Design-by-Contract

26 January 2021 OSU CSE

Systems Thinking

* A system is any part of anything that you
want to think about as an indivisible unit

* An interface is a description of the
“boundary” between a system and
everything else, that also describes how to
think about that system as a unit

A subsystem (component) is a system
that is used inside, i.e., as a part of,
another system — a relative notion!

Example: Ice/Water Dispenser

- 7 Water Crushed Cubed

- -
- -_—
- —r
- —_—
- —_—
—

~
~

Select water, crushed ice, or cubed ice.
Place a glass against the pad and push.

People’s Roles wrt Systems

* Aclientis a person (or a role played by
some agent) viewing a system “from the
outside” as an indivisible unit

 An implementer is a person (or a role
played by some agent) viewing a system
“from the inside” as an assembly of
subsystems/components

Describing Behavior: Part 1

* One side of the coin: information hiding
IS a technique for describing system
behavior in which you intentionally leave
out “internal implementation details” of the
system

Describing Behavior: Part 2

» Other side of the coin (and a necessary
consequence of information hiding):
abstraction is a technigue in which you
create a valid cover story to counteract the
effects of hiding some internal
implementation details
— Presumably the hidden information is relevant

to the system behavior, so even if you hide it
you still need to account for its presence!

Overview of Design-by-Contract

* Also known as programming-to-the-
interface

 Articulated clearly only in the 1980s

* Design-by-contract has become the
standard policy governing “separation of
concerns” across modern software
engineering

* This is how software components are
really used...

Recall: Mathematical Models

Each variable in the program has a type
— Examples: int, double, ...

Each program type has a mathematical
fype that models it. you should think of
any variable of that program type as
having a value from its mathematical
model’'s mathematical space/domain

— Examples (respectively): integer, real, ...

26 January 2021 OSU CSE

Informal Models

* Models are not always formal
mathematical models like integers, real
numbers, etc., but can be based on
informal concepts from other situations

 Example of an anthropomorphic
description of behavior:

— “This TV remembers the last channel you
watched.”

* More examples to come...

Structure of a Method Contract

e Each method has:

— A precondition (requires clause) that
characterizes the responsibility of the program
that calls (uses) that method (client code)

— A postcondition (ensures clause) that
characterizes the responsibility of the program
that implements that method (implementation
code in the method body)

26 January 2021 OSU CSE 10

Meaning of a Method Contract

* If its precondition is true when a method is
called, then the method will ferminate —
return to the calling program — and the
postcondition will be true when it does

return
* If its precondition is not true when a

method is called, then the method may do
anything (including not terminate)

Responsibilities and Rewards

* Responsibility: Making sure the
precondition is true when a method is
called is the responsibility of the client

 Reward: The client may assume the
postcondition is true when the method
returns

Responsibilities and Rewards

* Responsibility: Making sure the
postcondition is true when a method
returns is the responsibility of the
iImplementer

 Reward: The implementer may assume
the precondition is true when the method
Is called

Recall: Static (Class) Methods

« A static method (class method) is one that:

— Has zero or more formal parameters of various
types — placeholders for the arguments that appear
in the call between (...)

— Returns a value of a particular return type to the
calling program; or, returns nothing, denoted by a
return type of void

« Example of a call and its arguments:
double a, b;

double ¢ = sgrt (a*a + b*b, 0.001);

26 January 2021 OSU CSE

Recall: Static (Class) Methods

* A static method (clas

— Has zero or more form
types — placeholders f
in the call between (...)

— Returns a value of a partic Aturn type to the
calling program; or, returr (ning, denoted by a
return type of void

« Example ofacalland ity guments:
double a, b;

What does this method do?
How do you know?

double ¢ = sgrt (a*a + b*b, 0.001);

Example of a Contract

/**

*

* (@param x number to take the square root of
* (@param epsilon allowed relative error

* dreturn the approximate square root of x
* @drequires

* x > 0 and epsilon > 0

* @ensures <pre>

* sgrt >= 0 and

* [sqgrt i1s within relative error epsilon

* of the actual square root of x]

* </pre>

*/

private static double sgrt (double x,
double epsilon)

26 January 2021 OSU CSE 16

Example of a Contract

/**
) : A Java comment that starts
aram NUMive :
e = NS with the symbols
* @param epsilon allCw. By
* @return the approximat: . /
* @requires Is called a Javadoc
* x >0 and epsilon > comment; it goes before
* Censures <pre> the method header.
* sgrt >= 0 and
* [sgrt 1s within relative EFrrOr €psSTIIOmN
* of the actual square root of x]
* </pre>
*

~

private static double sqgrt (double x,
double epsilon)

26 January 2021 OSU CSE 17

Javadoc

* The standard documentation technique for
Java is called Javadoc

* You place special Javadoc comments
enclosed in /** ... */ In your code, and

the javadoc tool generates nicely
formatted web-based documentation from
them

26 January 2021 OSU CSE 18

APls

* The resulting documentation is known as
the API (application programming
interface) for the Java code to which the
Javadoc tags are attached

* The API for the OSU CSE components is
at:
http://web.cse.ohio-state.edu/software/common/doc/

26 January 2021 OSU CSE

http://web.cse.ohio-state.edu/software/common/doc/

APls

* The resulting documentation is known as
the API (application programming
interface) for the Java code to which the
Javaac<.tags are attached

e The APl te. < The word interface has two

at: related but distinct meanings:
_ 1 * aunit of Java code that
http:/web.cse.ohi contains Javadoc comments

used to produce documentation
* the resulting documentation

26 January 2021 OSU CSE 20

http://web.cse.ohio-state.edu/software/common/doc/

Example of a Contract

/**
*
* @param x number to take the square root of
* (@param ®xsilon allowed relative error
* (dreturn thhapproximate square root of x
* @drequires
* x > 0 and epsSw S
* @ensures <pre> The Javadoc tag Gparam
* sqrt >= 0 and IS needed for each formal
* [sgrt is within relatil parameter; you describe
* , .

of the actual square I {ha pnarameter’s role in the
* </pre>
. method.

~

private static double sqgrt (aoupre X,
double epsilon)

26 January 2021 OSU CSE

Example of a Contract

/**

*

* @param x number to take the square root of

* (dparam epsilon allowed relative error

* dreturn the approximate square root of x

* @drequires

* x > 0 and & L > (f

) @e“iureS;prez The Javadoc tag @return
sgrt >= an : :

* [sqrt is within relati is needed if the method

* of the actual square | returnsavalue; you

* </pre> describe the returned value.

*

~

private static double sqgrt (aoupre X,
double epsilon)

26 January 2021 OSU CSE

\®]
(\9]

Example o

Jan The Javadoc tag

. @requires Introduces the
* @param x number to ta> precondition for the sqrt
* (dparam epsilon al’ method.

* @return the a» el L &

* @drequires

* x > 0 and epsilon > 0

* @ensures <pre>

* sgrt >= 0 and

* [sqgrt i1s within relative error epsilon

* of the actual square root of x]

* </pre>

*

~

private static double sgrt (double x,
double epsilon)

26 January 2021 OSU CSE 23

Example o

Jan The Javadoc tag

. @Gensures Introduces the
* @param x number to tay POstcondition for the sqrt
* (dparam epsilon alle method.

* @return the appy até

* @drequires

* x > 0 and/=<psilon > 0

* @ensures“<pre>

* sgrt >= 0 and

* [sqgrt i1s within relative error epsilon

* of the actual square root of x]

* </pre>

*

~

private static double sgrt (double x,
double epsilon)

26 January 2021 OSU CSE

Example O" Javadoc comments may
contain HTML-like tags;

/**

. e.g., <pre> .. </pre>
* @param x number to tak means SpaCing and line-
* @param epsilon allowy breaks are retained in
* Creturn the approxy <¢ generated documentation.
* @drequires

* x > 0 and epsgdon > 0

* @ensures <pre>

* sgrt >= 0 and

* [sgrt 1s within relative error epsilon

* of the actual square root of x]

* </pre>

*

~

private static double sqgrt (double x,
double epsilon)

26 January 2021 OSU CSE

Abbreviated Javadoc

 For this course:

— Any actual code you see in *.java files will
have the full Javadoc comments, as above

— Some code you see in these slides will not
have the Javadoc tags @param, @return,
and formatting tags <pre>; plus, “keywords” in
the Javadoc and mathematics will be bold-
faced for easy reading

 This allows you to focus on the contract content:
the requires and ensures clauses themselves

Example Contract (Abbreviated)

/**

*

* (@requires

* x > 0 and epsilon > 0

* (@ensures

* sqgrt >= (0 and

* [sqgrt 1s within relative error epsilon
* of the actual square root of x]

*

/
private static double sqgrt (double x,
double epsilon)

26 January 2021 OSU CSE 27

Example Contract (Abbreviated)

/ *x %
*
* (drequires
* x > 0 and epsilon > 0
* (@densures
* sgrt >= U (This is the precondition, indicating that
* [sqrt is wi the arguments passed in for the
* of the act formal parameters x and epsilon
</ both must be positive before a client
private static may call sgrt.

double epsi1i10n)

Example Contract (Abbreviated)

/ * K
*
* @requires
* x >0 and epsilon > 0
* @ensures
* sgrt >= 0
x [sqrt is wi Theprecondition is a statement about
* of the act the models of the arguments;
* / here, it is a formal mathematical

private static statement about mathematical realis.

double epsi1i10n)

Example Contract (Abbreviated)

[This is the postcondition, indicating
* .
that the return value from sqgrt is
non-negative and ... what does the
rest say?

* @requires

* x > 0 and

* (@ensures

* sqgrt >= (0 and

* [sgrt 1s within relative error epsilon

* of the actual square root of x]

*/

private static double sgrt (double x,
double epsilon)

26 January 2021 OSU CSE 30

Example Contract (Abbreviated)

[The first part of the postcondition here
* - c
IS written in mathematical notation; it

IS not program code! The second part

* x>0 and | __jnside [..] — is written in English.
@ensures

*
* sqgrt >= (0 and

* [sgrt 1s within relative error epsilon
*

*

* @requires

of the actual square root of X]

/
private static double sqgrt (double x,
double epsilon)

Using a Method Contract

* A static method’s contract refers to its formal

parameters, and (only if it returns a value, not
void) to the name of the method (which stands
for the return value)

* To determine whether the precondition and
postcondition are true for a particular client call:

— The model values of the arguments are substituted
for the respective formal parameters

— The model value of the result returned by the method
Is substituted for the method name

Reasoning: Tracing Tables

Code State

y = 76.9

y = sqrt (4.0, 0.01);

Reasoning: Tracing Tables

Code State

76.9
4.0

N
|

y = sqrt(z, 0.01);

NN
[
NN
S o

Reacnnina: Tmr:ing Tables

From the contract of sgrt,

do we know that

y = 2.0 State
instead of
y = =2.07? = 76.9
=z = 4.0

= sqgrt(z, 0.01);

N
|

Reacnnina: Tmr:ing Tables

From the contract of sgrt,

do we know that

y = 2.0 State
instead of
vy = 1.99967 = 76.9
=z = 4.0

= sqgrt(z, 0.01);

N
|

A Partly Informal Contract

/**

*

* (@requires

* x > 0 and epsilon > 0

* (@ensures

* sqgrt >= (0 and

* [sqQqrt 1s within relative error epsilon
* of the actual square root of x]

*/

private static double sqgrt (double x,
double epsilon)

26 January 2021 OSU CSE

37

A Formal Contract

/**

*

* (@requires

* x > 0 and epsilon > 0

* (@ensures

* sqgrt >= (0 and

* |sqgrt - x*(1/2)| / x*(1/2) <= epsilon
*/

private static double sqgrt (double x,
double epsilon)

26 January 2021 OSU CSE

38

A We can, in this formal setting, easily
substitute 4. 0 for x, 0. 01 for

epsilon, and either 2. 0 or

/i* 1.9996 for sgrt ... and is the

. : postcondition true in either case?
@requires Yes!

* x > 0 and™em U
* @ensures
* sqgrt >= (0 and
* |sqrt - x*(1/2)| / x*(1/2) <= epsilon
*/

private static double sqgrt (double x,
double epsilon)

26 January 2021 OSU CSE

39

A Method Body

private static double sqgrt (double x,
double epsilon) {
assert x > 0.0
"Violation of: x > 0";
assert epsilon > 0.0
"Violation of: epsilon > 0";
// rest of body: compute the square root

26 January 2021 OSU CSE

40

A Method Body

private static double sqgrt (double x,
double epsilon) {
assert x > 0.0
"Violation of: x > 0";
assert epsilon > 0.0
"ViolNsfion of: epsilon > 0";

// rest O. “Lod |
} The assert statement in Java

checks whether a condition (an
assertion) is true; if it is not, it stops
execution and reports the message
after the colon.

26 January 2021 OSU CSE 41

A Method Body

private static double sqgrt (double x,
double epsilon) {
assert x > 0.0
"Violation of: x > 0";
assert epsilon > 0.0
"ViolNsfion of: epsilon > 0";
// rest O. “hod

} But why are there assert

statements in this method body to
check what the implementer is
supposed to assume?

26 January 2021 OSU CSE 42

Checking a Precondition

* During software development, itis a

best practice to check assumptions with
assert when it is easy to do so

— This checking can be turned on and off (on by
using the “-ea” argument to the JVM)
— When turned off, assert is documentation

* Preconditions generally are easy to check;
postconditions generally are not easy to
check

A Misconception

* A common misconception is that using
assert statements to check
preconditions contradicts design-by-
contract principles

* It does not, because the advice is not to
deliver software with assertion-checking
turned on, but rather to develop software
with assertion-checking turned on — to
help catch your mistakes, not the client’s!

Resources

* Wikipedia: Design by Contract

— http://en.wikipedia.org/wiki/Design by contract

http://en.wikipedia.org/wiki/Design_by_contract

	Design-by-Contract
	Systems Thinking
	Example: Ice/Water Dispenser
	People’s Roles wrt Systems
	Describing Behavior: Part 1
	Describing Behavior: Part 2
	Overview of Design-by-Contract
	Recall: Mathematical Models
	Informal Models
	Structure of a Method Contract
	Meaning of a Method Contract
	Responsibilities and Rewards
	Responsibilities and Rewards
	Recall: Static (Class) Methods
	Recall: Static (Class) Methods
	Example of a Contract
	Example of a Contract
	Javadoc
	APIs
	APIs
	Example of a Contract
	Example of a Contract
	Example of a Contract
	Example of a Contract
	Example of a Contract
	Abbreviated Javadoc
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Using a Method Contract
	Reasoning: Tracing Tables
	Reasoning: Tracing Tables
	Reasoning: Tracing Tables
	Reasoning: Tracing Tables
	A Partly Informal Contract
	A Formal Contract
	A Formal Contract
	A Method Body
	A Method Body
	A Method Body
	Checking a Precondition
	A Misconception
	Resources

