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Systems Thinking
• A system is any part of anything that you 

want to think about as an indivisible unit
• An interface is a description of the 

“boundary” between a system and 
everything else, that also describes how to 
think about that system as a unit

• A subsystem (component) is a system 
that is used inside, i.e., as a part of, 
another system — a relative notion!
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Example: Ice/Water Dispenser

Select water, crushed ice, or cubed ice.  
Place a glass against the pad and push.
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People’s Roles wrt Systems

• A client is a person (or a role played by 
some agent) viewing a system “from the 
outside” as an indivisible unit

• An implementer is a person (or a role 
played by some agent) viewing a system 
“from the inside” as an assembly of 
subsystems/components
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Describing Behavior: Part 1
• One side of the coin: information hiding

is a technique for describing system 
behavior in which you intentionally leave 
out “internal implementation details” of the 
system
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Describing Behavior: Part 2
• Other side of the coin (and a necessary 

consequence of information hiding): 
abstraction is a technique in which you 
create a valid cover story to counteract the 
effects of hiding some internal 
implementation details
– Presumably the hidden information is relevant 

to the system behavior, so even if you hide it 
you still need to account for its presence!
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Overview of Design-by-Contract
• Also known as programming-to-the-

interface
• Articulated clearly only in the 1980s
• Design-by-contract has become the 

standard policy governing “separation of 
concerns” across modern software 
engineering

• This is how software components are 
really used…
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Recall: Mathematical Models

• Each variable in the program has a type
– Examples: int, double, …

• Each program type has a mathematical 
type that models it: you should think of 
any variable of that program type as 
having a value from its mathematical 
model’s mathematical space/domain
– Examples (respectively): integer, real, …
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Informal Models

• Models are not always formal
mathematical models like integers, real 
numbers, etc., but can be based on 
informal concepts from other situations

• Example of an anthropomorphic
description of behavior:
– “This TV remembers the last channel you 

watched.”
• More examples to come…
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Structure of a Method Contract
• Each method has:

– A precondition (requires clause) that 
characterizes the responsibility of the program 
that calls (uses) that method (client code)

– A postcondition (ensures clause) that 
characterizes the responsibility of the program 
that implements that method (implementation 
code in the method body)
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Meaning of a Method Contract
• If its precondition is true when a method is 

called, then the method will terminate —
return to the calling program — and the 
postcondition will be true when it does 
return

• If its precondition is not true when a 
method is called, then the method may do 
anything (including not terminate)
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Responsibilities and Rewards
• Responsibility: Making sure the 

precondition is true when a method is 
called is the responsibility of the client

• Reward: The client may assume the 
postcondition is true when the method 
returns
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Responsibilities and Rewards
• Responsibility: Making sure the 

postcondition is true when a method 
returns is the responsibility of the 
implementer

• Reward: The implementer may assume 
the precondition is true when the method 
is called
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Recall: Static (Class) Methods
• A static method (class method) is one that:

– Has zero or more formal parameters of various 
types — placeholders for the arguments that appear 
in the call between (…)

– Returns a value of a particular return type to the 
calling program; or, returns nothing, denoted by a 
return type of void

• Example of a call and its arguments:
double a, b; 
…
double c = sqrt (a*a + b*b, 0.001);
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Recall: Static (Class) Methods
• A static method (class method) is one that:

– Has zero or more formal parameters of various 
types — placeholders for the arguments that appear 
in the call between (…)

– Returns a value of a particular return type to the 
calling program; or, returns nothing, denoted by a 
return type of void

• Example of a call and its arguments:
double a, b; 
…
double c = sqrt (a*a + b*b, 0.001);

What does this method do?  
How do you know?
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Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)
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Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)
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A Java comment that starts 
with the symbols

/**
is called a Javadoc 

comment; it goes before 
the method header.



Javadoc

• The standard documentation technique for 
Java is called Javadoc

• You place special Javadoc comments 
enclosed in /** … */ in your code, and 
the javadoc tool generates nicely 
formatted web-based documentation from 
them
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APIs

• The resulting documentation is known as 
the API (application programming 
interface) for the Java code to which the 
Javadoc tags are attached

• The API for the OSU CSE components is 
at:
http://web.cse.ohio-state.edu/software/common/doc/
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APIs

• The resulting documentation is known as 
the API (application programming 
interface) for the Java code to which the 
Javadoc tags are attached

• The API for the OSU CSE components is 
at:
http://web.cse.ohio-state.edu/software/common/doc/
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The word interface has two 
related but distinct meanings:

• a unit of Java code that 
contains Javadoc comments 
used to produce documentation

• the resulting documentation

http://web.cse.ohio-state.edu/software/common/doc/


Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)
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The Javadoc tag @param
is needed for each formal 
parameter; you describe 

the parameter’s role in the 
method.



Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)
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The Javadoc tag @return 
is needed if the method 

returns a value; you 
describe the returned value.



Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)
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The Javadoc tag
@requires introduces the 
precondition for the sqrt

method.



Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)
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The Javadoc tag
@ensures introduces the 
postcondition for the sqrt

method.



Example of a Contract
/**
* ...
* @param x number to take the square root of
* @param epsilon allowed relative error
* @return the approximate square root of x
* @requires
* x > 0 and epsilon > 0
* @ensures <pre>
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
* </pre>
*/

private static double sqrt(double x,
double epsilon)
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Javadoc comments may 
contain HTML-like tags; 
e.g., <pre> … </pre> 
means spacing and line-

breaks are retained in 
generated documentation.



Abbreviated Javadoc

• For this course:
– Any actual code you see in *.java files will 

have the full Javadoc comments, as above
– Some code you see in these slides will not

have the Javadoc tags @param, @return, 
and formatting tags <pre>; plus, “keywords” in 
the Javadoc and mathematics will be bold-
faced for easy reading

• This allows you to focus on the contract content: 
the requires and ensures clauses themselves

26 January 2021 OSU CSE 26



Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)
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Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x] }
*/
private static double sqrt(double x,

double epsilon)
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This is the precondition, indicating that 
the arguments passed in for the 

formal parameters x and epsilon
both must be positive before a client 

may call sqrt.



Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x] }
*/
private static double sqrt(double x,

double epsilon)
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The precondition is a statement about 
the models of the arguments;

here, it is a formal mathematical 
statement about mathematical reals.



Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)
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This is the postcondition, indicating 
that the return value from sqrt is 

non-negative and … what does the 
rest say?



Example Contract (Abbreviated)
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
*  of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)
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The first part of the postcondition here 
is written in mathematical notation; it 

is not program code!  The second part 
— inside […] — is written in English.



Using a Method Contract
• A static method’s contract refers to its formal 

parameters, and (only if it returns a value, not 
void) to the name of the method (which stands 
for the return value)

• To determine whether the precondition and 
postcondition are true for a particular client call:
– The model values of the arguments are substituted 

for the respective formal parameters
– The model value of the result returned by the method 

is substituted for the method name
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Reasoning: Tracing Tables
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Code State

y = 76.9

y = sqrt(4.0, 0.01);

y = 2.0



Reasoning: Tracing Tables
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Code State

y = 76.9
z = 4.0

y = sqrt(z, 0.01);

y = 2.0
z = 4.0



Reasoning: Tracing Tables
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Code State

y = 76.9
z = 4.0

y = sqrt(z, 0.01);

y = 2.0
z = 4.0

From the contract of sqrt,
do we know that

y = 2.0
instead of
y = –2.0?



Reasoning: Tracing Tables
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Code State

y = 76.9
z = 4.0

y = sqrt(z, 0.01);

y = 2.0
z = 4.0

From the contract of sqrt,
do we know that

y = 2.0
instead of

y = 1.9996?



A Partly Informal Contract
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* [sqrt is within relative error epsilon
* of the actual square root of x]
*/
private static double sqrt(double x,

double epsilon)
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A Formal Contract
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* |sqrt - x^(1/2)| / x^(1/2) <= epsilon
*/
private static double sqrt(double x,

double epsilon)
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A Formal Contract
/**
* ...
* @requires
* x > 0 and epsilon > 0
* @ensures
* sqrt >= 0 and
* |sqrt - x^(1/2)| / x^(1/2) <= epsilon
*/
private static double sqrt(double x,

double epsilon)
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We can, in this formal setting, easily 
substitute 4.0 for x, 0.01 for 
epsilon, and either 2.0 or 
1.9996 for sqrt … and is the 

postcondition true in either case?  
Yes!



A Method Body
private static double sqrt(double x,

double epsilon) {
assert x > 0.0 :
"Violation of: x > 0";

assert epsilon > 0.0 :
"Violation of: epsilon > 0";

// rest of body: compute the square root
}
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A Method Body
private static double sqrt(double x,

double epsilon) {
assert x > 0.0 :
"Violation of: x > 0";

assert epsilon > 0.0 :
"Violation of: epsilon > 0";

// rest of body: compute the square root
}
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The assert statement in Java 
checks whether a condition (an 

assertion) is true; if it is not, it stops 
execution and reports the message 

after the colon.



A Method Body
private static double sqrt(double x,

double epsilon) {
assert x > 0.0 :
"Violation of: x > 0";

assert epsilon > 0.0 :
"Violation of: epsilon > 0";

// rest of body: compute the square root
}
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But why are there assert
statements in this method body to 

check what the implementer is 
supposed to assume?



Checking a Precondition

• During software development, it is a 
best practice to check assumptions with 
assert when it is easy to do so
– This checking can be turned on and off (on by 

using the “-ea” argument to the JVM)
– When turned off, assert is documentation

• Preconditions generally are easy to check; 
postconditions generally are not easy to 
check
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A Misconception

• A common misconception is that using 
assert statements to check 
preconditions contradicts design-by-
contract principles

• It does not, because the advice is not to 
deliver software with assertion-checking 
turned on, but rather to develop software 
with assertion-checking turned on — to 
help catch your mistakes, not the client’s!
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Resources

• Wikipedia: Design by Contract
– http://en.wikipedia.org/wiki/Design_by_contract
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