
NaturalNumber

7 January 2019 OSU CSE 1

NaturalNumber

• The NaturalNumber component family
allows you to manipulate natural numbers
(i.e., non-negative integers)
– Unlike an int variable, a NaturalNumber

variable has no upper bound on its value
– On the other hand, you need to call methods

to do arithmetic; there are no nice built-in
operators (e.g., +, –, *, ==, <, …) or literals
(e.g., 0, 1, 13, …) as with int variables

7 January 2019 OSU CSE 2

Interfaces and Classes

7 January 2019 OSU CSE 3

NaturalNumber

NaturalNumber1L NaturalNumber2

implements implements

NaturalNumber-
Kernel

extends

Standard

extends

Interfaces and Classes

7 January 2019 OSU CSE 4

NaturalNumber

NaturalNumber1L NaturalNumber2

implements implements

NaturalNumber-
Kernel

extends

Standard

extends
Standard has contracts

for three methods:
clear

newInstance
transferFrom

Interfaces and Classes

7 January 2019 OSU CSE 5

NaturalNumber

NaturalNumber1L NaturalNumber2

implements implements

NaturalNumber-
Kernel

extends

Standard

extends

NaturalNumberKernel
has contracts for three

methods:
multiplyBy10
divideBy10
isZero

Interfaces and Classes

7 January 2019 OSU CSE 6

NaturalNumber

NaturalNumber1L NaturalNumber2

implements implements

NaturalNumber-
Kernel

extends

Standard

extends

NaturalNumber
has contracts for 14 other

methods, e.g.,
add

subtract
etc.

The Standard Interface

• The interface Standard has methods that
are part of most (nearly all) OSU CSE
component families
– Separating the standard methods into their

own interface means that these highly reused
methods are described in exactly one place

7 January 2019 OSU CSE 7

The Standard Interface

• The interface Standard has methods that
are part of most (nearly all) OSU CSE
component families
– Separating the standard methods into their

own interface means that these highly reused
methods are described in exactly one place

7 January 2019 OSU CSE 8

This design goal in
software engineering is

usually called single
point of control over

change.

The Kernel Interface

• The interface NaturalNumberKernel
has a minimal set of methods that are
primitive in the NaturalNumber
component family
– Separating these kernel (primary) methods

into their own interface identifies them as
special in this regard

7 January 2019 OSU CSE 9

The Kernel Interface

• The interface NaturalNumberKernel
has a minimal set of methods that are
primitive in the NaturalNumber
component family
– Separating these kernel (primary) methods

into their own interface identifies them as
special in this regard

7 January 2019 OSU CSE 10

The choice of kernel
methods is a key

decision by the designer
of a component family.

The Enhanced Interface

• The interface NaturalNumber has all
other methods that are convenient to have
in the NaturalNumber component family
– These secondary methods are often more

“powerful” than the kernel methods and are
introduced to make the component family
readily usable in typical client code

7 January 2019 OSU CSE 11

Mathematical Model

• The value of a NaturalNumber variable
is modeled as a non-negative integer

• Formally:
NATURAL is integer
exemplar n

constraint n >= 0

type NaturalNumber is modeled by
NATURAL

7 January 2019 OSU CSE 12

Mathematical Model

• The value of a NaturalNumber variable
is modeled as a non-negative integer

• Formally:
NATURAL is integer
exemplar n

constraint n >= 0

type NaturalNumber is modeled by
NATURAL

7 January 2019 OSU CSE 13

First, we define the
mathematical model

we intend to use,
including any
constraints

that limit the values it
might have.

Mathematical Model

• The value of a NaturalNumber variable
is modeled as a non-negative integer

• Formally:
NATURAL is integer
exemplar n

constraint n >= 0

type NaturalNumber is modeled by
NATURAL

7 January 2019 OSU CSE 14

Second, we state that a
NaturalNumber
variable has that

mathematical model.

Constructors

• There are four constructors for each
implementation class

• As always:
– The name of the constructor is the name of

the implementation class
– Constructors differ only in their parameters
– Each has its own contract (which is in the

kernel interface NaturalNumberKernel)

7 January 2019 OSU CSE 15

No-argument Constructor

• A constructor with no parameters is called
a no-argument constructor

• Ensures:
this = 0

7 January 2019 OSU CSE 16

Example

7 January 2019 OSU CSE 17

Code State

NaturalNumber n = new
NaturalNumber2();

Example

7 January 2019 OSU CSE 18

Code State

NaturalNumber n = new
NaturalNumber2();

n = 0

Copy Constructor

• There is a constructor with one parameter
of the same type (NaturalNumber n),
and it returns a copy of the parameter
value so it is called a copy constructor

• Ensures:
this = n

7 January 2019 OSU CSE 19

Example

7 January 2019 OSU CSE 20

Code State

k = 12345678909

NaturalNumber m = new
NaturalNumber2(k);

Example

7 January 2019 OSU CSE 21

Code State

k = 12345678909

NaturalNumber m = new
NaturalNumber2(k);

k = 12345678909
m = 12345678909

Constructor from int

• There is a constructor with one parameter
int i

• Requires:
i >= 0

• Ensures:
this = i

7 January 2019 OSU CSE 22

Example

7 January 2019 OSU CSE 23

Code State

j = 13

NaturalNumber n = new
NaturalNumber2(j);

Example

7 January 2019 OSU CSE 24

Code State

j = 13

NaturalNumber n = new
NaturalNumber2(j);

j = 13
n = 13

Constructor from String

• There is a constructor with one parameter
String s

• Requires:
there exists n: NATURAL

(s = TO_STRING(n))

• Ensures:
s = TO_STRING(this)

7 January 2019 OSU CSE 25

Constructor from String

• There is a constructor with one parameter
String s

• Requires:
there exists n: NATURAL

(s = TO_STRING(n))

• Ensures:
s = TO_STRING(this)

7 January 2019 OSU CSE 26

In other words, s must look like
the result of converting some
NaturalNumber value to a

String ...

Constructor from String

• There is a constructor with one parameter
String s

• Requires:
there exists n: NATURAL

(s = TO_STRING(n))

• Ensures:
s = TO_STRING(this)

7 January 2019 OSU CSE 27

... and the NaturalNumber
value resulting from the

constructor is what would have
given you that String.

Example

7 January 2019 OSU CSE 28

Code State

s = "265"

NaturalNumber n = new
NaturalNumber2(s);

Example

7 January 2019 OSU CSE 29

Code State

s = "265"

NaturalNumber n = new
NaturalNumber2(s);

s = "265"
n = 265

Methods for NaturalNumber

• All the methods for NaturalNumber are
instance methods, i.e., you call them as
follows:
n.methodName(arguments)

where n is an initialized variable of type
NaturalNumber

7 January 2019 OSU CSE 30

Methods for NaturalNumber

• All the methods for NaturalNumber are
instance methods, i.e., you call them as
follows:
n.methodName(arguments)

where n is an initialized variable of type
NaturalNumber

7 January 2019 OSU CSE 31

Recall: n is called the receiver;
for all instance methods, the

corresponding distinguished
formal parameter implicitly has

the name this.

Order of Presentation

• The methods are introduced here starting
with those you might expect to see as a
client, and then proceeding to ones that
might seem more surprising

• Methods not discussed here:
– setFromInt, canConvertToInt, toInt
– setFromString, canSetFromString
– increment, decrement

7 January 2019 OSU CSE 32

add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n

7 January 2019 OSU CSE 33

add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n

7 January 2019 OSU CSE 34

The parameter mode called
updates in a contract means the

variable’s value might be
changed by a call to the method.

add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n

7 January 2019 OSU CSE 35

If this is an updates-mode
parameter in any method, then
the type in question is mutable.

add

void add(NaturalNumber n)

• Adds n to this.
• Updates: this
• Ensures:
this = #this + n

7 January 2019 OSU CSE 36

In an ensures clause, a # in front
of a variable whose value might
be changed is pronounced “old”;

#this denotes the old, or
incoming, value of this.

Example

7 January 2019 OSU CSE 37

Code State
m = 143
k = 70

m.add(k);

Example

7 January 2019 OSU CSE 38

Code State
m = 143
k = 70

m.add(k);

m = 213
k = 70

subtract

void subtract(NaturalNumber n)

• Subtracts n from this.
• Updates: this
• Requires:

this >= n

• Ensures:
this = #this - n

7 January 2019 OSU CSE 39

subtract

void subtract(NaturalNumber n)

• Subtracts n from this.
• Updates: this
• Requires:

this >= n

• Ensures:
this = #this - n

7 January 2019 OSU CSE 40

Important! It could have been
written as:

#this = this + n

subtract

void subtract(NaturalNumber n)

• Subtracts n from this.
• Updates: this
• Requires:

this >= n

• Ensures:
this = #this - n

7 January 2019 OSU CSE 41

Or even as:
this + n = #this

Example

7 January 2019 OSU CSE 42

Code State
m = 143
k = 70

m.subtract(k);

Example

7 January 2019 OSU CSE 43

Code State
m = 143
k = 70

m.subtract(k);

m = 73
k = 70

multiply

void multiply(NaturalNumber n)

• Multiplies this by n.
• Updates: this
• Ensures:
this = #this * n

7 January 2019 OSU CSE 44

Example

7 January 2019 OSU CSE 45

Code State
m = 143
k = 70

m.multiply(k);

Example

7 January 2019 OSU CSE 46

Code State
m = 143
k = 70

m.multiply(k);

m = 10010
k = 70

divide

NaturalNumber divide(NaturalNumber n)

• Divides this by n, returning the remainder.
• Updates: this
• Requires:

n > 0

• Ensures:
#this = n * this + divide and
0 <= divide < n

7 January 2019 OSU CSE 47

Example

7 January 2019 OSU CSE 48

Code State
m = 143
k = 70

NaturalNumber r =
m.divide(k);

Example

7 January 2019 OSU CSE 49

Code State
m = 143
k = 70

NaturalNumber r =
m.divide(k);

m = 2
k = 70
r = 3

power

void power(int p)

• Raises this to the power p.
• Updates: this
• Requires:

p >= 0

• Ensures:
this = #this ^ (p)

7 January 2019 OSU CSE 50

power

void power(int p)

• Raises this to the power p.
• Updates: this
• Requires:

p >= 0

• Ensures:
this = #this ^ (p)

7 January 2019 OSU CSE 51

Note: 0 ^ (0) = 1 by definition
of the ^ operator.

Example

7 January 2019 OSU CSE 52

Code State
m = 143
k = 4

m.power(k);

Example

7 January 2019 OSU CSE 53

Code State
m = 143
k = 4

m.power(k);

m = 418161601
k = 4

root

void root(int r)
• Updates this to the r-th root of its incoming

value.
• Updates: this
• Requires:

r >= 2

• Ensures:
this ^ (r) <= #this < (this + 1) ^ (r)

7 January 2019 OSU CSE 54

Example

7 January 2019 OSU CSE 55

Code State
m = 143
k = 2

m.root(k);

Example

7 January 2019 OSU CSE 56

Code State
m = 143
k = 2

m.root(k);

m = 11
k = 2

Example

7 January 2019 OSU CSE 57

Code State
m = 144
k = 2

m.root(k);

m = 12
k = 2

copyFrom

void copyFrom(NaturalNumber n)

• Copies n to this.
• Replaces: this
• Ensures:
this = n

7 January 2019 OSU CSE 58

copyFrom

void copyFrom(NaturalNumber n)

• Copies n to this.
• Replaces: this
• Ensures:
this = n

7 January 2019 OSU CSE 59

The parameter mode called
replaces in a contract means the

variable’s value might be
changed by a call to the method,
but the new value is independent

of the old value.

copyFrom

void copyFrom(NaturalNumber n)

• Copies n to this.
• Replaces: this
• Ensures:
this = n

7 January 2019 OSU CSE 60

If this is a replaces-mode
parameter in any method, then
the type in question is mutable.

Example

7 January 2019 OSU CSE 61

Code State
m = 143
k = 70

m.copyFrom(k);

Example

7 January 2019 OSU CSE 62

Code State
m = 143
k = 70

m.copyFrom(k);

m = 70
k = 70

compareTo

int compareTo(NaturalNumber n)

• Compares n to this, returning a negative
number if this < n, 0 if this = n, and a
positive number if this > n

• Ensures:
compareTo = [a negative number,
zero, or a positive integer as this
is less than, equal to, or greater
than n]

7 January 2019 OSU CSE 63

Example

7 January 2019 OSU CSE 64

Code State
m = 143
k = 70

int comp =
m.compareTo(k);

Example

7 January 2019 OSU CSE 65

Code State
m = 143
k = 70

int comp =
m.compareTo(k);

m = 143
k = 70
comp = 1

Example

7 January 2019 OSU CSE 66

Code State
m = 143
k = 70

int comp =
m.compareTo(k);

m = 143
k = 70
comp = 1

Though here the result of the
method is 1, it could be any

positive int, so don’t assume it
is 1.

multiplyBy10

void multiplyBy10(int k)

• Multiplies this by 10 and adds k.
• Updates: this
• Requires:
0 <= k < 10

• Ensures:
this = 10 * #this + k

7 January 2019 OSU CSE 67

multiplyBy10

void multiplyBy10(int k)

• Multiplies this by 10 and adds k.
• Updates: this
• Requires:
0 <= k < 10

• Ensures:
this = 10 * #this + k

7 January 2019 OSU CSE 68

This is a kernel method.

Example

7 January 2019 OSU CSE 69

Code State
m = 143
d = 7

m.multiplyBy10(d);

Example

7 January 2019 OSU CSE 70

Code State
m = 143
d = 7

m.multiplyBy10(d);

m = 1437
d = 7

divideBy10

int divideBy10()

• Divides this by 10 and returns the
remainder.

• Updates: this
• Ensures:
#this = 10 * this + divideBy10 and
0 <= divideBy10 < 10

7 January 2019 OSU CSE 71

divideBy10

int divideBy10()

• Divides this by 10 and returns the
remainder.

• Updates: this
• Ensures:
#this = 10 * this + divideBy10 and
0 <= divideBy10 < 10

7 January 2019 OSU CSE 72

This is a kernel method.

Example

7 January 2019 OSU CSE 73

Code State

m = 1437

int r =
m.divideBy10();

Example

7 January 2019 OSU CSE 74

Code State

m = 1437

int r =
m.divideBy10();

m = 143
r = 7

isZero

boolean isZero()

• Reports whether this is zero.
• Ensures:
isZero = (this = 0)

7 January 2019 OSU CSE 75

isZero

boolean isZero()

• Reports whether this is zero.
• Ensures:
isZero = (this = 0)

7 January 2019 OSU CSE 76

This is a kernel method.

Example

7 January 2019 OSU CSE 77

Code State

m = 143

boolean z =
m.isZero();

Example

7 January 2019 OSU CSE 78

Code State

m = 143

boolean z =
m.isZero();

m = 143
z = false

clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0

7 January 2019 OSU CSE 79

clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0

7 January 2019 OSU CSE 80

This is a standard method.

clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0

7 January 2019 OSU CSE 81

The parameter mode
called clears in a contract
means the variable’s value
is reset to an initial value
by a call to the method.

clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0

7 January 2019 OSU CSE 82

If this is a clears-mode
parameter in any method, then
the type in question is mutable.

clear

void clear()
• Resets this to an initial value.
• Clears: this
• Ensures:
this = 0

7 January 2019 OSU CSE 83

The ensures clause is
redundant in this case

because this is a clears-
mode parameter.

Example

7 January 2019 OSU CSE 84

Code State

m = 143

m.clear();

Example

7 January 2019 OSU CSE 85

Code State

m = 143

m.clear();

m = 0

newInstance

NaturalNumber newInstance()

• Returns a new object with the same
implementation as this, having an initial
value.

• Ensures:
newInstance = 0

7 January 2019 OSU CSE 86

newInstance

NaturalNumber newInstance()

• Returns a new object with the same
implementation as this, having an initial
value.

• Ensures:
newInstance = 0

7 January 2019 OSU CSE 87

This is a standard method.

newInstance

NaturalNumber newInstance()

• Returns a new object with the same
implementation as this, having an initial
value.

• Ensures:
newInstance = 0

7 January 2019 OSU CSE 88

This is similar to a
constructor; the difference
is that you don’t need to
know the name of any

implementation class to
call this method.

Example

7 January 2019 OSU CSE 89

Code State

m = 143

NaturalNumber k =
m.newInstance();

Example

7 January 2019 OSU CSE 90

Code State

m = 143

NaturalNumber k =
m.newInstance();

m = 143
k = 0

transferFrom

void transferFrom(NaturalNumber n)

• Sets this to the incoming value of n, and
resets n to an initial value; n must be of
the same implementation as this.

• Replaces: this
• Clears: n
• Ensures:
this = #n

7 January 2019 OSU CSE 91

transferFrom

void transferFrom(NaturalNumber n)

• Sets this to the incoming value of n, and
resets n to an initial value; n must be of
the same implementation as this.

• Replaces: this
• Clears: n
• Ensures:
this = #n

7 January 2019 OSU CSE 92

This is a standard method.

transferFrom

void transferFrom(NaturalNumber n)

• Sets this to the incoming value of n, and
resets n to an initial value; n must be of
the same implementation as this.

• Replaces: this
• Clears: n
• Ensures:
this = #n

7 January 2019 OSU CSE 93

This is similar to
copyFrom but is always

more efficient, so it should
be used if you don’t really

need a duplicate.

Example

7 January 2019 OSU CSE 94

Code State
m = 143
k = 70

m.transferFrom(k);

Example

7 January 2019 OSU CSE 95

Code State
m = 143
k = 70

m.transferFrom(k);

m = 70
k = 0

Whoa! It Clears n?

• Did you notice that transferFrom
changes the value of its argument? How
can it do this? Didn’t we say that this can’t
happen?
– It can’t for arguments of Java’s primitive types

• There is a crucial difference between
Java’s primitive types and all other types,
that allows this behavior for other types
– Details coming soon...

7 January 2019 OSU CSE 96

toString

String toString()

• Returns the string representation of this.
• Ensures:
toString = [the string

representation of this]

7 January 2019 OSU CSE 97

Example

7 January 2019 OSU CSE 98

Code State

m = 143

String s =
m.toString();

Example

7 January 2019 OSU CSE 99

Code State

m = 143

String s =
m.toString();

m = 143
s = "143"

Resources

• OSU CSE Components API:
NaturalNumber
– http://cse.osu.edu/software/common/doc/

7 January 2019 OSU CSE 100

http://cse.osu.edu/software/common/doc/

	NaturalNumber
	NaturalNumber
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	Interfaces and Classes
	The Standard Interface
	The Standard Interface
	The Kernel Interface
	The Kernel Interface
	The Enhanced Interface
	Mathematical Model
	Mathematical Model
	Mathematical Model
	Constructors
	No-argument Constructor
	Example
	Example
	Copy Constructor
	Example
	Example
	Constructor from int
	Example
	Example
	Constructor from String
	Constructor from String
	Constructor from String
	Example
	Example
	Methods for NaturalNumber
	Methods for NaturalNumber
	Order of Presentation
	add
	add
	add
	add
	Example
	Example
	subtract
	subtract
	subtract
	Example
	Example
	multiply
	Example
	Example
	divide
	Example
	Example
	power
	power
	Example
	Example
	root
	Example
	Example
	Example
	copyFrom
	copyFrom
	copyFrom
	Example
	Example
	compareTo
	Example
	Example
	Example
	multiplyBy10
	multiplyBy10
	Example
	Example
	divideBy10
	divideBy10
	Example
	Example
	isZero
	isZero
	Example
	Example
	clear
	clear
	clear
	clear
	clear
	Example
	Example
	newInstance
	newInstance
	newInstance
	Example
	Example
	transferFrom
	transferFrom
	transferFrom
	Example
	Example
	Whoa! It Clears n?
	toString
	Example
	Example
	Resources

