7 January 2019 OSU CSE 10

There is a String variable
s, whose value is a

reference to an object
whose value is "Go".

"Go"

References and Objects

7 January 2019 OSU CSE 11

This is the reference s.

"Go"

References and Objects

7 January 2019 OSU CSE 12

This is the object s “points to”
or “refers to”.

"Go"

Reference and Object Values

• A reference variable like s may be
considered to have either of two values:
– The reference value of s in these pictures is

the memory address at which the object is
stored

– The object value of s in these pictures is the
mathematical model value of the object the
reference s points to, in this case "Go"

7 January 2019 OSU CSE 13

Reference and Object Values

• A reference variable like s may be
considered to have either of two values:
– The reference value of s in these pictures is

the memory address at which the object is
stored

– The object value of s in these pictures is the
mathematical model value of the object the
reference s points to, in this case "Go"

7 January 2019 OSU CSE 14

Think of the reference value as
simply an “id” or “serial number”

of some place in memory.

Getting to the “Real Picture”

7 January 2019 OSU CSE 15

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

22

"Go"

19

20

21

22

23

24

……
… …

Getting to the “Real Picture”

7 January 2019 OSU CSE 16

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

22

"Go"

19

20

21

22

23

24

……
… …

This part of memory holds:

• values of primitive variables
• reference values of reference
variables

Getting to the “Real Picture”

7 January 2019 OSU CSE 17

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

22

"Go"

19

20

21

22

23

24

……
… …

This part of memory holds:

• object values of reference
variables

Getting to the “Real Picture”

7 January 2019 OSU CSE 18

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

22

"Go"

19

20

21

22

23

24

……
… …

Each object in memory has a
unique memory address, or
“id”; e.g., this one has id = 22.

Getting to the “Real Picture”

7 January 2019 OSU CSE 19

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

22

"Go"

19

20

21

22

23

24

……
… …

These numbers are the
“id”s of the objects.

Getting to the “Real Picture”

7 January 2019 OSU CSE 20

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

22

"Go"

19

20

21

22

23

24

……
… …

The reference value of a
reference variable is the memory
address, or “id”, of the object to

which it refers.

Getting to the “Real Picture”

7 January 2019 OSU CSE 21

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

22

"Go"

19

20

21

22

23

24

……
… …

The reference value of a
reference variable as a number,

i.e., the address or “id” of the
object it refers to, is immaterial;

so, this situation ...

Getting to the “Real Picture”

7 January 2019 OSU CSE 22

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

23 "Go"

19

20

21

22

23

24

……
… …

... is indistinguishable in a
program from this one. (Yet in

C or C++, you may do
calculations with these

addresses/“id”s as if they were
numbers! How crazy is that?)

Getting to the “Real Picture”

7 January 2019 OSU CSE 23

Variables Objects

b

c

i

d

s

true

'y'

13

3.14

23

"Go"

19

20

21

22

23

24

……
… …

Similarly, it is immaterial to the
program exactly where each

variable is located in memory.

So We Can Simplify...

7 January 2019 OSU CSE 24

Variables Objects

"Go"

19

20

21

22

23

24

…
…

true
'y'

13
3.14

23

So We Can Simplify...

7 January 2019 OSU CSE 25

Variables Objects

"Go"

19

20

21

22

23

24

…
…

true
'y'

13
3.14

23

In our pictures, the types of
variables are abstracted as

different shapes; all
reference variables use an

equilateral triangle.

So We Can Simplify...

7 January 2019 OSU CSE 26

Variables Objects

"Go"

19

20

21

22

23

24

…
…

true
'y'

13
3.14

23

Variables in the program
are somewhere in this part

of memory.

So We Can Simplify...

7 January 2019 OSU CSE 27

Variables Objects

true
'y'

13
3.14

23 "Go"

Objects in the program are
somewhere in this part of

memory.

23

So We Can Simplify...

7 January 2019 OSU CSE 28

Variables Objects

true
'y'

13
3.14

"Go"

In our pictures, the
connection between the

reference value of a
reference variable and its
object value is abstracted

as an arrow.

Finally...

7 January 2019 OSU CSE 29

true
'y'

13
3.14

"Go"

Our pictures allow us to
abstract away even the fact
that there are two parts of

memory.

Notation

• We never care about writing down the
reference value of a reference variable as
a particular numerical value (though we
draw a picture of it: an arrow out of a
triangle)
– So, if you see something like s = "Go" in a

contract or a tracing table, it must mean that
the object value of s is the mathematical
model value "Go"

7 January 2019 OSU CSE 30

Notation

• In a tracing table, however, we might want
to remind ourselves there is a reference
involved, so we might record the value of
variable s using a right arrow instead of an
equals sign, e.g., s ➞ "Go"
– This means that s is a reference variable

whose object value is "Go"
– Or: s refers to an object with value "Go"
– Why would we do this? Coming up...

7 January 2019 OSU CSE 31

The Assignment Operator

• The assignment operator = copies the
value of the expression on the right-hand
side into the variable on the left-hand side

• For primitive types, “the value of” can
mean only one thing

• For reference types, it could mean “the
reference value of” or “the object value of”
– Which is it?

7 January 2019 OSU CSE 32

Assignment for Primitive Types

• Consider:
int i = k + 7;

– First, the expression k + 7 is evaluated; say
k = 3, so the expression evaluates to 10

– Next, the value 10 is copied into i, so after
the above statement has finished executing,
we have i = 10

• How does this happen?

7 January 2019 OSU CSE 33

Step by Step: int i = k + 7;

7 January 2019 OSU CSE 34

3

We already have k, a
primitive variable
whose value is 3.

Step by Step: int i = k + 7;

7 January 2019 OSU CSE 35

7

The int literal is an
anonymous

primitive variable
whose value is 7.

3

Step by Step: int i = k + 7;

7 January 2019 OSU CSE 36

7

The int addition
operator + results in
another anonymous

primitive variable
whose value is 10.

3 10

Step by Step: int i = k + 7;

7 January 2019 OSU CSE 37

7

The declaration of the
int variable i results

in an uninitialized
primitive variable.

3 10

?

Step by Step: int i = k + 7;

7 January 2019 OSU CSE 38

73 10

10

The assignment
operator copies the
value of the right-
hand side into i.

Step by Step: int i = k + 7;

7 January 2019 OSU CSE 39

The temporary
anonymous primitive
variables disappear

now that the
statement has

completed executing.

3

10

A Tracing Table

7 January 2019 OSU CSE 40

Code State

k = 3

int i = k + 7;

k = 3
i = 10

Assignment for Reference Types

• Consider:
String s = t + "io";

– First, the expression t + "io" is evaluated;
say t = "Oh", so the expression evaluates
to "Ohio"

– Next, the value "Ohio" is copied into s, so
after the above statement has finished
executing, we have s = "Ohio"

• How does this happen?

7 January 2019 OSU CSE 41

Step by Step: String s = t + "io";

7 January 2019 OSU CSE 42

"Oh"

We already have t, a
reference variable
whose object value

is "Oh".

7 January 2019 OSU CSE 43

"Oh" "io"

The String literal is
an anonymous

reference variable
whose object value is

"io".

Step by Step: String s = t + "io";

7 January 2019 OSU CSE 44

"Oh" "io" "Ohio"

The String concatenation
operator + results in another

anonymous reference
variable whose object value

is "Ohio".

Step by Step: String s = t + "io";

7 January 2019 OSU CSE 45

"Oh"

?

"io" "Ohio"

The declaration of the
String variable s

results in an
uninitialized

reference variable.

Step by Step: String s = t + "io";

7 January 2019 OSU CSE 46

"Oh" "io" "Ohio"

The assignment
operator copies the
reference value on
the right-hand side

into s.

Step by Step: String s = t + "io";

7 January 2019 OSU CSE 47

"Oh" "Ohio"

The temporary anonymous
reference variables

disappear now that the
statement has completed

executing — but the
objects with values "io"

and "Ohio" remain!

"io"

Step by Step: String s = t + "io";

7 January 2019 OSU CSE 48

"Oh" "Ohio"

Java has a garbage
collector that may come

along later and “reclaim” or
“recycle” the memory

where an unreferenced
temporary object is stored;
but this does not affect our

reasoning.

Step by Step: String s = t + "io";

A Tracing Table Using ➞

7 January 2019 OSU CSE 49

Code State

t ➞ "Oh"

String s = t + "io";

t ➞ "Oh"
s ➞ "Ohio"

A Tracing Table Using =

7 January 2019 OSU CSE 50

Code State

t = "Oh"

String s = t + "io";

t = "Oh"
s = "Ohio"

So What’s Different?

• It seems the net effect of assignment is
essentially the same whether we have
primitive variables or reference variables

• But not quite...

7 January 2019 OSU CSE 51

Simplest Assignment: Primitive

• Consider:
int i = k;

– First, the expression k is evaluated; say k =
3, so the expression evaluates to 3

– Next, the value 3 is copied into i, so after the
above statement has finished executing, we
have i = 3

• Let’s do this step-by-step as well...

7 January 2019 OSU CSE 52

Step by Step: int i = k;

7 January 2019 OSU CSE 53

3

We already have k, a
primitive variable
whose value is 3.

Step by Step: int i = k;

7 January 2019 OSU CSE 54

The declaration of the
int variable i results

in an uninitialized
primitive variable.

3

?

Step by Step: int i = k;

7 January 2019 OSU CSE 55

3

3

The assignment
operator copies the
value of the right-
hand side into i.

Step by Step: int i = k;

7 January 2019 OSU CSE 56

3

3

Note there are now
two independent

copies of the value 3,
one in each variable.

A Tracing Table

7 January 2019 OSU CSE 57

Code State

k = 3

int i = k;

k = 3
i = 3

Simplest Assignment: Reference

• Consider:
String s = t;

– First, the expression t is evaluated; say t =
"Oh", so the expression evaluates to "Oh"

– Next, the value "Oh" is copied into s, so after
the above statement has finished executing,
we have s = "Oh"

• Let’s do this step-by-step as well...

7 January 2019 OSU CSE 58

Step by Step: String s = t;

7 January 2019 OSU CSE 59

"Oh"

We already have t, a
reference variable
whose object value

is "Oh".

7 January 2019 OSU CSE 60

"Oh"

?

The declaration of the
String variable s

results in an
uninitialized

reference variable.

Step by Step: String s = t;

7 January 2019 OSU CSE 61

"Oh"

The assignment
operator copies the
reference value on
the right-hand side

into s.

Step by Step: String s = t;

7 January 2019 OSU CSE 62

"Oh"

Notice there is still
only one object but

now two references to
it! These references
are called aliases.

Step by Step: String s = t;

A Tracing Table Using ➞

7 January 2019 OSU CSE 63

Code State

t ➞ "Oh"

String s = t;

s,t ➞ "Oh"

A Tracing Table Using ➞

7 January 2019 OSU CSE 64

Code State

t ➞ "Oh"

String s = t;

s,t ➞ "Oh"

The arrow notation
helps us remember

that there is only one
object but two

references to it.

A Tracing Table Using =

7 January 2019 OSU CSE 65

Code State

t = "Oh"

String s = t;

t = "Oh"
s = "Oh"

A Tracing Table Using =

7 January 2019 OSU CSE 66

Code State

t = "Oh"

String s = t;

t = "Oh"
s = "Oh"

Is this tracing table
OK? It suggests

there are two
separate objects with

the value "Oh".

Why It Matters: NaturalNumber

7 January 2019 OSU CSE 67

Code State

z = 99

NaturalNumber n = z;

z = 99
n = 99

n.increment();

z = 99
n = 100

Why It Matters: NaturalNumber

7 January 2019 OSU CSE 68

Code State

z = 99

NaturalNumber n = z;

z = 99
n = 99

n.increment();

z = 99
n = 100

But this is not what
really happens! Try it,

step-by-step...

Why It Matters: NaturalNumber

7 January 2019 OSU CSE 69

Code State

z ➞ 99

NaturalNumber n = z;

z,n ➞ 99

n.increment();

z,n ➞ 100

Why It Matters: NaturalNumber

7 January 2019 OSU CSE 70

Code State

z ➞ 99

NaturalNumber n = z;

z,n ➞ 99

n.increment();

z,n ➞ 100

This is what really
happens!

An Important Claim

• The problem illustrated here that arises
from aliasing of references with
NaturalNumber cannot happen with
String or XMLTree

• What’s the difference?

7 January 2019 OSU CSE 71

Immutable vs. Mutable Types

• Java reference types are further divided
into two different categories:
– Types for which no method might change the

value of the receiver, or any other argument of
that type, are called immutable types

– Types for which at least one method might
change the value of the receiver, or some
other argument of that type, are called
mutable types

7 January 2019 OSU CSE 72

Categories of Types, v. 2

7 January 2019 OSU CSE 73

boolean
char
int

double

String
XMLTree
...

SimpleReader
SimpleWriter
NaturalNumber

...

Reference TypesPrimitive
Types Immutable

Types
Mutable
Types

Restated Claim

• You may reason about immutable
types/variables as if they were primitive

• If and only if there are aliased references,
you may not reason about mutable
types/variables as if they were primitive
– ... because this reasoning short-cut is

unsound, i.e., it may predict wrong results
compared to executing the code

7 January 2019 OSU CSE 74

For Reasoning, It Might As Well Be...

7 January 2019 OSU CSE 75

boolean
char
int

double

String
XMLTree
...

SimpleReader
SimpleWriter
NaturalNumber

...

Reference TypesPrimitive
Types Immutable

Types
Mutable
Types

Why Have Mutable Types?

• Couldn’t designers of new types just
always make them immutable, to simplify
reasoning?
– Yes, but there would be serious efficiency

penalties in many cases, so best practices
dictate that it is more practical to allow
mutable types and be especially careful to
limit aliasing of references

7 January 2019 OSU CSE 76

Parameter Passing for References

• Just as the assignment operator copies
reference values, parameter passing to
method calls copies reference values
– The reference values of the arguments are

copied into the formal parameters to initialize
them at the time of the call

– Upon return, nothing is copied back except
the returned value of the method (if any), and
here too the reference value is copied back

7 January 2019 OSU CSE 77

Complete This Table

7 January 2019 OSU CSE 78

Code State

m ➞ 143
k ➞ 70

m.transferFrom(k);

Complete This Table

7 January 2019 OSU CSE 79

Code State

m ➞ 143
k ➞ 70

m.transferFrom(k);

Consult the contract
for transferFrom.

Equality Checking for References

• Just as the assignment operator = copies
reference values, and parameter passing
to method calls copies reference values,
the equality operator == compares
reference values

7 January 2019 OSU CSE 80

Equality Checking for References

• Since comparing object values is often
what you want instead, the equals
method compares object values
– At least, best practices say it is supposed to
– Beware: though the equals method does

what it is supposed to do for nearly all types in
the Java libraries (and certainly for all types in
the OSU CSE components), in some cases it,
too, simply compares reference values!

7 January 2019 OSU CSE 81

Example with NaturalNumber

7 January 2019 OSU CSE 82

Code State

m ➞ 52
k ➞ 52

boolean b =
(m == k);

m ➞ 52
k ➞ 52
b = false

Example with NaturalNumber

7 January 2019 OSU CSE 83

Code State

m,k ➞ 52

boolean b =
(m == k);

m,k ➞ 52
b = true

Example with NaturalNumber

7 January 2019 OSU CSE 84

Code State

m ➞ 52
k ➞ 52

boolean b =
m.equals(k);

m ➞ 52
k ➞ 52
b = true

Example with NaturalNumber

7 January 2019 OSU CSE 85

Code State

m,k ➞ 52

boolean b =
m.equals(k);

m,k ➞ 52
b = true

Resources
• Wikipedia: Pointer (computer programming)

– http://en.wikipedia.org/wiki/Pointer_(computer_programming)

7 January 2019 OSU CSE 86

http://en.wikipedia.org/wiki/Pointer_(computer_programming)

	References
	Primitive vs. Reference Types
	Primitive vs. Reference Types
	Categories of Types, v. 1
	Primitive vs. Reference Variables
	Examples
	Examples
	Recall We Said Earlier...
	... But Here’s the “Real Picture”!
	... But Here’s the “Real Picture”!
	References and Objects
	References and Objects
	Reference and Object Values
	Reference and Object Values
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	Getting to the “Real Picture”
	So We Can Simplify...
	So We Can Simplify...
	So We Can Simplify...
	So We Can Simplify...
	So We Can Simplify...
	Finally...
	Notation
	Notation
	The Assignment Operator
	Assignment for Primitive Types
	Step by Step: int i = k + 7;
	Step by Step: int i = k + 7;
	Step by Step: int i = k + 7;
	Step by Step: int i = k + 7;
	Step by Step: int i = k + 7;
	Step by Step: int i = k + 7;
	A Tracing Table
	Assignment for Reference Types
	Step by Step: String s = t + "io";
	Step by Step: String s = t + "io";
	Step by Step: String s = t + "io";
	Step by Step: String s = t + "io";
	Step by Step: String s = t + "io";
	Step by Step: String s = t + "io";
	Step by Step: String s = t + "io";
	A Tracing Table Using ➞
	A Tracing Table Using =
	So What’s Different?
	Simplest Assignment: Primitive
	Step by Step: int i = k;
	Step by Step: int i = k;
	Step by Step: int i = k;
	Step by Step: int i = k;
	A Tracing Table
	Simplest Assignment: Reference
	Step by Step: String s = t;
	Step by Step: String s = t;
	Step by Step: String s = t;
	Step by Step: String s = t;
	A Tracing Table Using ➞
	A Tracing Table Using ➞
	A Tracing Table Using =
	A Tracing Table Using =
	Why It Matters: NaturalNumber
	Why It Matters: NaturalNumber
	Why It Matters: NaturalNumber
	Why It Matters: NaturalNumber
	An Important Claim
	Immutable vs. Mutable Types
	Categories of Types, v. 2
	Restated Claim
	For Reasoning, It Might As Well Be...
	Why Have Mutable Types?
	Parameter Passing for References
	Complete This Table
	Complete This Table
	Equality Checking for References
	Equality Checking for References
	Example with NaturalNumber
	Example with NaturalNumber
	Example with NaturalNumber
	Example with NaturalNumber
	Resources

