
Stabilization-Preserving Atomicity Re�nement

Mikhail Nesterenko y and Anish Arora z

y
Mathematics and Computer Science, Kent State University, Kent, OH 44242 USA; and

z
Department of Computer and Information Science, Ohio State University, Columbus, OH

43210 USA.

E-mail: mikhail@mcs.kent.edu; anish@cis.ohio-state.edu

Program re�nements from an abstract to a concrete model empower

designers to reason e�ectively in the abstract and architects to implement

e�ectively in the concrete. For re�nements to be useful, they must not only

preserve functionality properties but also dependability properties. In this

paper, we focus our attention on re�nements that preserve the depend-

ability property of stabilization. Speci�cally, we present a stabilization-

preserving re�nement of atomicity from an abstract model where a process

can atomically access the state of all its neighbors and update its own state,

to a concrete model where a process can only atomically access the state

of any one of its neighbors or atomically update its own state. Our re�ne-

ment is sound and complete with respect to the computations admitted by

the abstract model, and induces linear step complexity and constant syn-

chronization delay in the computations admitted by the concrete model.

It is based on a bounded-space, stabilizing dining philosophers program

in the concrete model, and is readily extended to: (a) solve stabilization-

preserving semantics re�nement, (b) solve the stabilizing drinking philoso-

phers problem, (c) solve fairness re�nement problem, and (d) allow further

re�nement into a message-passing model.

Key Words: atomicity re�nement; stabilization; fault-tolerance; concurrency.

1. INTRODUCTION

Motivation. Concurrent programming involves reasoning about the interleaved

execution of multiple processes. On one hand, if the granularity of atomic (indi-

visible) actions of a concurrent program is assumed to be coarse, the number of

possible interleavings is kept small and the program design is made simple. On

the other hand, if the program is to be eÆciently implemented, its atomic actions

must be �ne-grain. This motivates the need for re�nements from high-atomicity

programs to low-atomicity programs.

1

To be useful, atomicity re�nements should preserve essential properties of the

high-atomicity program, such as stabilization. A program is stabilizing with re-

spect to a set of legitimate states if, starting from an arbitrary initial state, the

program is guaranteed to reach a legitimate state and remain in legitimate states

thereafter. Thus, a stabilizing program does not need to be initialized and it is able

to recover from transient failures. In this paper we focus our attention on atomicity

re�nements that preserve stabilization.

As can be expected, atomicity re�nement introduces new control positions that

arise from partially executed actions of the high-atomicity program. These control

positions yield new illegitimate states in the low-atomicity program that do not

have any corresponding states in the high-atomicity program, whence the challenge

in preserving stabilization.

Problem formulation and our solution. Speci�cally, the abstract model we

consider is one where a process can atomically access the state of all its neighbors

and update its own state. The concrete model is one where a process can only

atomically access the state of any one of its neighbors or atomically update its

own state. (We also address further re�nement to a message-passing model.) In

all models, concurrent execution of actions of processes is in interleaving semantics

where only one atomic action may be executed at a time.

Of course, the straightforward division of each high-atomicity action into a se-

quence of low-atomicity actions does not suÆce: the actions in this sequence can

interleave with actions executed by other processes yielding computations that are

not possible in high-atomicity model. A simple strategy for re�nement, then, is to

execute each sequence in a mutually exclusive manner. This strategy unfortunately

su�ers from the loss of concurrency, since no two processes can execute sequences

concurrently even if these sequences operate on completely disjoint state spaces.

We are therefore led to solving the problem of dining philosophers, which requires

mutual exclusion only between \neighboring" processes, and thus allows more con-

currency. Note that for our purposes the solution must be (a) low-atomicity and (b)

stabilizing. In this connection, we note that there already exist several stabilizing

mutual exclusion programs in the literature [5, 6, 11, 15, 18], but none is easily

generalized to thus solve dining philosophers.

Properties and extensions of our solution. We evaluate our re�nement in

terms of its correctness and its eÆciency. Correctness requires at least that our

re�nement be sound, i.e., that every computation of the re�ned low-atomicity pro-

gram corresponds to some computation of the high-atomicity program.

Soundness of a re�nement does not imply that the concrete program necessar-

ily implements all computations admitted by the abstract program. Thus, sound

re�nements may exclude some eÆcient (or otherwise desirable) high-atomicity com-

putations. Since real computer architectures usually eÆciently execute only some

subset of all possible high-level computations, soundness alone is inadequate if the

re�nement fails to capture the relevant computation subsets. This de�ciency is

overcome by the completeness property of our re�nement. A re�nement is com-

plete if it provides a low-atomicity computation for every possible high-atomicity

computation. We consider terminating as well as non-terminating computations.

Therefore, to demonstrate soundness and completeness or our re�nement we have

to prove that it is �xpoint- and fairness-preserving. Fixpoint preservation means

that a terminating computation of the high-atomicity program corresponds only to

a terminating computation of the low-atomicity program and vice versa. Fairness

preservation means that a weakly fair computation of the low-atomicity program

corresponds to a weakly fair computation of the high-atomicity program.

To analyze time eÆciency of re�nements, we use two metrics [19]: step complexity

and synchronization delay. Step complexity is the average number of low-atomicity

actions needed to simulate a high-atomicity action. Synchronization delay is the

average number of causally related low-atomicity actions that have to be taken

between two high-atomicity actions of two neighbor processes. The step complexity

of the re�ned program is O(n) where n is the maximum degree of a process in the

system. The re�ned program exhibits constant (O(1)) synchronization delay.

It is well-known that bounding the state of stabilizing programs is often chal-

lenging [4]. Yet a stabilizing program needs bounded space to be implemented

reasonably. Our re�nement has bounded space complexity.

Other types of re�nement. In atomicity re�nement, assumptions about the

execution model other than action atomicity remain the same. For instance, both

the high- and low-atomicity programs may be executed in interleaving semantics.

Alternatively, both programs can be executed in power-set semantics, where any

number of processes may each execute an atomic action at a time, or in partial-order

semantics.

By way of contrast, let us consider other types of re�nement. In the case of se-

mantics re�nement the atomicity of the program is left the same but the semantics

of concurrency in program execution is re�ned. For instance, a program in inter-

leaving semantics may be re�ned to execute (with identical actions) in power-set

semantics [3]. The program is more easily reasoned about in the former semantics,

but more easily implemented in the latter.

In the case of fairness re�nement the fairness assumptions about the program

execution are relaxed. For instance, a program that assumes weak fairness is re�ned

to execute in the model with no fairness assumptions. Again, reasoning is easier in

the former and implementation is easier in the latter.

Extensions of our re�nement. Our re�nement is directly applicable even if the

concrete model is generalized to have power-set semantics instead of interleaving

semantics. It is readily modi�ed to drop the assumption of weak fairness in the

concrete model, as well as to re�ne programs into a message-passing model.

Since dining philosophers programs prohibit neighboring processes from execut-

ing their high-atomicity actions concurrently even in scenarios where the neighbors'

actions do not interfere with each other, we are led to describing how our stabi-

lizing low-atomicity dining philosophers program is extended to solve the drinking

philosophers problem, which makes our re�nement more eÆcient.

Comparison to related work. Gouda and Haddix propose a solution to the se-

mantics re�nement problem [12], that provides stabilization preserving re�nement

from interleaving to power-set semantics. Their solution also re�nes fairness. The

atomicity of their execution model is similar to our high-atomicity model. Gouda

and Haddix also propose atomicity re�nement. Their atomicity re�nement trans-

forms a high-atomicity program into a model with atomic actions that are more

coarse than what our re�nement provides. Their transformation is not �xpoint-

preserving and, therefore, not complete. Their atomicity re�nement exhibits the

synchronization delay of O(d) where d is the diameter of the system. The step

complexity of their re�nement di�ers depending on the load. Under light load the

step complexity is O(n � d � p) where n, p are the degree of a process in the system

and the number of processes in the system respectively. Under heavy load the step

complexity is O(n � d).

Mizuno and Nesterenko [17] propose a re�nement from interleaving semantics to

program semantics where the actions of di�erent processes are allowed to overlap.

Unfortunately, their solution uses in�nite variables. Since it is hard to bound

these variables in a stabilizing program [4] there is no easy way to implement their

re�nement. Also, compared with the (unbounded space) transformation from high-

atomicity model into message-passing model presented in [16], our solution has

bounded space complexity.

Independently from our work, Antonoiu and Srimani [1] develop a re�nement

from a high-atomicity model into a message-passing system model. They assume

that the layer that implements the low-atomicity model on message-passing systems

has stabilized. Therefore, their re�nement is equivalent to ours in a sense that it

transforms a program from our high-atomicity model to our low-atomicity model.

Although their re�nement is of bounded space complexity, this boundM depends on

the number of nodes in the system and has to be rather large for the low-atomicity

program to work eÆciently. The synchronization delay of their re�nement is O(d).

The step complexity is O(n � p+n � p=M) under light load and O(n+n=M) under

heavy load.

The rest of the paper is organized as follows. We de�ne the model, syntax, and

semantics of the programs we use in Section 2. We then present a low-atomicity

dining philosophers program and prove its correctness and stabilization properties

in Section 3. Next, in Section 4, we demonstrate how a high-atomicity program

is re�ned using our dining philosophers program, and show the relationship be-

tween the re�ned program and the original high-atomicity program in terms of

soundness, completeness, and �xpoint- and fairness- preservation. We estimate the

performance of our re�nement and compare it with other re�nements in Section 5.

We summarize the contribution of this paper and discuss extensions of our work in

Section 6.

2. MODEL, SYNTAX, AND SEMANTICS

Model. A program consists of a set of processes and a binary re
exive symmetric

relation N between them. The processes are assumed to have unique identi�ers

1 through p. Processes Pi and Pj are called neighbor processes i� (Pi; Pj) 2 N .

Each process consists of a set of variables, a set of parameters, and a set of guarded

commands (GCs.)

Syntax of high-atomicity programs. The syntax of a process Pi has the form:

process Pi
par hdeclarationsi

var hdeclarationsi

�[

hguarded commandi][: : :][hguarded commandi

]

Declarations is a comma-separated list of items, each of the form:

hlist of namesi : hdomaini

A variable can be updated (written to) only by the process that contains the vari-

able. A variable can be read either by the process that contains the variable or by

a neighbor process. We refer to a variable v that belongs to process Pi as vi.

A parameter is used to de�ne a set of variables and a set of guarded commands as

one parameterized variable and guarded command respectively. For example, let a

process Pi have parameter j ranging over values 2, 5, and 9; then a parameterized

variable x:j de�nes a set of variables fx:j j j 2 f2; 5; 9gg and a parameterized

guarded command GC:j de�nes the set of GCs:

GC:(j := 2)][GC:(j := 5)][GC:(j := 9)

A guarded command has the syntax:

hguardi �! hcommandi

A guard is a boolean expression containing local and neighbor variables. A com-

mand is a �nite comma separated sequence of assignment statements and branching

statements. An assignment statement can be simple or quanti�ed. A quanti�ed

assignment statement has the form:

(khrangei : hassignmentsi)

A range is a bound variable and the values it assumes. Assignments is a comma

separated list of assignment statements containing the bound variable. Similar to

parameterized GC, a quanti�ed statement represents a set of assignment statements

where each assignment statement is obtained by replacing every occurrence of the

bound variable in the assignments by its instance from the speci�ed range.

Syntax of low-atomicity programs. The syntax for the low-atomicity program

is the same as for the high-atomicity program with the following restrictions. The

variable declaration section of a process has the following syntax:

var

private hdeclarationsi

public hdeclarationsi

A variable declared as private can be read only by the process that contains this

variable. A public variable can also be read by a neighbor processes. A guarded

command can be either synch or update. A synch GC mentions the public variables

of one neighbor process and local private variables only. An update GC mentions

only local variables (private or public.)

Let vi be a private variable of Pi and vj a public variable of Pj . We say that

vi is an image of vj if there is a synch guard of process Pi that is enabled when

vi 6= vj and which assigns vi := vj and vi is not updated otherwise. The variable

whose value is copied to the image variable is called the source of the image.

Semantics. The high-atomicity and the low-atomicity programs have the same

semantics (cf. [2]). An assignment of values to variables of all processes in the

concurrent program is a state of this program. A GC whose guard is true at some

state of the program is enabled at this state. A computation is a maximal fair

sequence of steps such that for each state si the state si+1 is obtained by executing

the command of some GC that is enabled at si. The maximality of a computation

means that no computation can be a proper pre�x of another computation and the

set of all computations is suÆx-closed. That is a computation either terminates in a

state where none of the GCs are enabled or the computation is in�nite. The fairness

of a computation means that if a computation is in�nite and a GC is enabled in

all but �nitely many states of the computation then this GC is executed in�nitely

often. That is, we assume weak fairness for command execution. A boolean variable

is set in some state s if the value of this variable is true in s, otherwise the variable

is cleared in s.

A state predicate (or just predicate) is a boolean expression over program vari-

ables. A state conforms to a predicate if this predicate evaluates to true in this

state; otherwise, the state violates the predicate. By this de�nition every state

conforms to predicate true and none conforms to false.

Let P be a program and R and S be state predicates on the states of P . R is

closed if every state of the computation of P that starts in a state conforming to R

also conforms to R. R converges to S in P if R is closed in P , S is closed in P , and

any computation starting from a state conforming to R contains a state conforming

to S. P stabilizes to R i� true converges to R in P . In the rest of the paper we

omit the name of the program whenever it is clear from the context.

3. DINING PHILOSOPHERS PROGRAM

3.1. Description

Problem de�nition. The dining philosophers problem was �rst stated in [9].

Any process in the system can request access to a certain portion of code called

critical section(CS). The objective of the program is to ensure that the following

two properties hold:

safety - no two neighbor processes have guarded commands that execute CS

enabled in one state;

liveness - a process requesting to execute CS is eventually allowed to do so.

process Pi
par j : (Pi; Pj) 2 N

var

public

readyi : boolean;

ai:j; ci:j : (0::3)

private

requesti : boolean;

ri:j; yi:j : boolean;

bi:j; di:j : (0::3)

�[

(dp1) requesti ^ :readyi ^ (8k : ai:k = di:k) ^ (8k > i : :yi:k) �!

readyi := true;

(kk > i : yi:k := ri:k; ai:k := (ai:k + 1) mod 4)

][

(dp2) readyi ^ (8k : ai:k = di:k) ^ (8k < i : :ri:k) �!

= � critical section � =

readyi := false;

(kk < i : ai:k := (ai:k + 1) mod 4)

][

(dp3) ci:j 6= bi:j �!

ci:j := bi:j

][

(dp4) ri:j 6= readyj _ (bi:j 6= aj :i) _ (di:j 6= cj :i) _ (j > i ^ :readyj ^ yi:j) �!

ri:j := readyj ;

bi:j := aj :i;

di:j := cj :i;

if j > i ^ :readyj ^ yi:j then yi:j := false �

]

FIG. 1. Dining philosophers process

Design ideas. This section describes a program DP that solves the dining philoso-

phers problem. The program is based on the followoing two ideas.

Prioritizing. To guarantee safety, if more than one neighbor process is in CS con-

tention, only the one with the lowest identi�er proceeds. To ensure liveness, when

a process joins CS contention it records every processes already in CS contention

with id greater than its own; after the process exits CS, it does not request CS

again until the recorded neighbors enter CS.

Synchronization. A process indicates that it is in CS contention by setting a

boolean variable ready. A process needs to syncrhonize with the neighbors in the

following two cases: (a) to implement prioritizing a process executes CS only when

ready of each neighbor with lower identi�er is cleared; (b) similarly, a process Pi

requests CS only after every process with a lower identi�er removes the record of

Pi's previous CS contention. The latter is necessary to ensure that a process with

a lower identi�er eventually removes this record and the lower-id process is not

denied joining CS contention inde�nitely.

Note that in low-atomicity model CS execution is an update command. Thus, this

command cannot directly read the variables of the neighbors and has to operate

on the local images of these variables instead. Thus, a handshake mechanism is

incorporated in DP to ensure that an image variable has the same value as a

neighbor's ready when synchronization is needed. We describe the details of the

handshake mechanism later in this section.

Variable and guarded command description. Every process Pi of DP is

shown in Figure 1. To refer to a guarded command executed by some process we

attach the process identi�er to the name of the guarded command shown in Figure

1. For example, guarded command dp1i sets variable readyi. We sometimes use

identi�ers of GCs in state predicates. For example, dp1i used in a predicate means

that the guard of this GC is enabled.

Every Pi has the following variables. Private variables have one-letter names and

public variables are given longer names.

� requesti - captures the reaction of the environment. It is a read-only variable

which is used in program composition in later sections. Pi wants to enter its CS if

requesti is set.

� readyi - indicates if Pi tries to execute its CS. Pi is in CS contention if readyi
is set.

� ri:j - records whether Pj is in CS contention, it is an image of readyj .

� yi:j - records if Pj requests CS and needs to be allowed to access it before Pi
can itself request CS again. It is maintained for each Pj such that j > i; it is called

yield variable.

� ai:j; bi:j; ci:j; di:j - used for synchronization between neighbor processes; they

are called handshake variables.

A process has a sequence of handshake variables with each neighbor. For example

(see Fig. 2), process Pi and its neighbor Pj have the following sequence: Hij = hai:j,

bj :i, cj :i, di:ji. Note that Pj has a similar sequence with Pi: Hji = haj :i, bi:j, ci:j,

dj :ii. We say that ai:j has a token if ai:j is equal to di:j. We say that any of the

other variables has a token if it is not equal to the variable preceding it in Hij .

DP is designed such that Hij forms a ring similar to the a ring used in K-state

stabilizing protocol described in [10]. Process Pi starts the circulation of the token

by incrementing ai:j.

Every Pi has the following four GCs. Commands dp1i, dp2i, and dp3i are update

and dp4i is synch.

dp1i - enabled when Pi wants to enter CS, Pi is not in CS contention, for every

neighbor Pj , ai:j has a token, and yield variables for processes with identi�ers

greater than i are not set. The command sets readyi joining CS contention, it sets

yield variables for processes who are in CS contention, and increments ai:j for every

dp1/dp2u

uP
dp4v

dp4ud vu.

a vu.

dp3v

vP

ubv.

ucv.

FIG. 2. Neighbor synchronization using handshake variables

Pj with identi�er greater than i passing the token in the handshake sequence. Note

that when ai:j collects the token again Pj is informed of Pi's joining CS contention

(that is rj :i is set.)

dp2i - enabled when Pi is in CS contention, every ai:j has the token, and pro-

cesses with smaller identi�ers are not in CS contention. The command clears readyi
and increments ai:j for every Pj with identi�er less than i passing the tokens again.

Note that when the tokens are collected, every neighbor Pj is informed that Pi ex-

ited CS and yield variable yj :i is cleared.

dp3i - enabled when ci:j has the token. The command sets ci:j equal to bi:j

thus passing the token from ci:j to dj :i.

dp4i - enabled when either bi:j or di:j has the token or when the image is not

equal to readyj or when readyj is cleared but the corresponding yield variable is

set. The command passes the tokens from bi:j to ci:j and from di:j to ai:j. It also

copies the value of readyj to it's image ri:j and clears the yield variable yi:j when

Pj is not in CS contention.

Handshake principle and example computation. We demonstrate the opera-

tion of handshake on an example computation. Let us suppose that process Pu has

a neighbor Pv and u < v. Suppose also that the computation starts from a state

where Pv is in CS contention (readyv is set), Pu is not, and au:v has the token.

Let us assume that Pu joins CS contention by executing dp1u. This command in-

crements au:v (which passes the token to bv:u), sets readyu, and yu:v. Since au:v

is not equal to bv:u, dp4v is enabled. When it is executed, the token is passed to

cv:u and rv :u is set. Since rv :u is set, Pv cannot enter CS until Pu executes CS and

clears readyu. When cv:u has the token, dp3v is enabled. When it is executed, the

token is passed on to du:v. This enables dp4u. When dp4u is executed, the token

returns to au:v. If Pu collects all tokens and there is no neighbor in CS contention

with lower id, then Pu executes CS.

Note that yu:v is set. Therefore, Pu cannot enter CS again until Pv executes its

CS and clears readyv . When Pv executes CS, Pv circles to token along Hvu. This

ensures that Pv clears yu:v before Pv can enter CS again.

3.2. Correctness of DP

We prove the correctness of DP by �rst demonstrating that it stabilizes to a

certain invariant. Then we show that this invariant guarantees safety and liveness

properties of the dining philosophers problem.

3.2.1. Stabilization

Let Pu and Pv be any two neighbor processes.

Proposition 3.1. DP stabilizes to the following predicate:

there can be one and only one token in Huv (R1)

This proposition is proven in the Appendix A.1.

Lemma 3.1 states suÆcient conditions for the image rv :u to contain the same

value as the source.

Lemma 3.1. DP stabilizes to the following predicates:

((u < v) ^ (au:v = bv:u) ^ readyu)) rv :u (R2)

((u > v) ^ (au:v = bv:u) ^ :readyu)) :rv :u (R3)

Proof. By Proposition 3.1, DP stabilizes to R1. To prove the lemma we need

to demonstrate that R2 and R3 are closed when R1 holds and that R1 converges

to R2 and R3. We prove convergence and closure for R2 only. The stabilization of

R3 can be proven similarly.

We show closure �rst. Out of the eight GCs of processes Pu and Pv only dp1u,

dp2u and dp4v a�ect the variables of the predicate. Command dp1u is executed

only when au:v = du:v. That is when variable au:v has the token. Since R1 holds

there can be no other tokens in the handshake variables. Thus, au:v = bv:u when

dp1u is executed. Therefore dp1u sets the antecedent of our predicate to false by

clearing readyu. Command dp2u also sets the antecedent of our predicate to false.

If dp4v sets the antecedent to true (by setting au:v = bv:u), then the consequent

is also set to true (since rv :u = readyu after the execution of dp4v).

To demonstrate convergence we note that when R2 does not hold dp4v is enabled.

When dp4v is executed the predicate holds.

Lemma 3.2 states suÆcient conditions for a yield variable to be cleared.

Lemma 3.2. DP stabilizes to the following predicate:

((u > v) ^ (au:v = bv:u) ^ :readyu)) :yv :u (R4)

Proof. We show that R4 is closed when R1 and R3 hold and that R4 converges.

We show closure �rst. The guarded commands that a�ect our predicate are: dp1u,

dp2u, dp1v and dp4v. dp1u and dp2u set the antecedent to false and therefore do

not violate the predicate. dp1v a�ects only the consequent of our predicate. By R3

when the antecedent of our predicate is true, then rv :u = false. Therefore, when

the antecedent is true and dp1v is executed, variable yv:u remains false and our

predicate is not violated.

dp4v can set the consequent of our predicate to true only. Also, if dp4v sets the

antecedent of our predicate to true (by setting au:v = bv:u while readyu = false)

the consequent of our predicate must also be true after the execution of dp4v (if

readyu is cleared before the execution of dp4v, yv:u is set to false by dp4v).

Similar to Lemma 3.1 we demonstrate convergence by pointing out that when our

predicate does not hold dp4v is enabled. When dp4v is executed the predicate

holds.

We now de�ne a predicate IDP (which stands for invariant of DP) such that

every computation of DP that starts at a state conforming to IDP satis�es safety

and liveness. IDP is: for every pair of neighbor processes R1^R2^R3^R4. In other

words, in every state conforming to IDP , every pair of neighbor processes conforms

to each predicate in the above list.

Theorem 3.1. DP stabilizes to IDP .

Thus every execution of DP eventually reaches a state conforming to IDP . In

the next two subsections we show that every computation that starts from a state

conforming to IDP satis�es safety and liveness properties.

3.2.2. Safety

Theorem 3.2 (Safety). In a state conforming to IDP , no two neighbor pro-

cesses have their guarded commands that execute critical section enabled.

Proof. Let us assume that Pu and Pv are neighbors and u < v. If dp2u is en-

abled then au:v = du:v. By R1 this means that au:v = bv:u. If dp2u is enabled then

readyu is set. Therefore, byR2: rv :u is also set. When rv :u is set dp2v cannot be en-

abled.

3.2.3. Liveness

For a process Pu and its neighbor Pv the value of the variable au:v is changed

only when all a variables of process Pu have their tokens. The following observation

can be made on the basis of Proposition 3.1.

Proposition 3.2. All a variables of a process eventually get the tokens. That

is a state conforming to: 9v : (Pv ; Pu) 2 N : au:v 6= du:v is eventually followed by

a state where: 8v : (Pv ; Pu) 2 N : au:v = du:v

Lemma 3.3. If a process Pu is in CS contention it is eventually allowed to execute

CS.

Proof. To prove the lemma we need to show that for any Pu, if readyu is set

then dp2u eventually gets enabled, stays enabled and gets executed. The proof is

by induction on the process identi�ers.

Suppose process P1 has ready1 set in some state of a computation. By Proposi-

tion 3.2 all tokens are eventually collected at aus variables and dp21 gets enabled.

When ready1 is set the only command that can manipulate the tokens is dp21.

Therefore, aus do not give up the tokens unless dp21 is executed and dp21 stays

enabled until executed. Thus, the lemma holds for P1.

Suppose now that the lemma holds for processes with identi�ers smaller than

u and Pu has readyu set at some state of a computation. Again, by Proposition

3.2, for any neighbor Pv , au:v gets the token. To demonstrate that dp2u eventually

becomes and stays enabled until it is executed we need to show that for any neighbor

Pv such that v < u, ru:v is eventually cleared and never set until dp2u is executed.

There are two cases:

� readyv is set in in�nitely many states of the computation. By assumption the

lemma holds for Pv . Therefore, every such state is eventually followed by a state

where readyv is cleared. After such a state readyv is set again. Thus dp1v and

dp2v are executed in�nitely many times during the computation. If readyu is set,

eventually rv :u is set as well. When dp1v is executed in a state where rv :u set, this

command sets yv:u. yv:u is not cleared while readyu (and subsequently rv :u) is

set. When yv:u is set dp1v cannot be executed and readyv remains cleared while

readyu is set. If readyv is cleared, eventually ru:v is cleared as well. Thus, ru:v

stays cleared until dp2u is executed.

� readyv is set in only �nitely many states of the computation. In this case there

is a suÆx of the computation where readyv is not set in any of the states. Thus

eventually ru:v is cleared and remains cleared for the rest of the computation.

Thus dp2u becomes enabled, stays enabled, and gets executed.

Lemma 3.4. If a process Pu wants to enter CS it eventually joins CS contention.

Proof. To prove the lemma we need to show that if requestu is set then dp1u
(that sets readyu) is eventually executed. Let us assume that requestu is set and it

is not cleared at least until readyu is set. By Proposition 3.2 for any Pu's neighbor

Pv , au:v eventually gets the token. When readyu is cleared au:v ever gives up

the token unless dp1u is executed. Therefore, to demonstrate that the dp1u gets

enabled we need to show that for any neighbor Pv such that v > u, yu:v eventually

gets cleared. Note that yu:v is set only when dp1u is executed.

There can be only two cases:

� readyv is set in in�nitely many states. By Lemma 3.3 this implies that readyv
is also cleared in in�nitely many states as well. Therefore, dp1v is executed in�nitely

many times. By Predicate R4, dp1v can be executed only in a state where yu:v is

cleared.

� readyv is set in only �nitely many states. In this case there is a suÆx of the

execution where readyv is never set. If yu:v is set then dp4u is enabled. When dp4u
is executed yu:v is cleared.

The following theorem uni�es Lemmas 3.3 and 3.4.

Theorem 3.3 (Liveness). If IDP holds, a process that wants to enter CS is

eventually allowed to do so.

process Pi
var xi

�[

(h1) gi(xi; hxk j (Pi; Pk) 2 Ni) �! xi := fi(xi; hxk j (Pi; Pk) 2 Ni)

]

FIG. 3. High-atomicity process

4. THE REFINEMENT

4.1. High-Atomicity Program

Each process Pi of high-atomicity program (H) is shown in Figure 3. To simplify

the presentation we assume that Pi contains only one GC. We provide the gener-

alization to multiple GCs later in the section. Each Pi of H contains a variable xi
which is updated by h1i. The type of xi is arbitrary. The guard of this GC is a

predicate gi that depends on the values of xi and variables of neighbor processes.

The command of h1i assigns a new value to xi. The value is supplied by a function

fi which again depends on the previous value of xi as well as on the values of the

variables of the neighbors. Recall, that unlike low-atomicity program such as DP ,

a GC of H can read variables of neighbor processes and update its own variables

in one GC.

4.2. Re�ning H

Problem de�nition. Stuttering is a sequence of identical states. A computa-

tion of a program P maps to a computation of Q if the sequence of states of the

computation of P maps to the sequence of states of Q such that this sequence is

the computation of Q if �nite stuttering is eliminated. Note that the computation

mapping does not eliminate an in�nite sequence of identical states.

Given a high-atomicity program H, the re�nement consists of a low-atomicity

program C and a non-trivial mapping from the states of C to the states of H such

that the following two properties hold:

soundness every computation of C maps to a compuation of H;

completeness for every computation of H there is a computation of C that maps

to the computation of H.

Re�nement idea. Unlike a guarded command of H, the GC of C cannot directly

read the variables of the neighbor process. Thus, the GC that corresponds to

the high-atomicity command has to operate on the images of these variables. To

ensure soundness C has to guarantee that (a) when a process executes a command

that corresponds to a high-atomicity GCs, no neighbor process can execute such a

command and (b) when such a command is executed it reads the up-to-date images

of neighbors' variables. C uses DP to provide this guarantee.

Superposition. To produce the re�nement C of H we superpose additional com-

mands on the GCs of DP . C consists of DP , superposition variables, superposition

commands and superposition GCs. The superposition variables are disjoint from

variables of DP . Each superposition command has the following form:

hGC of DPi k hcommandi

The type of combined GC (synch or update) is the same as the type of the GC

of DP . The superposition commands and GCs can read but cannot update the

variables ofDP . They can update the superposed variables. Operationally speaking

a superposed command executes in parallel (synchronously) with the GC of DP

it is based upon, and a superposed GC executes independently (asynchronously)

of the other GCs. Superposition preserves liveness and safety properties of the

underlying program (DP). In particular, if DP stabilizes to R, so does C. Thus,

IDP is also an invariant of C. Refer to [8] for more details on superposition.

process Pi
par j : (Pi; Pj) 2 N

var

public xi
private

xi:j;

requesti : boolean

�[

(c1) dp1

][

(c2) dp2 k

0
BB@

if gi(xi; hxi:k j (Pi; Pk) 2 Ni) then

xi := fi(xi; hxi:k j (Pi; Pk) 2 Ni)

�;

requesti := false

1
CCA

][

(c3) dp3

][

(c4) dp4 k (if xi:j 6= x:j then xi:j := x:j; requesti := true �)

][

(c5) xi:j 6= x:j �! xi:j := x:j; requesti := true

][

(c6) gi(xi; hxi:k j (Pi; Pk) 2 Ni) ^ :requesti �!

requesti := true

]

FIG. 4. Re�ned process

Variable and guarded command description. Each process Pi of the com-

posed program (C) is shown in Figure 4. For brevity, we only list the superposed

variables in the variable declaration section. Besides the xi we add xi:j which is an

image of xj for every neighbor Pj . Superposed variable requesti is read by DP .

Yet it does not violate the liveness and safety properties of DP since no assumptions

about this variable were made when the properties of DP were proven.

The GCs of DP are shown in abbreviated form. We superpose the execution of

h1 on dp2. Note that c2 is an update GC. Therefore, the superposed command

cannot read the value of xj of a neighbor Pj directly as h1 does. The image xi:j is

used instead. We superpose copying of the value of xj into xi:j on dp4. Thus, the

images of neighbor variables of H are equal to the sources when h1 is executed by

C. We add a superposition GC c5 that copies the value of xj into xi:j. This GC

ensures that no deadlock occurs when an image is not equal to its source. Variable

requesti is set when one of the images of the superposed variables is found to be

di�erent from the sources or when the guard of h1 evaluates to true (c6). Variable

requesti is cleared after h1 is executed.

Component projection. Recall that a global state is an assignment of values

to all the variables of a concurrent program. If a program is composed of several

component programs, then a component projection of a global state s is a part of

s consisting of the assignment of values to the variables used only in that program

component. We de�ne the projection of C ontoH to the be the re�nement mapping.

So far we assumed that H has only one GC. The re�ned program can be extended

to multiple GCs. In this case, c2 has to select one of the enabled GCs of H and

execute it. c6 has to be enabled when at least one of the GCs of H is enabled. We

prove the correctness of C assuming that H has only one GC. In a straightforward

manner, our argument can be extended to encompass multiple GCs.

4.3. Correctness of the Re�nement

As we did for DP , we demonstrate correctness of C by �rst proving that it

stabilizes to a certain invariant. We then show that this invariant guarantees that

C conforms to the properties of a re�nement. Throughout this section we assume

that Pu and Pv are neighbor processes.

4.3.1. Stabilization

The predicates in Lemmas 4.1 and 4.2 state the suÆcient condition for the images

of the neighbor variables of H to be equal to the sources.

Lemma 4.1. C stabilizes to the following predicates:

((u < v) ^ (au:v = du:v) ^ readyu)) (xu:v = xv) (R5)

((u > v) ^ :ru:v)) (xu:v = xv) (R6)

Proof. To demonstrate the stabilization of these predicates we show that they

are closed under the assumption that IDP holds and that they converge.

We show the closure of R5 �rst. Of the twelve guarded commands of Pu and

Pv , the following GCs a�ect R5: c1u, c2u, c4u, c5u, and c2v. c1u and c2u set the

antecedent to false; c4u and c5u set the consequent to true. If c2v holds at a

certain state then :rv :u. By R2 this implies that at this state the antecedent of R5

is false. Therefore, the execution of c2v does not violate R5.

To show the closure of R6 we note that only c4u, c5u, and c2v a�ect R6. Again

both c4u and c5u set the consequent to true. Holding of c2v implies that the

antecedent of R6 is false by R2.

To demonstrate convergence of both predicates we observe that when either of

them does not hold c5u is enabled and it remains enabled until executed. After c5u is

executed the predicates hold.

The following corollary can be deduced from the lemma.

Corollary 4.1. If IDP holds, c2 is executed only when the images of the neigh-

bor variables are equal to the sources. That is:

8(Pu; Pv) 2 N : c2u) (xu:v = x:v)

Lemma 4.2. C stabilizes to the following predicates:

((u < v) ^ (au:v = bv:u) ^ :readyu)) (xu = xv :u) (R7)

((u > v) ^ (au:v = bv:u) ^ readyu)) (xu = xv :u) (R8)

Proof. We prove the stabilization of R7. The stabilization of R8 can be shown

likewise. Similar to Lemma 4.1 we demonstrate the stabilization of the R7 by

showing that it is closed under the assumption that IDP holds and that it converges.

We show the closure �rst. Of the twelve guarded commands of Pu and Pv , the

following GCs a�ect R7: c1u, c2u, c4v, c5v. c1u and c2u set the antecedent to false;

c4u and c5u set the consequent to true. Therefore, R7 is not violated.

To demonstrate convergence we observe that when R7 does not hold c5u is en-

abled and it remains enabled until executed. After c5u is executed the predicate

holds.

Similar to IDP , we de�ne the invariant for C (denoted IC) to be the conjunction

of IDP , R5, R6, R7, and R8. On the basis of Theorem 3.1, Lemma 4.1, and Lemma

4.2 we can conclude:

Theorem 4.1. C stabilizes to IC .

4.3.2. Soundness

It is not diÆcult to deduce that when IC holds the component projection of a the

sequence of states of C is a sequence of states of H produced by execution of GCs

of H. We demonstrate this as a part of the proof of Theorem 4.3. However, we

still need to show that this sequence of states of H is a computation. For that we

need to demonstrate that this sequence is maximal and fair. There are two cases

to consider.

� The sequence of states is �nite. A �xpoint is a state where none of the GCs of

the program are enabled. For a �nite sequence of states of H to be a computation

it has to end in a �xpoint. Furthermore, the sequence has to correspond to a �nite

computation of C. Theorem 4.2 demonstrates that.

� The sequence of states is in�nite. In this case we need to show that weak

fairness of GC execution is preserved. We show it in the proof of Theorem 4.3.

Proposition 4.1. Let s be a �xpoint of C. The following is true in s:

�au:v = bv:u = cv :u = du:v

�ru:v = readyv

�readyu is cleared;

�if u < v then yu:v is cleared;

�xu:v = xv

Theorem 4.2 (Fixpoint preservation). When IC holds, a projection of a �x-

point of C is a �xpoint of H; and if a computation of C starts from a state which

projection is a �xpoint of H then this computation ends in a �xpoint.

Proof. Let s be a �xpoint of C. By Proposition 4.1, at state s, readyu and yu:v

(if u < v) are cleared, and au:v has the token. Since s is a �xpoint, c1u is not

enabled, therefore, requestu is cleared at s.

Since c6u is not enabled and requestu is cleared, h1u is not enabled either. By

Proposition 4.1, xu:v is equal to xv at s. Therefore the projection of s does not

have h1 enabled and this projection is a �xpoint.

We now show that the computation that starts at a state s1 such that the pro-

jection of s1 is a �xpoint this computation ends in a �xpoint. By Corollary 4.1

if IC holds, xu:v = xv when c2u is executed. Thus, if the projection of the initial

state of the computation is a �xpoint, h1u is not executed during this computation.

Therefore the projection of every state of this computation is a �xpoint of H.

Since the projection of every state is a �xpoint, eventually there is a state s1
such that xu:v = xv . After this, if requestu is cleared it is never set. Also,

c5u and c6u cannot be enabled after s1. If requestu is set, by Theorem 3.3,

c2u is eventually executed which clears readyu and requestu. After requestu is

cleared c1u cannot be enabled. Therefore readyu is cleared throughout the rest

of the computation. Thus, c2u cannot enabled. If c1u and c2u are never exe-

cuted then eventually au:v = bv:u = cv:u = du:v, ru:v = readyv and if u < v

then yu:v is cleared. Thus c3u and c4u are disabled and C reaches a �xpoint.

Let �C and �H be computations of C and H respectively.

Lemma 4.3 (Fairness preservation). If IC holds and h1u is continually enabled

in the projection of �C , then h1u is eventually executed in �C .

Proof. Let s be a state of �C such that h1u is enabled in the projection of s. If

requestu is set in s then (by Theorem 3.3) c2u is eventually executed. Let s1 be

the state when c2u is executed. By Corollary 4.1, xu:v = xv at s1. Then, since h1u
is enabled in the projection of s1 at it is also enabled at s1. Thus, h1u is executed

at s1.

If requestu is not set in s there can be two cases:

� every neighbor Pv executes h1v only �nitely many times during �C . Let s2 be

the state after Pv executed h1v for the last time. If xu:v 6= xv in s2, then either c4u
or c5u is eventually executed which sets requestu. This leads to eventual execution

of h1u.

� A neighbor Pv of Pu executes h1v in�nitely many times. This implies that

c1v and c2v are executed in�nitely often. If u < v by R7, xv = xu:v when c1v
is enabled. Therefore Pu must execute either c4u or c5u in�nitely often. Also,

when c4u is executed xv 6= xu:v. Therefore, requestu gets enabled which leads to

eventual execution of h1u.

Similar argument applies to the case of u > v and R8.

Theorem 4.3 (Soundness). If a computation of C, �C , starts at a state where

IC holds, then the projection of �C , �H , is a computation of H.

Proof. By Corollary 4.1, when c2u is executed the images of the variables used in

H are equal to their respective sources. Therefore, the projection of the application

of c2u to a state of C is equivalent to the application of h1u to the projection of

this state. Therefore the projection of �C is a sequence of states of H such that

each consequent state is produced by an application of some h1 to the previous

state (Recall that �nite stuttering is eliminated by the de�nition of a projection).

Therefore, to prove that the projection of �C is a computation of H we need to

show that this projection is maximal and fair.

There can be two cases. If �C is �nite, by Theorem 4.2 the projection of this

computation ends in a �xpoint. Therefore, the projection is maximal. Since any

�nite computation is fair, this projection is a computation of �H .

If �C is in�nite, by Theorem 4.2 the projection of this computation cannot

end in a �xpoint. Lemma 4.3 implies that this computation is going to be fair.

4.3.3. Completeness

To prove completeness we construct a computation of C that is equivalent to an

arbitrary computation of H.

We call a state s of C clean if for any process Pu, readyu is cleared and the only

guard that is possibly enabled at s is c6u. Let u < v. In a clean state only c6u be

enabled in Pu. Thus the following should also be true in every clean state:

� the token is held by au:v, that is: au:v = bv:u = cv:u = du:v.

� since readyv is cleared, ru:v and yu:v are also cleared.

� xu:v = xv.

� requestu is cleared.

Theorem 4.4 (Completeness). For every computation �H there exists a com-

putation of �C the projection of which is �H .

Proof. Let s0; s1; s2; : : : be �H . We prove the theorem by constructing �C such

that the projection of �C is �H .

Let t0 be a clean state of �C such that for every Pu the value of xu is the same

as in s0. Thus the projection of t0 is s0. In a clean state the value of xu:v is the

same as the source xv . Therefore, if gu:k is enabled in t0, it also evaluates to true

in s0. This means that c6u is enabled in t0. The execution of c6u sets requestu
and, therefore, enables c1u.

Let s1 be a state produced by executing gu:k at s0. The execution of c1u at

t0 increments au:v for every neighbor Pv such that u < v. Thus au:v relinquishes

the token. If au:v does not have the token there is an enabled GC such that the

execution of this GC passes the token further until au:v re-acquires the token.

Let us assume that after t1, �C contains the sequence of states such that every

state of this sequence is produced by executing a GC that passes the token as

described in the previous paragraph. This sequence ends in a state ti where Pv has

readyu set and for every neighbor Pv, au:v = du:v. Furthermore, rv :u is cleared for

every neighbor Pv . Thus c2u is enabled at ti.

Note that the sequence of states t0; : : : ; ti does not execute any GC of H. There-

fore the projection of this sequence produces just one state - s0.

Let ti+1 be the state produced by executing c2u at ti. The execution of c2u at

ti+1 increments au:v for every neighbor Pv such that u > v. Similar to the argument

above we can construct a sequence which leads to the state tj where au:v = du:v for

all neighbor Pv. Note that ti+1; : : : ; tj does not execute any GC of H. Therefore

the projection of this sequence onto H produces just one state - s1.

Note also that tj is a clean state. Similarly we can attach a sequence of states to

�C that projects to s2. Continuing in this manner we can construct a sequence of

states �C such that the projection of it produces �H . If �H is �nite then �C ends

in a clean state where no c6 is enabled (i.e. a �xpoint). If �H is in�nite, so is �C .

It remains to be proven that �C is fair. Note that all GC that got enabled between

t0 and tj were executed except for the GCs that correspond to GCs enabled in

s0. Note also that the GC that changes s0 into s1 was executed between t0 and

tj . Since �H is fair and all enabled GCs are eventually executed, �C is also fair.

5. PERFORMANCE EVALUATION AND COMPARISON WITH

OTHER ATOMICITY REFINEMENTS

We de�ne two performance metrics for atomicity re�nement, inspired by Singhal

and Shivaratri's metrics for synchronization programs [19]. Step complexity is the

average number of low-atomicity GCs a process executes to simulate one high-

atomicity GC. Step complexity depends on the number of simultaneously enabled

high-atomicity GCs in program states. We consider two extreme cases: heavy load

- when all GCs are always enabled; and light load - only one GC is enabled in the

system.

TABLE 1

Performance of di�erent atomicity re�nements

re�nement authors step complexity synchronization delay

light load heavy load

Nesterenko and Arora O(n) O(n) O(1)

Gouda and Haddix O(n � d � p) O(n � d) O(d)

Antonoiu and Srimani O(n � p+ n � p=M) O(n+ n=M) O(d)

where n - degree of a process, d - diameter of the system, p - number of processes in the
system, M - bound on variables (M � n)

Causally related GCs are commands that execute in order, the execution of one

GC enables the next one. Synchronization delay is the average number of causally

related low-atomicity GCs that are executed between two high-atomicity GCs of

two neighbor processes.

Step complexity indicates the amount of computation the re�ned program has to

perform to execute the simulated high-atomicity program. Synchronization delay

indicates the speed with which the re�nement executes this program.

Throughout this section, let n be the maximum degree of a process (the maximum

number of neighbors a process has), d be the diameter of the program (the number

the processes in the longest simple path), and p be the number of processes.

To execute a GC of H a process of C �rst executes c6; the process circulates the

tokens to the higher id neighbors by executing c1. The process has to collect back

the tokens from the neighbors. For that the neighbors have to execute c4, c3 and

then the process has to execute c4 for every higher id neighbor. After the execution,

the process communicates with its lower id neighbors in a similar manner. Note that

no other GCs (except for possibly c4 and c5) are executed. Thus, step complexity

of our re�nement is in O(n). It is independent of the load. The synchronization

delay is in O(1).

Gouda and Haddix [12] propose a solution to semantics re�nement problem.

They consider the model where a process can atomically access the state of all

its neighbors and update its own state, and also the model where a process can

atomically access the state of one neighbor and update its own state. Even the

latter model has higher atomicity than our low-atomicity model. Nevertheless, we

compare the performance of the atomicity re�nement of Gouda and Haddix with

our re�nement.

In [12] each process maintains a variable v whose range is proportional to the

size of the largest cycle in the system. That is the range of v is proportional

to the diameter of the system. Each process continuously increments v and can

execute the high-atomicity GC only when v assumes one particular value out of the

whole range. The values of these variables in all processes of the system are tightly

synchronized: a process cannot proceed to increment its v while the neighbors have

not incremented their vs. As it is the case with our re�nement, each process has to

examine the state of its neighbors at least once before executing a high-atomicity

GC. Thus, the step complexity of this program is in O(d � n � p) if the load is light

and in O(d � n) if the load is heavy. The synchronization delay of this re�nement

is in O(d).

Antonoiu and Srimani [1] propose atomicity re�nement from high-atomicity model

to message-passing system model. They implicitly assume that the implementation

of low-atomicity model on message-passing systems has stabilized. Therefore, their

re�nement essentially provides a transformation from our high-atomicity model to

our low-atomicity model.

In [1], the priority of CS access between neighbors is based on bounded times-

tamps. Timestamps are just integers held in timestamp counters (process ids are

used for tie-breaking). A process with the lower timestamp is allowed to enter

CS. Every time the process requests CS it is assigned a greater timestamp. This

preserves fairness of CS access. The timestamps are bounded and when the times-

tamp counter reaches the greatest possible value M it is reset to 0. This violates

a well-founded order of timestamps and CS access is prohibited when the system

has timestamps that are close to the maximum value. Antonoiu and Srimani show

that the range of the timestamps where CS access is disabled is proportional to p.

Therefore, M has to be far greater than p for their program to be eÆcient. The

control of the spread between the timestamps in the system is based on the use of

a spanning tree. A process can increment its timestamp (and request CS) only if

the timestamps of its children and the parent are close. On average, to execute a

GC of H each process in the system has to increment its timestamp. Therefore,

step complexity of this re�nement is in O(n � p + n � p=M) under light load and

in O(n + n=M) under heavy load. To execute a GC of H, by some process Pi the

timestamps of all processes on the longest path from the root to leaves containing Pi
have to be incremented in order. Thus the synchronization delay of the re�nement

is in O(d)

The re�nements in [1, 12] are not �xpoint preserving. Also, these re�nements

require tight synchronization between processes and do not allow certain compu-

tations of H; in particular a process cannot repeatedly execute its GCs while its

neighbor has a GC enabled. Therefore, these re�nements are not complete.

6. EXTENSIONS AND CONCLUDING REMARKS

In this paper, we presented a technique for stabilization-preserving atomicity

re�nement of concurrent programs. Our re�nement enables design of stabilizing

programs in a simple but restrictive model and implementation in a more complex

but eÆcient model. It is based on a stabilizing, bounded-space, dining philosopher

program in the more complex model. Moreover, it is not only sound but also

complete, and is �xpoint- and fairness-preserving.

In conclusion, we discuss several notable extensions of our re�nement.

6.1. Semantics Re�nement

Consider the semantics re�nement problem where the abstract model uses inter-

leaving semantics, the concrete model uses power-set semantics and both models

employ high-atomicity guarded commands. We show that our re�nement solves this

problem. Note that low-atomicity actions are just restricted high-atomicity actions

and, hence, a low-atomicity program is a high-atomicity program. Thus, it suÆces

to show that for a low-atomicity program a power-set computation is equivalent to

an interleaving computation.

Two computations are equivalent if in both computations every Pu executes the

same sequence of GCs and when a GC executes the values of the variables it reads

are the same. Recall that in a computation under interleaving semantics (inter-

leaving computation) each consequent state is produced by the execution of one

of the GC that is enabled in the preceding state. In a computation under power-

set semantics (power-set computation) each consequent state is produced by the

execution of any number of GCs that is enabled in the preceding state.

Theorem 6.1. For every power-set computation of a low-atomicity program

there is an equivalent interleaving computation.

Proof. It suÆces to show that for every pair of consequent states (s1, s2) of

power-set computation there is an equivalent sequence of states of interleaving

computation. The GCs executed in s1 are either synchs or updates. Clearly, if the

synchs are executed one after another and followed by the updates the resulting in-

terleaving sequence is equivalent to the pair (s1, s2).

6.2. Generalization to Drinking Philosophers Problem

DP can be extended to solve drinking philosophers problem [7], to increase the

eÆciency of our re�nement. In the argument below we assume that each process

of H has multiple GCs. Two GCs in neighbor processes in H con
ict (a�ect each

other) if one of them writes (updates) the variables the other GC reads. Loss of

concurrency occurs in DP since it enforces MX of execution of GCs of neighbor

processes, regardless of whether these GCs actually con
ict.

Recall that to ensure MX among neighbor processes inDP every pair of neighbors

Pu and Pv maintains a sequence of handshake variables Huv . Sending a token

along this handshake sequence is used to inform the neighbor if the process is

entering or exiting CS. Similarly, Pu and Pv can be given a sequence of handshake

variables for every pair of con
icting guarded commands. Then if a GC of H is

enabled the tokens are sent along each sequence to prevent the con
icting guarded

commands from executing concurrently. More precisely: the tokens are sent to

the processes with higher ids before the GC is executed and to the processes with

smaller ids afterwards. Thus, if two GCs of H on neighbor processes do not con
ict

no synchronization between neighbors is done.

We would like to elaborate on how the increase of concurrency in the dining

philosophers generalization relates to the completeness property for the original

dining philosopher program. Even though the completeness result states that for

every high-atomicity computation there is a low-atomicity one whose projection

is this high-atomicity computation. Note, however, that the low-atomicity steps

are removed when the projection is taken. Thus, the completeness result does

not take into account the number of low-atomicity steps each high-atomicity step

execution requires. This number is in general smaller for the drinking philosophers

generalization of our dining philosophers solution. In practice it would result in

higher concurrency of high-atomicity GC execution of the low-atomicity program.

6.3. Modi�cation to Solve Fairness Re�nement

Our re�nement is readily modi�ed to relax the assumption of weak-fairness in

the concrete model. For this we need to change DP to operate correctly without

any fairness. In principle, relaxing fairness assumptions does not violate the safety

properties of DP but care has to taken to ensure that it does not invalidate the

liveness properties.

The modi�cations are as follows. We remove request from the GC of dp1, so

every process continuously requests to enter CS. The command of dp3 is added to

the command of dp1 and the guard of dp3 is augmented so that it evaluates to true

only if dp1 and dp2 are not enabled. dp1 and dp2 are responsible for executing

CS of the local process. dp3 is used to propagate the token for the neighboring

processes.

The above modi�cations ensure that a process cannot continually enter CS while

a neighbor is in CS contention even if no fairness is assumed. Since every process is

always in CS contention, every process enters CS by induction on the longest path

in the system. Thus fairness is re�ned.

6.4. Extension to Message-Passing Systems

Our re�nement is further extended so that the concrete program executes in

message-passing model where the processes communicate via �nite capacity lossy

channels. Again, DP has to be modi�ed to to work in this model, as follows. Given

that Huv in DP is used to pass information from process Pu to its neighbor Pv and

get an acknowledgment that this information has been received, an alternating-bit

protocol (ABP) can be used for the same purpose in message-passing systems. A

formal model of dealing with lossy bounded channels in message-passing systems

as well as a stabilizing ABP is presented in [14].

In the modi�ed DP , Pu sends the value of a handshake variable (together with

the rest of its state) to Pv in a message. If the message is lost it is retransmitted by

a timeout. When Pv receives the message it copies the state of Pu (including the

handshake variable) into its image variables and sends a reply back to Pu. When

Pu gets the reply it knows that Pv got the original message. It is proven [14] that

ABP stabilizes when the range of the handshake variables is greater than the sum

of the capacity of the channels between Pu and Pv and in the opposite direction.

When H reaches a �xpoint the values of the variables of processes of C extended

to message passing system do not change. Thus C is in a quiescent state. But, as is

well-known [13] that a stabilizing message-passing program cannot reach a �xpoint,

the extension of DP to message-passing systems is no longer �xpoint-preserving:

the timeout has to be executed even if the projection of the program has reached a

�xpoint.

APPENDIX

A.1. RING STABILIZATION

Theorem A.1. The disjunction of the following predicates is stabilizing for DP .

8(Pu; Pv) 2 N :

(au:v = bv:u = cv:u = dv :u) _ (R9)

(au:v 6= bv:u = cv:u = dv :u) _ (R10)

(au:v = bv:u 6= cv:u = dv :u) _ (R11)

(au:v = bv:u = cv:u 6= dv :u) (R12)

Proof. We show closure �rst. Out of ten GCs of Pu and Pv only dp1u, dp2u,

dp4v, dp3v, and dp4u can a�ect the predicates. When R9 holds, only dp1u or

dp2u can be enabled (depending on whether v is greater or smaller than u). When

R10, R11, R12 hold only dp4v, dp3v and dp4u are enabled respectively. Note that

the execution of the enabled GC brings the program to a state where one of the

predicates holds.

We demonstrate convergence by reduction of the program to Dijkstra K-state

token circulation algorithm [10]. The di�erence between our handshake sequence

and Dijkstra's algorithm is that dp1u (or dp2u) may or may not be enabled when

au:v = dv:u. If the execution of the dp1u (or dp2u) is weakly fair wrt au:v =

dv :u in some computation �C . Then Huv behaves like Dijkstra's algorithm and

stabilizes. If execution of the dp1u (or dp2u) is not weakly fair wrt au:v = dv:u

in au:v = dv :u then there is an in�nite suÆx of the computation where au:v =

dv :u and au:v is not incremented. Clearly then, the program stabilizes to R9.

A.2. ACRONYMS AND NOTATION

MX mutual exclusion problem

DP dining philosophers problem

CS critical section

GC guarded command

ABP alternating-bit protocol

P , Q programs

DP dining philosophers program

H high-atomicity program

C re�ned program

P process

N neighbor relation between processes

i; j; k; u; v process identi�ers

Pu; Pv neighbor processes

R;S predicates

a; b; c; d handshake variables

Huv sequence of handshake variables between Pu and Pv
s; t program states

IDP invariant of DP

IC invariant of C

�H computation of H

�C computation of C

n maximum degree of a process

d diameter of the system

p number of processes

M timestamp bound

REFERENCES

1. G. Antonoiu and P.K. Srimani. Mutual exclusion between neighboring nodes in an arbitrary
system graph that stabilizes using read/write atomicity. In Proceedings of EuroPar'99, volume
1685 of Lecture Notes in Computer Science, pages 823{830. Springer-Verlag, 1999.

2. A. Arora and M.G. Gouda. Closure and convergence: a foundation of fault-tolerant computing.
IEEE Transactions on Software Engineering, 19:1015{1027, 1993.

3. A. Arora and M.G. Gouda. Distributed reset. IEEE Transactions on Computers, 43:1026{
1038, 1994.

4. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Bounding the unbounded (distributed com-
puting protocols). In Proceedings IEEE INFOCOM 94 The Conference on Computer Com-

munications, pages 776{783, 1994.

5. G.M. Brown, M.G. Gouda, and C.L. Wu. Token systems that self-stabilize. IEEE Transactions

on Computers, 38:845{852, 1989.

6. J.E. Burns. Self-stabilizing rings without demons. Technical Report GIT-ICS-87/36, Georgia
Tech, 1987.

7. K.M. Chandy and J. Misra. The drinking philosopher's problem. ACM Transactions on

Programming Languages and Systems, 6(4):632{646, October 1984.

8. K.M. Chandy and J. Misra. Parallel Program Design : a Foundation. Addison-Wesley,
Reading, Mass., 1988.

9. E.W. Dijkstra. Hierarchical Ordering of Sequential Processes, pages 72{93. Academic Press,
1972.

10. E.W. Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the

Association of the Computing Machinery, 17:643{644, 1974.

11. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only
read/write atomicity. Distributed Computing, 7:3{16, 1993.

12. M.G. Gouda and F. Haddix. The alternator. submitted to Journal of Parallel and Distoributed
Computing.

13. M.G. Gouda and N. Multari. Stabilizing communication protocols. IEEE Transactions on

Computers, 40:448{458, 1991.

14. R.R. Howell, M. Nesterenko, and M. Mizuno. Finite-state self-stabilizing protocols in message
passing systems. In Proceedings of the Fourth Workshop on Self-Stabilizing systems, pages
62{69, 1999.

15. L. Lamport. The mutual exclusion problem: part ii-statement and solutions. Journal of the

Association of the Computing Machinery, 33:327{348, 1986.

16. M. Mizuno and H. Kakugawa. A timestamp based transformation of self-stabilizing programs
for distributed computing environments. In WDAG96 Distributed Algorithms 10th Interna-

tional Workshop Proceedings, Springer-Verlag LNCS:1151, pages 304{321, 1996.

17. M. Mizuno and M. Nesterenko. A transformation of self-stabilizing serial model programs for
asynchronous parallel computing environments. Information Processing Letters, 66(6):285{
290, 1998.

18. M. Mizuno, M. Nesterenko, and H. Kakugawa. Lock-based self-stabilizing distributed mutual
exclusion algorithms. In Proceedings of the Sixteenth International Conference on Distributed

Computing Systems, pages 708{716, 1996.

19. M. Singhal and N.G. Shivaratri. Advanced Concepts in Operating Systems: dsitributed,

database, and multiprocessor operating systems. McGraw-Hill, 1994.

