
Output, Strings, Input
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Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}
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Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

public class declares this 
code to be a software 
component for which 
bytecode should be 

generated by the compiler;
HelloWorld is the name of 

the class;
details later.

7 January 2019 OSU CSE 3



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

public static void is 
required here when you want 

a class to include a “main” 
program that can be 

executed by the JVM (and it 
must be called main);

details later.

7 January 2019 OSU CSE 4



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

String[] args means that 
main expects the JVM to hand it 

an array of Strings (called 
command-line arguments) 

when it is executed;
details later.
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Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

System.out is an object you may 
use to give output to the user;

println is a method of that object 
that you may call (invoke) to output 

something on its own line;
details later.
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Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

"Hello World!" is a 
character string to be output 

to the user;
details later.
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Another Version (sans Comments)
import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}
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import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

import indicates you want to use 
a component in your code;
components is a package

containing OSU CSE components;
its simplewriter package offers 
a few advantages over using built-

in System.out;
details later.
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Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

public means anyone can 
use this class;

final means no one can 
incrementally change this 

class by using inheritance;
details later.
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Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

private HelloWorld()
means the HelloWorld class 
does not define a type, i.e., no 
one can create an object from 

the class HelloWorld because 
it is a utility class;

details later.
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Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

SimpleWriter is the type of 
a newly declared variable;
out is the name of that 

variable;
details later.
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Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}
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Another Version (sans Comments)
new creates a new object to which 
the variable out is a reference;
SimpleWriter1L is the class 

whose code should be used when 
any method of out is called;

details later.



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

out has a println method, 
too, nearly identical to that of 

System.out;
details later.
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Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

out has a close method as 
well, and you need to call it 
when you are done using 

out; 
details later.
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Output: SimpleWriter

• The OSU CSE components provide a 
simple way to provide output to a user via 
the console or a file
SimpleWriter consoleOut =

new SimpleWriter1L();

SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");
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Output Examples
consoleOut.print("Prompt: ");

consoleOut.println();

fileOut.println("A line.");
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Closing Output

• When you are done writing output to a 
SimpleWriter stream, you must close
the stream:
consoleOut.close();

fileOut.close();
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Character Strings

• Java has special features to deal with 
character strings

• Examples
SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");

fileOut.print("Hi, Mr. Foo.");

• This intro is just the tip of the iceberg!
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Character Strings

• Java has special features to deal with 
character strings

• Examples
SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");

fileOut.print("Hi, Mr. Foo.");

• This intro is just the tip of the iceberg!

a character string
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Character Strings

• Java has special features to deal with 
character strings

• Examples
SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");

fileOut.print("Hi, Mr. Foo.");

• This intro is just the tip of the iceberg!

a character string
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Character-String Literals

• Character-string constants, also called 
String literals, are enclosed in double-
quotes, e.g.:
"Hello World!"

• Character strings can be concatenated
(joined together to create new character 
strings) using the + operator, e.g.:
"Hello " + "World!"
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String Variables

• You may declare a String variable, and 
assign an initial character-string value to 
it, as follows:
String cheer = "Go";

"Go"
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String Variables

• You may assign any other character-string 
value to the same variable later, e.g.:
cheer = cheer + " Bucks!";

• Before assignment above:
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String Variables

• You may assign any other character-string 
value to the same variable later, e.g.:
cheer = cheer + " Bucks!";

• After assignment above:
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"Go Bucks!"



Input: SimpleReader

• The OSU CSE components provide a 
simple way to get input from a user via the 
keyboard or a file
SimpleReader keyboardIn =

new SimpleReader1L();

SimpleReader fileIn =

new SimpleReader1L("foo.txt");
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Input Examples
String line = keyboardIn.nextLine();

line = fileIn.nextLine();
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Input Examples
String line = keyboardIn.nextLine();

line = fileIn.nextLine();
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This method, which reads up through 
and including the next line separator, 
and returns everything it reads except
that next line separator, is really the 
only method you need to read input 

from the keyboard and text files.



Closing Input

• When you are done reading input from a 
SimpleReader stream, you must close
the stream:
keyboardIn.close();

fileIn.close();
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Resources

• Java Tutorials ("Hello World" program)
– http://docs.oracle.com/javase/tutorial/getStarted/application/index.html

• OSU CSE components API 
(SimpleWriter, SimpleReader)
– http://cse.osu.edu/software/common/doc/
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