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NaturalNumber

• The NaturalNumber component family 
allows you to manipulate natural numbers 
(i.e., non-negative integers)
– Unlike an int variable, a NaturalNumber

variable has no upper bound on its value
– On the other hand, you need to call methods 

to do arithmetic; there are no nice built-in 
operators (e.g., +, –, *, ==, <, …) or literals 
(e.g., 0, 1, 13, …) as with int variables
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Interfaces and Classes
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Interfaces and Classes
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NaturalNumber

NaturalNumber1L NaturalNumber2

implements implements

NaturalNumber-
Kernel

extends

Standard

extends
Standard has contracts 

for three methods:
clear

newInstance
transferFrom



Interfaces and Classes
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NaturalNumber

NaturalNumber1L NaturalNumber2

implements implements

NaturalNumber-
Kernel

extends

Standard

extends

NaturalNumberKernel
has contracts for three 

methods:
multiplyBy10
divideBy10
isZero



Interfaces and Classes
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NaturalNumber

NaturalNumber1L NaturalNumber2

implements implements

NaturalNumber-
Kernel

extends

Standard

extends

NaturalNumber
has contracts for 14 other 

methods, e.g.,
add

subtract
etc.



The Standard Interface

• The interface Standard has methods that 
are part of most (nearly all) OSU CSE 
component families
– Separating the standard methods into their 

own interface means that these highly reused 
methods are described in exactly one place
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The Standard Interface

• The interface Standard has methods that 
are part of most (nearly all) OSU CSE 
component families
– Separating the standard methods into their 

own interface means that these highly reused 
methods are described in exactly one place
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This design goal in 
software engineering is 

usually called single 
point of control over 

change.



The Kernel Interface

• The interface NaturalNumberKernel
has a minimal set of methods that are 
primitive in the NaturalNumber
component family
– Separating these kernel (primary) methods 

into their own interface identifies them as 
special in this regard
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The Kernel Interface

• The interface NaturalNumberKernel
has a minimal set of methods that are 
primitive in the NaturalNumber
component family
– Separating these kernel (primary) methods 

into their own interface identifies them as 
special in this regard
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The choice of kernel 
methods is a key 

decision by the designer 
of a component family. 



The Enhanced Interface

• The interface NaturalNumber has all 
other methods that are convenient to have 
in the NaturalNumber component family
– These secondary methods are often more 

“powerful” than the kernel methods and are 
introduced to make the component family 
readily usable in typical client code
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Mathematical Model

• The value of a NaturalNumber variable 
is modeled as a non-negative integer

• Formally:
NATURAL is integer
exemplar n

constraint n >= 0

type NaturalNumber is modeled by
NATURAL
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Mathematical Model

• The value of a NaturalNumber variable 
is modeled as a non-negative integer

• Formally:
NATURAL is integer
exemplar n

constraint n >= 0

type NaturalNumber is modeled by
NATURAL
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First, we define the 
mathematical model

we intend to use, 
including any 
constraints

that limit the values it 
might have.



Mathematical Model

• The value of a NaturalNumber variable 
is modeled as a non-negative integer

• Formally:
NATURAL is integer
exemplar n

constraint n >= 0

type NaturalNumber is modeled by
NATURAL
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Second, we state that a 
NaturalNumber
variable has that 

mathematical model.



Constructors

• There are four constructors for each 
implementation class

• As always:
– The name of the constructor is the name of 

the implementation class
– Constructors differ only in their parameters
– Each has its own contract (which is in the 

kernel interface NaturalNumberKernel)
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No-argument Constructor

• A constructor with no parameters is called 
a no-argument constructor

• Ensures:
this = 0

7 January 2019 OSU CSE 16



Example
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Code State

NaturalNumber n = new
NaturalNumber2();



Example
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Code State

NaturalNumber n = new
NaturalNumber2();

n = 0



Copy Constructor

• There is a constructor with one parameter 
of the same type (NaturalNumber n), 
and it returns a copy of the parameter 
value so it is called a copy constructor

• Ensures:
this = n
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Example
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Code State

k = 12345678909

NaturalNumber m = new
NaturalNumber2(k);



Example
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Code State

k = 12345678909

NaturalNumber m = new
NaturalNumber2(k);

k = 12345678909
m = 12345678909



Constructor from int

• There is a constructor with one parameter 
int i

• Requires:
i >= 0

• Ensures:
this = i
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Example
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Code State

j = 13

NaturalNumber n = new
NaturalNumber2(j);



Example
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Code State

j = 13

NaturalNumber n = new
NaturalNumber2(j);

j = 13
n = 13



Constructor from String

• There is a constructor with one parameter 
String s

• Requires:
there exists n: NATURAL

(s = TO_STRING(n))

• Ensures:
s = TO_STRING(this)
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Constructor from String

• There is a constructor with one parameter 
String s

• Requires:
there exists n: NATURAL

(s = TO_STRING(n))

• Ensures:
s = TO_STRING(this)
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In other words, s must look like 
the result of converting some 
NaturalNumber value to a 

String ...



Constructor from String

• There is a constructor with one parameter 
String s

• Requires:
there exists n: NATURAL

(s = TO_STRING(n))

• Ensures:
s = TO_STRING(this)
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... and the NaturalNumber
value resulting from the 

constructor is what would have 
given you that String.



Example
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Code State

s = "265"

NaturalNumber n = new
NaturalNumber2(s);



Example
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Code State

s = "265"

NaturalNumber n = new
NaturalNumber2(s);

s = "265"
n = 265



Methods for NaturalNumber

• All the methods for NaturalNumber are 
instance methods, i.e., you call them as 
follows:
n.methodName(arguments)

where n is an initialized variable of type
NaturalNumber
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Methods for NaturalNumber

• All the methods for NaturalNumber are 
instance methods, i.e., you call them as 
follows:
n.methodName(arguments)

where n is an initialized variable of type
NaturalNumber
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Recall: n is called the receiver; 
for all instance methods, the 

corresponding distinguished 
formal parameter implicitly has 

the name this.



Order of Presentation

• The methods are introduced here starting 
with those you might expect to see as a 
client, and then proceeding to ones that 
might seem more surprising

• Methods not discussed here:
– setFromInt, canConvertToInt, toInt
– setFromString, canSetFromString
– increment, decrement
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add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n
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add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n
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The parameter mode called 
updates in a contract means the 

variable’s value might be 
changed by a call to the method.



add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n
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If this is an updates-mode 
parameter in any method, then 
the type in question is mutable.



add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n
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In an ensures clause, a # in front 
of a variable whose value might 
be changed is pronounced “old”; 

#this denotes the old, or 
incoming, value of this.



Example
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Code State
m = 143
k = 70

m.add(k);



Example
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Code State
m = 143
k = 70

m.add(k);

m = 213
k = 70



subtract

void subtract(NaturalNumber n)

• Subtracts n from this.
• Updates: this
• Requires:

this >= n

• Ensures:
this = #this - n
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subtract

void subtract(NaturalNumber n)

• Subtracts n from this.
• Updates: this
• Requires:

this >= n

• Ensures:
this = #this - n
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Important!  It could have been 
written as:

#this = this + n



subtract

void subtract(NaturalNumber n)

• Subtracts n from this.
• Updates: this
• Requires:

this >= n

• Ensures:
this = #this - n
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Or even as:
this + n = #this



Example
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Code State
m = 143
k = 70

m.subtract(k);



Example
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Code State
m = 143
k = 70

m.subtract(k);

m = 73
k = 70



multiply

void multiply(NaturalNumber n)

• Multiplies this by n.
• Updates: this
• Ensures:
this = #this * n
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Example
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Code State
m = 143
k = 70

m.multiply(k);



Example
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Code State
m = 143
k = 70

m.multiply(k);

m = 10010
k = 70



divide

NaturalNumber divide(NaturalNumber n)

• Divides this by n, returning the remainder.
• Updates: this
• Requires:

n > 0 

• Ensures:
#this = n * this + divide  and
0 <= divide < n
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Example
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Code State
m = 143
k = 70

NaturalNumber r = 
m.divide(k);



Example
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Code State
m = 143
k = 70

NaturalNumber r = 
m.divide(k);

m = 2
k = 70
r = 3



power

void power(int p)

• Raises this to the power p.
• Updates: this
• Requires:

p >= 0

• Ensures:
this = #this ^ (p)
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power

void power(int p)

• Raises this to the power p.
• Updates: this
• Requires:

p >= 0

• Ensures:
this = #this ^ (p)
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Note: 0 ^ (0) = 1 by definition 
of the ^ operator.



Example
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Code State
m = 143
k = 4

m.power(k);



Example
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Code State
m = 143
k = 4

m.power(k);

m = 418161601
k = 4



root

void root(int r)
• Updates this to the r-th root of its incoming 

value.
• Updates: this
• Requires:

r >= 2 

• Ensures:
this ^ (r) <= #this < (this + 1) ^ (r) 
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Example
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Code State
m = 143
k = 2

m.root(k);



Example
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Code State
m = 143
k = 2

m.root(k);

m = 11
k = 2



Example
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Code State
m = 144
k = 2

m.root(k);

m = 12
k = 2



copyFrom

void copyFrom(NaturalNumber n)

• Copies n to this.
• Replaces: this
• Ensures:
this = n

7 January 2019 OSU CSE 58



copyFrom

void copyFrom(NaturalNumber n)

• Copies n to this.
• Replaces: this
• Ensures:
this = n
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The parameter mode called 
replaces in a contract means the 

variable’s value might be 
changed by a call to the method, 
but the new value is independent 

of the old value.



copyFrom

void copyFrom(NaturalNumber n)

• Copies n to this.
• Replaces: this
• Ensures:
this = n
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If this is a replaces-mode 
parameter in any method, then 
the type in question is mutable.



Example
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Code State
m = 143
k = 70

m.copyFrom(k);



Example
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Code State
m = 143
k = 70

m.copyFrom(k);

m = 70
k = 70



compareTo

int compareTo(NaturalNumber n)

• Compares n to this, returning a negative 
number if this < n, 0 if this = n, and a 
positive number if this > n

• Ensures:
compareTo = [a negative number, 
zero, or a positive integer as this 
is less than, equal to, or greater 
than n]
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Example
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Code State
m = 143
k = 70

int comp = 
m.compareTo(k);



Example
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Code State
m = 143
k = 70

int comp = 
m.compareTo(k);

m = 143
k = 70
comp = 1



Example
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Code State
m = 143
k = 70

int comp = 
m.compareTo(k);

m = 143
k = 70
comp = 1

Though here the result of the 
method is 1, it could be any

positive int, so don’t assume it 
is 1.



multiplyBy10

void multiplyBy10(int k)

• Multiplies this by 10 and adds k.
• Updates: this
• Requires:
0 <= k < 10

• Ensures:
this = 10 * #this + k
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multiplyBy10

void multiplyBy10(int k)

• Multiplies this by 10 and adds k.
• Updates: this
• Requires:
0 <= k < 10

• Ensures:
this = 10 * #this + k
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This is a kernel method.



Example
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Code State
m = 143
d = 7

m.multiplyBy10(d);



Example
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Code State
m = 143
d = 7

m.multiplyBy10(d);

m = 1437
d = 7



divideBy10

int divideBy10()

• Divides this by 10 and returns the 
remainder.

• Updates: this
• Ensures:
#this = 10 * this + divideBy10  and
0 <= divideBy10 < 10
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divideBy10

int divideBy10()

• Divides this by 10 and returns the 
remainder.

• Updates: this
• Ensures:
#this = 10 * this + divideBy10  and
0 <= divideBy10 < 10
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This is a kernel method.



Example
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Code State

m = 1437

int r = 
m.divideBy10();



Example
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Code State

m = 1437

int r = 
m.divideBy10();

m = 143
r = 7



isZero

boolean isZero()

• Reports whether this is zero.
• Ensures:
isZero = (this = 0)
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isZero

boolean isZero()

• Reports whether this is zero.
• Ensures:
isZero = (this = 0)
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This is a kernel method.



Example
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Code State

m = 143

boolean z = 
m.isZero();



Example
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Code State

m = 143

boolean z = 
m.isZero();

m = 143
z = false



clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0
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clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0
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This is a standard method.



clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0
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The parameter mode 
called clears in a contract 
means the variable’s value 
is reset to an initial value 
by a call to the method.



clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0
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If this is a clears-mode 
parameter in any method, then 
the type in question is mutable.



clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0
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The ensures clause is 
redundant in this case 

because this is a clears-
mode parameter.



Example
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Code State

m = 143

m.clear();



Example
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Code State

m = 143

m.clear();

m = 0



newInstance

NaturalNumber newInstance()

• Returns a new object with the same 
implementation as this, having an initial 
value.

• Ensures:
newInstance = 0
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newInstance

NaturalNumber newInstance()

• Returns a new object with the same 
implementation as this, having an initial 
value.

• Ensures:
newInstance = 0
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This is a standard method.



newInstance

NaturalNumber newInstance()

• Returns a new object with the same 
implementation as this, having an initial 
value.

• Ensures:
newInstance = 0
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This is similar to a 
constructor; the difference 
is that you don’t need to 
know the name of any 

implementation class to 
call this method.



Example
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Code State

m = 143

NaturalNumber k =
m.newInstance();



Example
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Code State

m = 143

NaturalNumber k =
m.newInstance();

m = 143
k = 0



transferFrom

void transferFrom(NaturalNumber n)

• Sets this to the incoming value of n, and 
resets n to an initial value; n must be of 
the same implementation as this.

• Replaces: this
• Clears: n
• Ensures:
this = #n

7 January 2019 OSU CSE 91



transferFrom

void transferFrom(NaturalNumber n)

• Sets this to the incoming value of n, and 
resets n to an initial value; n must be of 
the same implementation as this.

• Replaces: this
• Clears: n
• Ensures:
this = #n
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This is a standard method.



transferFrom

void transferFrom(NaturalNumber n)

• Sets this to the incoming value of n, and 
resets n to an initial value; n must be of 
the same implementation as this.

• Replaces: this
• Clears: n
• Ensures:
this = #n
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This is similar to 
copyFrom but is always 

more efficient, so it should 
be used if you don’t really 

need a duplicate.



Example
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Code State
m = 143
k = 70

m.transferFrom(k);



Example
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Code State
m = 143
k = 70

m.transferFrom(k);

m = 70
k = 0



Whoa!  It Clears n?

• Did you notice that transferFrom
changes the value of its argument?  How 
can it do this?  Didn’t we say that this can’t 
happen?
– It can’t for arguments of Java’s primitive types

• There is a crucial difference between 
Java’s primitive types and all other types, 
that allows this behavior for other types
– Details coming soon...
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toString

String toString()

• Returns the string representation of this.
• Ensures:
toString = [the string

representation of this]
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Example
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Code State

m = 143

String s =
m.toString();



Example
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Code State

m = 143

String s =
m.toString();

m = 143
s = "143"



Resources

• OSU CSE Components API: 
NaturalNumber
– http://cse.osu.edu/software/common/doc/
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http://cse.osu.edu/software/common/doc/
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