Delay-Insensitive Stabilization

Anish Arora® and Mohamed G. GoudaZ2

1pepartment of Computer and Information Sciences
The Ohio-State University, Columbus, OH 43210

2Department of Computer Sciences
The University of Texas at Austin, Austin, TX 78712

Abstract

We consider a class of systems, each of which satisfies the
following property of system stabilization: starting from
any state, the system will reach a fixed point. We show
how to add asynchronous delays to systems in this class,
and present several results concerning the effect of adding or
removing delays on the property of system stabilization.
First, we show that adding or removing delays does change
the set of fixed points of a system. Second, we show that
removing a delay preserves system stabilization, but
adding a delay may not. Third, we identify three types of
delays: non-cyclic, short, and long. We show that adding
non-cyclic or short delays preserves system stabilization.
We also show that under some lax conditions, adding long
delays preserves system stabilization.

1 Introduction

e A computing system is stabilizing iff starting from an arbitrary,
possibly illegitimate state, the system is guaranteed to reach a legitimate
state in a finite number of steps. Stabilization is a fundamental property of
computing systems. For instance, the reset of a system, the ability of a
system to tolerate faults, and the ability of a system to adapt to changes in
its environment can all be viewed as special forms of stabilization. See for
example [2], [3], [4], and [5].

95

Unfortunately, stabilization is a "fragile” property. Many
seemingly lame transformations of a stabilizing system can disrupt the
stabilization of the system [6]. Thus, transformations of stabilizing systems
should be allowed only after showing that these transformations do not

disrupt system stabilization.

In this paper, we discuss an important class of transformations of
stabilizing systems, namely the adding or removing of "asynchronous
delays". These transformations are important because any implementation
of a system is bound to add such delays to the system or to remove such
delays from the system. Although these transformations clearly preserve
most properties of the original system, it is not obvious that they do
preserve the property of stabilization. The main result of this paper is that
removing delays preserves system stabilization but adding delays may not,

except in some special cases.

We start our presentation in the next section by identifying a rich

class of systems and showing how to add delays to each system in this class.

2 Systems with Delays

A system S consists of some variables x, y, ..., and z, and an equal

number of assignment statements of the form

x = Flx, y, .., 2z) .
y = Gy, .. 2)
z = H(x, y, ... 2)

where F, G, ..., and H are total functions over the variables in S.

A state of a system S is a mapping that maps each variable inS to a

value from the domain of that variable.

OfL

A transition of a system S is a triple (p, s, q), where p and q are
states of §, s is an assignment statement in 5, and executilfg statement s when
S is in state p yields S in state q. For any transition (p, s, q), p is called the

tail state of the transition, and q is called the head state of the transition.

A computation of a system S is an infinite sequence of transitions of
S such that the following two conditions hold.

i. Order:
In the sequence, the head state of each transition is

the same as the tail state of the next transition.

ii. Fairness:
Each assignment statement in S appears infinitely

many times in the sequence.

The tail state of the first transition in a computation is called the
initial state of the computation. Moreover, if a transition in a computation
has a state p (as the tail or head state of that transition), then the

computation is said to reach state p.

A state p of a system S is called a fixed point iff each transition (p,
s, q) of S is such that p=q.

A system S is stabilizing iff each computation of S reaches a fixed
point.

Let x be a variable in a system S. A delay can be added to variable x

by modifying system S as follows.

i. Add a new variable dx whose domain of values is
the same as that of variable x.
ii. Ada an assignment statement of the form dx := x.
iii. Replace each occurrence of x by dx in the assignment
statement of every variable, other than x and dx.
In the resulting system, variable x is referred to as a delayed variable, and

variable dx is referred to as a delay variable.

In the next section, we discuss an example where delays are added
to some stabilizing system in order to facilitate the implementation of this
system by a network of communicating processes. In this case, it is important
that the resulting system after adding the delays has all the interesting
properties of the original system, including the property of system

stabilization.

3 Example of a System with Delays
Let S be a system that consists of variables x and y {(whose values
range over the positive integers), and the two assignment statements
X = if x >y then x - y else x
y = ifx<ytheny-xelsey
It is straightforward to show that each computation of system S reaches a

fixed point at which x = y. Therefore, system S is stabilizing.

Delays can be added to the two variables in system S yielding a
new systern S'. System S' consists of variables x, dx, y, and dy (whose values

range over the positive integers), and the four assignment statements

X = if x > dy then x - dy else x
dx = X
y = ifdx<ytheny-dxelsey
dy = y

(414

It is straightforward to show that each computation of system S’ reaches a

fixed point where x = dx = y = dy. Therefore, system §' is stabilizing.

One advantage of system S’ over system S is that system S' can be
implemented by a network of two communicating processes. In particular,
system 5' can be implemented by a network N' of two processes px and py
that communicate by exchanging positive integers over two channels cx and
cy. Process px sends positive integers to channel cx and receives positive
integers from channel cy, whereas process py sends positive integers to
channel cy and receives positive integers from cx. Each of the two channels
can hold at most one integer at a time. Hence, if a channel holds an integer
and a process sends another integer to that channel, then the latter integer

replaces the former integer in the channel.

Process px has two local variables vx and d, and two actions. The
first action is executed periodically, and its execution causes px to send the
current value of variable vx to channel cx. The second action is executed
when there is an integer in channel cy, and the execution causes px to
receive that integer from cy, store it in variable d, then use the current

values of variables vx and d to update the value of vx. Process px is defined

as follows.
process px
var vxd : positive integer
begin
true --> send vx to o
| rcvd fromey --> vx = if vx > d then vx - d else vx
end

Process py is similar to process px and it is defined as follows.

[o]4]

process py
var vy, d : positive integer
begin
true --> send vy to cy
1] rcvd fromex --> vy:=if vy >dthen vy - d else vy

end

In order to show that network N implements system S', we need the

following definition.

A state (x, dx, y, dy) of system S' is a shadow of a state (vx, ¢cx, vy,
cy) of network N iff the following two conditions hold.

i. x=vx and y=vy.

ii. If channel cx is empty, then dx = vx, otherwise dx =
the integer in channel cx, and
if channel ¢y is empty, then dy = vy, otherwise dy =

the integer in channel cy.

Based on this definition, it is straightforward to show the
following relation between the computations of N and those of S'. For each
infinite computation of N, there is an infinite computation of §' such that
for each reachable state p in the computation of N, there is a corresponding
reachable state, denoted C.p, in the computation of S, where the following
two conditions hold.

i. State C.p is a shadow of state p.

100

ii. If a state p occurs before a state q in the computation
of N, then state C.p occurs before state C.q in the

computation of ',

From this relation between the computations of N and those of S,
and from the fact that each computation of $' has an infinite suffix where x
= y at each state of the suffix, we conclude that each computation of
network N has an infinite suffix where vx = vy at each state of the suffix.

This proves that network N implements system S'.

In this example, we showed that when delays are added to a
specific stabilizing system, the resulting system is stabilizing and can be
implemented by a network of communicating processes. This example raises
the following question: When delays are added to a stabilizing system, is
the resulting system guaranteed to be stabilizing? This question is answered

negatively in the next section.

4 Stabilization of Systems with Delays

In this section, we discuss two important properties concerning the
stabilization of systems with delays. First, we show that adding delays to
a system, or removing delays from a system, does not change substantially
the set of fixed points of that system. Second, we show that removing
delays from a system preserves the property of stabilization but adding

delays to a system does not necessarily preserve that property.

Let S be a system and S’ be a system that results from adding delays
to some variables in system S. A state p of system S and a state p' of system

§" are compatible iff the following two conditions hold.

- 101

i. For every variable x in system S, the value of x at

state p equals the value of of x at state p'.

ii. For every two variables x and dx in system S, the

value of x at state p' equals the value of dx at state

P-

Based on this definition of compatible states, we can state the

following theorem.

Theorem 1

Let S be a system and S’ be a system that results from adding delays to some
variables in 5. There is a one-to-one correspondence between the fixed
points of S and those of §' such that each fixed point of 5 and the

corresponding fixed point of ' are compatible.

According to Theorem 1, systems S and S' have basically the same
set of fixed points. However, according to the next theorem, stabilization of
system S (to a fixed point) does not guarantee stabilization of S' {to a fixed

point).

Theorem 2

Let S be a system and S' be a system the results from adding a delay to some

variable in 5.

i. If S' is stabilizing, then S is stabilizing.
ii. The converse of i is not necessarily true.
Proof of i

109

Consider an arbitrary computation C of system S. We need to show that
computation C reaches a fixed point of S. This can be accomplished by using
computation C to construct a computation C' of system S' such that the

following compatibility condition holds. If the reachable states along
computation C are pq, pp, .., then computation C' reaches states q1, qo, ...

such that every two corresponding states p; and q; are compatible. Given
that S' is stabilizing, computation C' is guaranteed to reach a fixed point of
§'. Hence, there is a value k such that each of the states qi, q+1. .- isa
fixed point of system S'. From the compatibility condition, each of the
states p, pk+1. - is @ fixed point of system S. Therefore, the arbitrary

computation C reaches a fixed point of S.

It remains now to show how to use computation C to construct
computation C' such that the above compatibility condition holds. Assume
that system S' results from adding a delay dx to variable x in system S. In
this case, for each transition (pj, si, pi+1) in computation C add one
transition or two consecutive transitions to computation C' according to the

following two rules.

i. If si is the assignment statement that updates a
variable y, other than %, in system S, then add to C' .
a transition (qj, s, qi+1), where s is the assignment

statement that updates variable y in system §'.

ii. If sj is the assignment statement that updates
variable x in system S, then add to C' two
consecutive transitions (qj, 5, q) and (g, s’ gi+1).
where s and s' are the assignment statements that

update variables x and dx, respectively, in system
S'.

103

It is straightforward to show that computation C and the
constructed computation C' satisfy the compatibility condition mentioned

above.

Proof of ii

Part ii can be proven by exhibiting a stabilizing system S, then showing
that if a delay is added to some variable in S, then the resulting system §'
is not stabilizing. Consider a system S that consists of variables x and y

(whose values are in the domain 0..1), and the two assignment statements

X =y
y =X
At each fixed point of system S, x = y, and system S is stabilizing (to a fixed

point}.

Now assume that a delay dx is added to variable x in system S. The
resulting system §' consists of variables x, dx, and y, and the three

assignment statements

X =y
dx:= x
y = dx

At each fixed point of system §', x = dx = y, but system S' is not stabilizing
(to a fixed point). This is because system S’ can cycle indefinitely through
the following states, each of which is of the form (x, dx, y), without ever
reaching a fixed point:
(0,0,1),(1,0,1),(1,00),(1,1,0,(0,1,0),(0,11),(0,0,1), ...
|

104

Clearly, Theorem 2 can be generalized as follows. Let S be a system
and S' be a system the results from adding delays to one or more variables in
S. If S’ is stabilizing, then S is stabilizing, but the converse is not

necessarily true.

5 Stabilization of Systems with Non-Cyclic Delays

Theorem 2 in the last section states that in general adding delays to
a system can disrupt the stabilization of that system. Thus, it is useful to
identify special cases for which adding delays does not disrupt system
stabilization. In this section, we introduce the concept of non-cyclic delays
and show that adding non-cyclic delays to a system does preserve

stabilization of that system.

Let x and y be two variables in a system S. Variable x depends on
variable y iff system S has two states p and q that differ only in their
values of y and executing the assignment statement of variable x starting at

state p and starting at state q yield two different values for variable x.

The dependency graph of a system S is a directed graph whose
nodes represent the variables in S and whose directed edges represent the
depends on relation on the variables in S. In other words, the set of nodes in
the dependency graph of system S is {ny | x is a variable in S}, and the set of
directed edges in the dependency graph of § is {(ny, ny) | variable x

depends on variable y in S).

As an example, the dependency graph of system S presented in
Section 3 consists of nodes ny and ny and four directed edges: a self-loop at
node ny, a self-loop at node ny, an edge from node ny to node ny, and an edge
from node ny to node ny.

105

A variable x in a system S is non-cyclic iff the node that corresponds
to variable x in the dependency graph G of system S does not occur in any

directed cycle in G.

Theorem 3
Let S be a system and S' be a system that results from adding a delay dx to
variable x in system 5. If S is stabilizing and variable dx is non-cyclic in

system S', then §' is stabilizing.

(l

6 Stabilization of Systems with Short and Long Delays

In this section, we introduce the concepts of short and long delays.
We show that adding short delays to a system preserves the stabilization
of that system. We then identify a rich class of systems, called restricted
systems, and show that adding long delays to a restricted system preserves
the stabilization of that system (provided that at least one long delay is

added to each directed cycle of length two or more in the system).

Let S be a system, and S' be a system that results from adding
delays to some variables in S. The variables in system S' can be partitioned
into two classes: original variables that correspond to the variables in

system S, and delay variables that are added to system S to form system S'.

Let x be a variable in a system S, and let p be a state of 5. Variable
x is stable at state p iff executing the assignment statement that updates
variable x starting at state p keeps state p unchanged. Note that every

variable in a system S is stable at each fixed point of system S.

106

Let S be a system, and S’ be a system that results from adding
delays to some variables in 5. A computation of system §' is short-delayed
iff for each transition (p, s, q) in this computation, if s is an assignment
statement that updates an original variable in S, then every delay
variable in §' is stable at state p. In other words, along any short-delayed
computation, the assignment statement of any original variable is executed

only when all delay variables are stable.

Let S be a system, and 5’ be a system that results from adding
delays to some variables in 5. System §' is stabilizing assuming short

delays iff each short-delayed computation of S' reaches a fixed point.

Theorem 4
Let S be a system and §' be a system that results from adding delays to some
variables in S. If S is stabilizing, then S’ is stabilizing assuming short

delays.
i

A system S is restricted iff every assignment statement x := Fin S

satisfies the following two conditions.

i. Variable x depends only on itself and one other
variable in system S. Thus, function F has at most
two arguments x and y, for some variable y in

system S.

ii. Function F is idempotent in argument x. Thus,
F(x, y) = F(F(x, y), y)

- 107

A well-delayed version of a system S is a system S’ that results
from adding delays to some variables in S such that each directed cycle of
length two or more in the dependency graph of S has at least one node that

corresponds to a delay variable in §'.

Let S be a system, and S’ be a system that results from adding
delays to some variables in . A computation of system S' is long-delayed
iff for each transition (p, s, q) in this computation, if s is an assignment
statement that updates a delay variable in S', then every original variable
in S' is stable at state p. In other words, along any long-delayed
computation, the assignment statement of any delay variable is executed

only when all original variables are stable.

Let S be a system, and S’ be a system that results from adding
delays to some variables in S. System S’ is stabilizing assuming long delays

iff each long-delayed computation of 5' reaches a fixed point.

Theorem 5
Let S be a restricted system, and S' be a well-delayed version of system S. If

S is stabilizing, then §' is stabilizing assuming long delays.

]

7 Concluding Remarks

In this paper, we defined how to add asynchronous delays to
computing systems and presented several results concerning the effects of
adding or removing delays on system stabilization. The presented results
are based on the assumption that during any system execution, exactly one
assignment statement in the system is executed at a time (interleaving
semantics). Nevertheless, similar results can be obtained based on the

assumption that during any system execution, any subset of the assignment

108

statements in the system are executed at a time (powerset semantics in [1]
and [7]).

References

[1]

2]

(3]

4]

151

6l

[71

A. Arora, P attie, M. Evangelist, and M. Gouda, "Convergence of
Iteration Systems", Distributed Computing, Volume 7, pp. 43 - 53,
1993.

S. Dolev and T. Herman, "Superstabilizing Protocols for Dynamic
Distributed Systems”, Proceedings of the Second Workshop on the
Self-Stabilizing Systems, UNLV, pp. 3.1 - 3.15, 1995. Also, Short
Abstract in Proceedings of the 14th Annual ACM Symposium on
Principles of Distributed Computing, p. 255, 1995.

S. Dolev, A. Israeli, and 5. Moran, "Self-Stabilization of Dynamic
Systems Assuming only Read Write Atomicity”, Distributed
Computing, Volume 7, pp. 3 - 16, 1993.

S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju, "Fault-
Containing Self-Stabilizing Algorithms”, Proceedings of the 15th
Annual ACM Symposium on Principles of Distributed Computing, p.
45 - 54, 1996.

M. G. Gouda, "The Triumph and Tribulation of System
Stabilization", Invited Paper in the 9th International Workshop
on Distributed Algorithms, 1995. Also, appeared in Lecture Notes in
Computer Science, Volume 972, pp. 1 - 18, 1995.

M. G. Gouda, R. R. Howell, L. E. Rosier, "The Instability of Self-
Stabilization”, Acta Informatica, Vol. 27, pp. 697 - 724, 1990.

F. Robert, "Discrete Iterations - a Metric Study”, Springer-Verlag,
Berlin, 1986.

109

