A New Math Type: Tree

Math Tree Continued...
Math Definition for Tree of A

- **Base case:**
 If \(x \) is an element of \(A \), then \(\text{compose} \ (x, \text{empty_string}) \) is an element of \(\text{tree of } A \).

- **Inductive case:**
 If \(T_1, T_2, \ldots, T_k \) are elements of \(\text{tree of } A \) and if \(x \) is an element of \(A \), then \(\text{compose} \ (x, \langle T_1, T_2, \ldots, T_k \rangle) \) is an element of \(\text{tree of } A \).

Tree vs. Binary Tree

- **Obvious:** binary trees have max 2 children restriction, trees don’t

- **Less obvious:** there is no empty tree (as opposed to empty binary tree)
 - Smallest tree has size 1 and no children
Math Operations

- Let $T = \text{compose} \left(x, \langle T_1, T_2, \ldots, T_k \rangle \right)$
 - $\text{size} \left(T \right) \equiv |T| = |T_1|+|T_2|+\ldots+|T_k|+1$
 - $\text{root} \left(T \right) = x$
 - $\text{children} \left(T \right) = \langle T_1, T_2, \ldots, T_k \rangle$
- Let $s = \langle x_1, x_2, \ldots, x_k \rangle$
 - $\text{first} \left(s \right) = x_1$
 - $\text{last} \left(s \right) = x_k$

Tree Component

- Type
 - Tree_Kernel is modeled by tree of Item
- Initial Value
 - there exists $x: \text{Item}$
 - $\text{is_initial} \left(x \right)$ and $\text{self} = \text{compose} \left(x, \text{empty_string} \right)$
Tree Continued...

- Operations
 - t.Add (pos, subtree)
 - t.Remove (pos, subtree)
 - t.Number_Of_Children ()
 - t.Size ()
 - t[current] (accessor)

Practice Operation

- Most operations on Tree have to be recursive
- Use 5 step process to recursion:
 0. State the problem
 1. Visualize recursive structure
 2. Verify that visualized recursive structure can be leveraged into an implementation
 3. Visualize a recursive implementation
 4. Write a skeleton for the operation body
 5. Refine the skeleton into an operation body
Step 0:

State the Problem

```plaintext
procedure Display_Tree (  
    preserves Tree_Of_Integer& t,  
    alters Character_OStream& outs  
);  
/*!
    requires outs.is_open = true  
    ensures outs.is_open = true and  
        outs.ext_name = #outs.ext_name and  
        outs.contents =  
            #outs.contents * OUTPUT_REP (t)  
)!*/
```

What's OUTPUT_REP (t)?

- \(X \)
 - \(X() \)
- \(K \)
 - \(F \)
 - \(A \)
 - \(K(F()A()) \)
- \(E \)
 - \(H \)
 - \(B \)
 - \(K \)
 - \(C \)
 - \(G \)
 - \(A \)
 - \(F \)
 - \(L \)
 - \(D \)
 - \(J \)
 - \(E(H(C()G())B()K(A())F(J())L()D()) \)
You Give It a Try!

Step 1: Visualize Recursive Structure

\[t = \text{root of } t \]

subtrees
Step 2: Verify That Leveraging Works

- Ask yourself: If Display_Tree could get a helper to display the subtrees, could it take advantage of this generous offer?
- Yes! Once you know how to display the subtrees, you can just display the root followed by the subtrees between '(' and ')'.

Step 3: Visualize Recursive Process

Processing non-smallest incoming values of t:

Processing smallest incoming values of t:
Step 4: Write a Skeleton

```plaintext
procedure_body Display_Tree (  
preserves Tree_Of_Integer& t,  
alters Character_OStream& outs
)  
{
}
```

Step 5: Refine the Skeleton

```plaintext
procedure_body Display_Tree (  
preserves Tree_Of_Integer& t,  
alters Character_OStream& outs
)  
{
}
```