
Output, Strings, Input

7 January 2019 OSU CSE 1



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

7 January 2019 OSU CSE 2



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

public class declares this 
code to be a software 
component for which 
bytecode should be 

generated by the compiler;
HelloWorld is the name of 

the class;
details later.

7 January 2019 OSU CSE 3



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

public static void is 
required here when you want 

a class to include a “main” 
program that can be 

executed by the JVM (and it 
must be called main);

details later.

7 January 2019 OSU CSE 4



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

String[] args means that 
main expects the JVM to hand it 

an array of Strings (called 
command-line arguments) 

when it is executed;
details later.

7 January 2019 OSU CSE 5



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

System.out is an object you may 
use to give output to the user;

println is a method of that object 
that you may call (invoke) to output 

something on its own line;
details later.

7 January 2019 OSU CSE 6



Simplest Java Program?
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

"Hello World!" is a 
character string to be output 

to the user;
details later.

7 January 2019 OSU CSE 7



Another Version (sans Comments)
import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

7 January 2019 OSU CSE 8



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

import indicates you want to use 
a component in your code;
components is a package

containing OSU CSE components;
its simplewriter package offers 
a few advantages over using built-

in System.out;
details later.

7 January 2019 OSU CSE 9

Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

public means anyone can 
use this class;

final means no one can 
incrementally change this 

class by using inheritance;
details later.

7 January 2019 OSU CSE 10

Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

private HelloWorld()
means the HelloWorld class 
does not define a type, i.e., no 
one can create an object from 

the class HelloWorld because 
it is a utility class;

details later.
7 January 2019 OSU CSE 11

Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

SimpleWriter is the type of 
a newly declared variable;
out is the name of that 

variable;
details later.

7 January 2019 OSU CSE 12

Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

7 January 2019 OSU CSE 13

Another Version (sans Comments)
new creates a new object to which 
the variable out is a reference;
SimpleWriter1L is the class 

whose code should be used when 
any method of out is called;

details later.



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

out has a println method, 
too, nearly identical to that of 

System.out;
details later.

7 January 2019 OSU CSE 14

Another Version (sans Comments)



import components.simplewriter.SimpleWriter;
import components.simplewriter.SimpleWriter1L;
public final class HelloWorld {

private HelloWorld() {
}
public static void main(String[] args) {
SimpleWriter out = new SimpleWriter1L();
out.println("Hello World!");
out.close();

}
}

out has a close method as 
well, and you need to call it 
when you are done using 

out; 
details later.

7 January 2019 OSU CSE 15

Another Version (sans Comments)



Output: SimpleWriter

• The OSU CSE components provide a 
simple way to provide output to a user via 
the console or a file
SimpleWriter consoleOut =

new SimpleWriter1L();

SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");

7 January 2019 OSU CSE 16



Output Examples
consoleOut.print("Prompt: ");

consoleOut.println();

fileOut.println("A line.");

7 January 2019 OSU CSE 17



Closing Output

• When you are done writing output to a 
SimpleWriter stream, you must close
the stream:
consoleOut.close();

fileOut.close();

7 January 2019 OSU CSE 18



Character Strings

• Java has special features to deal with 
character strings

• Examples
SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");

fileOut.print("Hi, Mr. Foo.");

• This intro is just the tip of the iceberg!

7 January 2019 OSU CSE 19



Character Strings

• Java has special features to deal with 
character strings

• Examples
SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");

fileOut.print("Hi, Mr. Foo.");

• This intro is just the tip of the iceberg!

a character string

7 January 2019 OSU CSE 20



Character Strings

• Java has special features to deal with 
character strings

• Examples
SimpleWriter fileOut =

new SimpleWriter1L("foo.txt");

fileOut.print("Hi, Mr. Foo.");

• This intro is just the tip of the iceberg!

a character string

7 January 2019 OSU CSE 21



Character-String Literals

• Character-string constants, also called 
String literals, are enclosed in double-
quotes, e.g.:
"Hello World!"

• Character strings can be concatenated
(joined together to create new character 
strings) using the + operator, e.g.:
"Hello " + "World!"

7 January 2019 OSU CSE 22



String Variables

• You may declare a String variable, and 
assign an initial character-string value to 
it, as follows:
String cheer = "Go";

"Go"

7 January 2019 OSU CSE 23



String Variables

• You may assign any other character-string 
value to the same variable later, e.g.:
cheer = cheer + " Bucks!";

• Before assignment above:

7 January 2019 OSU CSE 24

"Go"



String Variables

• You may assign any other character-string 
value to the same variable later, e.g.:
cheer = cheer + " Bucks!";

• After assignment above:

7 January 2019 OSU CSE 25

"Go Bucks!"



Input: SimpleReader

• The OSU CSE components provide a 
simple way to get input from a user via the 
keyboard or a file
SimpleReader keyboardIn =

new SimpleReader1L();

SimpleReader fileIn =

new SimpleReader1L("foo.txt");

7 January 2019 OSU CSE 26



Input Examples
String line = keyboardIn.nextLine();

line = fileIn.nextLine();

7 January 2019 OSU CSE 27



Input Examples
String line = keyboardIn.nextLine();

line = fileIn.nextLine();

7 January 2019 OSU CSE 28

This method, which reads up through 
and including the next line separator, 
and returns everything it reads except
that next line separator, is really the 
only method you need to read input 

from the keyboard and text files.



Closing Input

• When you are done reading input from a 
SimpleReader stream, you must close
the stream:
keyboardIn.close();

fileIn.close();

7 January 2019 OSU CSE 29



Resources

• Java Tutorials ("Hello World" program)
– http://docs.oracle.com/javase/tutorial/getStarted/application/index.html

• OSU CSE components API 
(SimpleWriter, SimpleReader)
– http://cse.osu.edu/software/common/doc/

7 January 2019 OSU CSE 30

http://docs.oracle.com/javase/tutorial/getStarted/application/index.html
http://cse.osu.edu/software/common/doc/

	Output, Strings, Input
	Simplest Java Program?
	Simplest Java Program?
	Simplest Java Program?
	Simplest Java Program?
	Simplest Java Program?
	Simplest Java Program?
	Another Version (sans Comments)
	Another Version (sans Comments)
	Another Version (sans Comments)
	Another Version (sans Comments)
	Another Version (sans Comments)
	Another Version (sans Comments)
	Another Version (sans Comments)
	Another Version (sans Comments)
	Output: SimpleWriter
	Output Examples
	Closing Output
	Character Strings
	Character Strings
	Character Strings
	Character-String Literals
	String Variables
	String Variables
	String Variables
	Input: SimpleReader
	Input Examples
	Input Examples
	Closing Input
	Resources

