
Design-by-Contract

26 January 2021 OSU CSE 1

Systems Thinking
• A system is any part of anything that you

want to think about as an indivisible unit
• An interface is a description of the

“boundary” between a system and
everything else, that also describes how to
think about that system as a unit

• A subsystem (component) is a system
that is used inside, i.e., as a part of,
another system — a relative notion!

26 January 2021 OSU CSE 2

Example: Ice/Water Dispenser

Select water, crushed ice, or cubed ice.
Place a glass against the pad and push.

26 January 2021 OSU CSE 3

People’s Roles wrt Systems

• A client is a person (or a role played by
some agent) viewing a system “from the
outside” as an indivisible unit

• An implementer is a person (or a role
played by some agent) viewing a system
“from the inside” as an assembly of
subsystems/components

26 January 2021 OSU CSE 4

Describing Behavior: Part 1
• One side of the coin: information hiding

is a technique for describing system
behavior in which you intentionally leave
out “internal implementation details” of the
system

26 January 2021 OSU CSE 5

Describing Behavior: Part 2
• Other side of the coin (and a necessary

consequence of information hiding):
abstraction is a technique in which you
create a valid cover story to counteract the
effects of hiding some internal
implementation details
– Presumably the hidden information is relevant

to the system behavior, so even if you hide it
you still need to account for its presence!

26 January 2021 OSU CSE 6

Overview of Design-by-Contract
• Also known as programming-to-the-

interface
• Articulated clearly only in the 1980s
• Design-by-contract has become the

standard policy governing “separation of
concerns” across modern software
engineering

• This is how software components are
really used…

26 January 2021 OSU CSE 7

Recall: Mathematical Models

• Each variable in the program has a type
– Examples: int, double, …

• Each program type has a mathematical
type that models it: you should think of
any variable of that program type as
having a value from its mathematical
model’s mathematical space/domain
– Examples (respectively): integer, real, …

26 January 2021 OSU CSE 8

Informal Models

• Models are not always formal
mathematical models like integers, real
numbers, etc., but can be based on
informal concepts from other situations

• Example of an anthropomorphic
description of behavior:
– “This TV remembers the last channel you

watched.”
• More examples to come…
26 January 2021 OSU CSE 9

Structure of a Method Contract
• Each method has:

– A precondition (requires clause) that
characterizes the responsibility of the program
that calls (uses) that method (client code)

– A postcondition (ensures clause) that
characterizes the responsibility of the program
that implements that method (implementation
code in the method body)

26 January 2021 OSU CSE 10

Meaning of a Method Contract
• If its precondition is true when a method is

called, then the method will terminate —
return to the calling program — and the
postcondition will be true when it does
return

• If its precondition is not true when a
method is called, then the method may do
anything (including not terminate)

26 January 2021 OSU CSE 11

Responsibilities and Rewards
• Responsibility: Making sure the

precondition is true when a method is
called is the responsibility of the client

• Reward: The client may assume the
postcondition is true when the method
returns

26 January 2021 OSU CSE 12

Responsibilities and Rewards
• Responsibility: Making sure the

postcondition is true when a method
returns is the responsibility of the
implementer

• Reward: The implementer may assume
the precondition is true when the method
is called

26 January 2021 OSU CSE 13

Recall: Static (Class) Methods
• A static method (class method) is one that:

– Has zero or more formal parameters of various
types — placeholders for the arguments that appear
in the call between (…)

– Returns a value of a particular return type to the
calling program; or, returns nothing, denoted by a
return type of void

• Example of a call and its arguments:
double a, b;
…
double c = sqrt (a*a + b*b, 0.001);

26 January 2021 OSU CSE 14

Recall: Static (Class) Methods
• A static method (class method) is one that:

– Has zero or more formal parameters of various
types — placeholders for the arguments that appear
in the call between (…)

– Returns a value of a particular return type to the
calling program; or, returns nothing, denoted by a
return type of void

• Example of a call and its arguments:
double a, b;
…
double c = sqrt (a*a + b*b, 0.001);

What does this method do?
How do you know?

26 January 2021 OSU CSE 15

Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)

26 January 2021 OSU CSE 16

Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)

26 January 2021 OSU CSE 17

A Java comment that starts
with the symbols

/**
is called a Javadoc

comment; it goes before
the method header.

Javadoc

• The standard documentation technique for
Java is called Javadoc

• You place special Javadoc comments
enclosed in /** … */ in your code, and
the javadoc tool generates nicely
formatted web-based documentation from
them

26 January 2021 OSU CSE 18

APIs

• The resulting documentation is known as
the API (application programming
interface) for the Java code to which the
Javadoc tags are attached

• The API for the OSU CSE components is
at:
http://web.cse.ohio-state.edu/software/common/doc/

26 January 2021 OSU CSE 19

http://web.cse.ohio-state.edu/software/common/doc/

APIs

• The resulting documentation is known as
the API (application programming
interface) for the Java code to which the
Javadoc tags are attached

• The API for the OSU CSE components is
at:
http://web.cse.ohio-state.edu/software/common/doc/

26 January 2021 OSU CSE 20

The word interface has two
related but distinct meanings:

• a unit of Java code that
contains Javadoc comments
used to produce documentation

• the resulting documentation

http://web.cse.ohio-state.edu/software/common/doc/

Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)

26 January 2021 OSU CSE 21

The Javadoc tag @param
is needed for each formal
parameter; you describe

the parameter’s role in the
method.

Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)

26 January 2021 OSU CSE 22

The Javadoc tag @return
is needed if the method

returns a value; you
describe the returned value.

Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)

26 January 2021 OSU CSE 23

The Javadoc tag
@requires introduces the
precondition for the sqrt

method.

Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)

26 January 2021 OSU CSE 24

The Javadoc tag
@ensures introduces the
postcondition for the sqrt

method.

Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)

26 January 2021 OSU CSE 25

Javadoc comments may
contain HTML-like tags;
e.g., <pre> … </pre>
means spacing and line-

breaks are retained in
generated documentation.

Abbreviated Javadoc

• For this course:
– Any actual code you see in *.java files will

have the full Javadoc comments, as above
– Some code you see in these slides will not

have the Javadoc tags @param, @return,
and formatting tags <pre>; plus, “keywords” in
the Javadoc and mathematics will be bold-
faced for easy reading

• This allows you to focus on the contract content:
the requires and ensures clauses themselves

26 January 2021 OSU CSE 26

Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 27

Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x] }
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 28

This is the precondition, indicating that
the arguments passed in for the

formal parameters x and epsilon
both must be positive before a client

may call sqrt.

Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x] }
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 29

The precondition is a statement about
the models of the arguments;

here, it is a formal mathematical
statement about mathematical reals.

Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 30

This is the postcondition, indicating
that the return value from sqrt is

non-negative and … what does the
rest say?

Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 31

The first part of the postcondition here
is written in mathematical notation; it

is not program code! The second part
— inside […] — is written in English.

Using a Method Contract
• A static method’s contract refers to its formal

parameters, and (only if it returns a value, not
void) to the name of the method (which stands
for the return value)

• To determine whether the precondition and
postcondition are true for a particular client call:
– The model values of the arguments are substituted

for the respective formal parameters
– The model value of the result returned by the method

is substituted for the method name

26 January 2021 OSU CSE 32

Reasoning: Tracing Tables

26 January 2021 OSU CSE 33

Code State

y = 76.9

y = sqrt(4.0, 0.01);

y = 2.0

Reasoning: Tracing Tables

26 January 2021 OSU CSE 34

Code State

y = 76.9
z = 4.0

y = sqrt(z, 0.01);

y = 2.0
z = 4.0

Reasoning: Tracing Tables

26 January 2021 OSU CSE 35

Code State

y = 76.9
z = 4.0

y = sqrt(z, 0.01);

y = 2.0
z = 4.0

From the contract of sqrt,
do we know that

y = 2.0
instead of
y = –2.0?

Reasoning: Tracing Tables

26 January 2021 OSU CSE 36

Code State

y = 76.9
z = 4.0

y = sqrt(z, 0.01);

y = 2.0
z = 4.0

From the contract of sqrt,
do we know that

y = 2.0
instead of

y = 1.9996?

A Partly Informal Contract
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 37

A Formal Contract
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* |sqrt - x^(1/2)| / x^(1/2) <= epsilon
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 38

A Formal Contract
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* |sqrt - x^(1/2)| / x^(1/2) <= epsilon
*/
private static double sqrt(double x,

double epsilon)

26 January 2021 OSU CSE 39

We can, in this formal setting, easily
substitute 4.0 for x, 0.01 for
epsilon, and either 2.0 or
1.9996 for sqrt … and is the

postcondition true in either case?
Yes!

A Method Body
private static double sqrt(double x,

double epsilon) {
assert x > 0.0 :
"Violation of: x > 0";

assert epsilon > 0.0 :
"Violation of: epsilon > 0";

// rest of body: compute the square root
}

26 January 2021 OSU CSE 40

A Method Body
private static double sqrt(double x,

double epsilon) {
assert x > 0.0 :
"Violation of: x > 0";

assert epsilon > 0.0 :
"Violation of: epsilon > 0";

// rest of body: compute the square root
}

26 January 2021 OSU CSE 41

The assert statement in Java
checks whether a condition (an

assertion) is true; if it is not, it stops
execution and reports the message

after the colon.

A Method Body
private static double sqrt(double x,

double epsilon) {
assert x > 0.0 :
"Violation of: x > 0";

assert epsilon > 0.0 :
"Violation of: epsilon > 0";

// rest of body: compute the square root
}

26 January 2021 OSU CSE 42

But why are there assert
statements in this method body to

check what the implementer is
supposed to assume?

Checking a Precondition

• During software development, it is a
best practice to check assumptions with
assert when it is easy to do so
– This checking can be turned on and off (on by

using the “-ea” argument to the JVM)
– When turned off, assert is documentation

• Preconditions generally are easy to check;
postconditions generally are not easy to
check

26 January 2021 OSU CSE 43

A Misconception

• A common misconception is that using
assert statements to check
preconditions contradicts design-by-
contract principles

• It does not, because the advice is not to
deliver software with assertion-checking
turned on, but rather to develop software
with assertion-checking turned on — to
help catch your mistakes, not the client’s!

26 January 2021 OSU CSE 44

Resources

• Wikipedia: Design by Contract
– http://en.wikipedia.org/wiki/Design_by_contract

26 January 2021 OSU CSE 45

http://en.wikipedia.org/wiki/Design_by_contract

	Design-by-Contract
	Systems Thinking
	Example: Ice/Water Dispenser
	People’s Roles wrt Systems
	Describing Behavior: Part 1
	Describing Behavior: Part 2
	Overview of Design-by-Contract
	Recall: Mathematical Models
	Informal Models
	Structure of a Method Contract
	Meaning of a Method Contract
	Responsibilities and Rewards
	Responsibilities and Rewards
	Recall: Static (Class) Methods
	Recall: Static (Class) Methods
	Example of a Contract
	Example of a Contract
	Javadoc
	APIs
	APIs
	Example of a Contract
	Example of a Contract
	Example of a Contract
	Example of a Contract
	Example of a Contract
	Abbreviated Javadoc
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Example Contract (Abbreviated)
	Using a Method Contract
	Reasoning: Tracing Tables
	Reasoning: Tracing Tables
	Reasoning: Tracing Tables
	Reasoning: Tracing Tables
	A Partly Informal Contract
	A Formal Contract
	A Formal Contract
	A Method Body
	A Method Body
	A Method Body
	Checking a Precondition
	A Misconception
	Resources

