CHAPTER V

Conclusion

5.1 Informal and Formal Indexed Methods

We defined, in Chapter II, a semantics for a procedural, imperative programming
language with specifications: a language of assertive programs. In Chapter IV, we
proved the soundness and relative completeness of the indexed method for proving
correctness of assertive programs, the rules of which we established in Chapter III.
We do well to ask whether the rules of Chapter III are a fair representation of the
method of proof informally described in Chapter I. After all, our argument that it is
plausible that the indexed method is more natural than the back substitution method
was about the method informally described in Chapter I, not the method formally
defined in Chapter III.

The first point of similarity is that, as in Chapter I, when an operational statement
is removed by the application in the math direction of a Chapter III proof rule, the
statement is replaced by facts and obligations. To see this, we must take assume to
correspond to fact, and confirm to oblig. The positioning of these replacements in
Chapter III is the same as in Chapter I. The content of these replacements is also the
same because Chapter I’s branch conditions are the same as the conditions occurring
in the whenever statements of Chapter III; these latter conditions are also called
branch conditions.

We marked the between-statement spaces with an increasing sequence of integers
in Chapter I. We formally defined our intention regarding where to make these marks
with the restricted syntax of Chapter III. Each stow statement serves as a between-
statement mark.

In Chapter I, once the branch condition for an operational statement has been
calculated, it can be removed and replaced with facts and obligations regardless of
whether the operational statement immediately preceding it has already been so re-
placed. As argued in Section 4.6, the simplifying assumption that causes the rules of
Chapter III to permit only the first statement within a whenever statement to be

197

198 CHAPTER V. CONCLUSION

replaced is without loss of generality. We can augment the set of proof rules with four
additional rules that permit operational statements to be processed in any order. We
can prove the augmented set of rules to be sound and relatively complete. Therefore,
the informal indexed method is, like the formal one, sound and relatively complete.

5.2 Relationships Among Methods

The three formal methods of reasoning about program correctness discussed in Chap-
ter I—the back substitution method, symbolic execution (the forward accumulation
method), and the indexed method—share two important properties. They are all
sound and relatively complete. They differ chiefly in the direction of action as they
are applied in proof discovery, transforming programs to mathematical assertions.

In this context, we understand “direction” with respect to the abstract syntax tree
of the program. We distinguish the front of the program from its back. If statement
ST1 is in the same statement sequence as ST2 and ST1 precedes ST2 in the sequence,
then ST1 is closer to the program’s front than ST2, and ST?2 is closer to the back than
ST1. When displaying an abstract syntax tree, as in Figure 85, the usual convention
is to show the front at the left, the back at the right. Execution of the program is
front-to-back. Following the same convention, we label the tree’s root as the top and
its leaves as the bottom.

The action of the back substitution method moves from back to front, removing
one operational statement at a time. The action of symbolic execution moves from
front to back, accumulating a symbolic value for each of the program variables. The
action of the indexed method is “perpendicular” to that of either of the other two
methods. Branch conditions are calculated as inherited attributes from the top to
the bottom. Operational statements are removed and replaced with assume and
confirm statements. Each replacement reduces the depth of the tree; so, the tree is
successively flattened. If we choose our frame of reference as the tree’s root, then the
tree is flattened from bottom to top. According to the indexed method of Chapter I,
any operational statement, whether leaf or internal node, may be replaced at any
time. This is why we used a two-headed arrow in Figure 85. A strictly downward
pointing arrow would be more appropriate for the indexed method of Chapter III
because only operational statements at a fixed depth in the tree are replaced; the
action is from the top, bringing lower-level constructs higher.

Observation of the methods’ differing action directions gives insight into some of
their other differences. Because it acts along the dimension of program execution
(although in the opposite direction), the back substitution method must result in
an assertion whose structure corresponds to a list of program execution paths. The

5.2. RELATIONSHIPS AMONG METHODS
Top
<p_| body>
———————————————————————______,———’ <cd_. kern>
<ACseq> <op_stmt> <stow_sec> <ACseq> <op_. stmt>
I
8 8 /<Selec>\
1f <b_p_e> then <in_code> else <in_code> end if
<call>
°
/ \ s empty .,
<p_nm> <cur_var_list>
<cd_prefix> <stow_sec> <ACseq>
Test_If Empty g, g _is_empty | ‘\
e e
<stow_sec> <ACseqg> <op_stmt>
! \ Indexed Method
e (S
<call>\
Front <p_nm> <cur_var_list> Back

Make_two

Bottom

Back Substitution Method

A

Symbolic Execution (Forward Accumulation Method)

\i

Figure 85: Action Directions Differ Among the Three Methods

199

200 CHAPTER V. CONCLUSION

structure of the assertion that the indexed method produces can match the program
structure because the method acts in a direction perpendicular to that of program
execution; the assertion’s structure is a result of flattening the program’s structure.
In symbolic execution, each “control path” is treated separately; “the endpoints of
these paths are (groups of) ASSERT statements, and there must be no loops lacking
such statements [5, p. III-1].” That symbolic execution deals with control paths is a
consequence of its acting in the same direction as program execution.

5.3 Opportunities for Future Work

5.3.1 Miscellaneous Issues

For the research reported here, we adopted a semantics in which a procedure call’s
outputs are a function of its inputs—not a relation. While we expect the indexed
method to be relatively complete with respect to a relational semantics, it is not
relatively complete with respect to a functional semantics if calls to relationally spec-
ified external procedures are permitted (see Section 4.2). This situation is one of
the reasons that we need a relational semantics. By itself, defining the meaning of a
procedure call as a relation is not too difficult, but the implications are a bit daunting
for our current understanding of the meaning of loops in terms of the minimum fixed
point of a functional. Sanderson [42] proposes a relational semantics. However, his
approach involves changing the complete partial ordering on the type Boolean. Ed-
wards and Ogden [7] have said “this approach is fine as far as it goes, but changing
the partial ordering for Boolean interferes with the ‘correct’ meaning of assertions
that we’re used to.” Therefore, applying Sanderson’s results to produce a relational
semantics for assertive programs may require solving some significant problems. We
also seek proof rules that are good for modular verification in the relational case. It
would be fascinating to discover what form the indexed method would take in the
relational case.

The number of components in the environment could be reduced by removing
the setup. The index state could serve a new role in addition to its current role of
storing the current state at some point with a stow(i) statement. It could also serve
the role that setup currently serves. Note that, at the top level of top level code,
every alter all statement immediately precedes a stow(i) statement (for some 7).
This pair of statements could be replaced by one statement, say “alter stow(:)” or
“start from(i)”, whose meaning is “change the current state to be the same as the
index state at ¢.” The initial index state would then serve as well as the setup. We
chose to include the setup as an additional component of the environment so that the

5.3. OPPORTUNITIES FOR FUTURE WORK 201

(iter) == (while) | (loop)
(loop) == loop (5.2)
maintaining (old_assert)
[(in_code})]
exit when (b_p_e)
{(in_code)
exit when (b_p_e)}
[(in_code})]
end loop
(while) := loop (5.3)
maintaining (old_assert)
while (b_p_e) do
(in_code)

end loop

Figure 86: Redefinition of (iter)

two concerns—storing the current state and changing the current state—would have
separate representations in the environment. Separating these two concerns helped
our intuition; we trust it has helped the reader’s, too.

There are some incremental enhancements that could be added to the indexed
method. Here, we adopted the simplifying convention that all procedures are proper
procedures, their calls not appearing in expressions as function calls. The indexed
method could be enhanced by adding function procedures to the language, and this
seems to be straightforward if functions are not allowed to have side effects.

5.3.2 The “loop exit when” Rule

The iteration statement defined in Chapters II and III is a variation of the loop
statement of Ada. Ada’s loop statement can also have multiple exit points. Fig-
ure 86 shows how to extend the grammars of Chapters IT and III by giving the (iter)
nonterminal symbol a second alternative. Note that a loop statement can have one
or more exit points; it has a variable number of exit when constructs. A question

202 CHAPTER V. CONCLUSION

p C\ prec_top_lev_code (5.4)
alter all
stow(7)
ACseq,
whenever Br_Cd do
loop
maintaining Inv|x, #x|
StOW(jl)
cd_kern; stow(k;) ACseq,
exit when b_p_e,
stow(jz)
cd_kerny stow(ky) ACseq,
exit when b_p_e,
stow(j3)
cd_kerny stow(ks) ACseqs
end loop
stow(!)
cd_suffiz
end whenever
fol_top_lev_code

Figure 87: Definition of P for a Proof Rule That Would Handle the “loop exit
when” Statement Having Exactly Two exit when Constructs

seeking an answer is: what are good ways to express a proof rule for a statement that
can have a variable number of constructs?

Figures 87 and 88 respectively define P and M for a proof rule that would han-
dle the “loop exit when” statement having exactly two exit when constructs. The
proofs of soundness and relative completeness would need to be adapted to accom-
modate this rule or a more general rule that would handle the “loop exit when”
statement having any number of exit when constructs. Another variation is that
the maintaining clause containg the loop invariant need not be the first construct;
it could appear anywhere in the loop. A rule or rules to handle this variation would
need to be developed.

5.3. OPPORTUNITIES FOR FUTURE WORK 203

M €O\ prec_top_lev_code (5.5)
alter all
stow(7)
ACseq,
confirm (Br_Cd) = (Inv[x ~ x;, #x ~ x;])
alter all stow(j;)
whenever Br_Cd do
assume Inv[x ~ x;,, #x ~ x;]
cd_kern; stow(k;) ACseq
end whenever
alter all stow(js)
whenever (Br_Cd) A (-MExp(b_p_e,[y ~ y;,])) do
assume X;, = X,
cd_kerny, stow(ks) ACseq,
end whenever
alter all stow(js)
whenever (Br_Cd) A (-MExp(b_p_e,[y ~ y,]))
A (FMExp(b-p-e5[y ~ y4,])) do
assume Xj, = Xg,
cd_kerng stow(ks) ACseq,
confirm Inv[x ~» Xy, , #X ~ X;]
end whenever
alter all stow(/)
whenever Br_Cd do
assume
(MExp(b_p-e[y ~ yy,])) V (MExp(b-p_e&5[y ~ yy,])))
A (MExp(bp-ey[y ~» ¥,) = (% = X&,))
A ((EMExp(b-p-e; [y ~ y4,]))
A (MExp(b-p-es]y ~ yi,)))) = (xi = xx,))
cd_suffiz
end whenever
fol_top_lev_code

Figure 88: Definition of M for a Proof Rule That Would Handle the “loop exit
when” Statement Having Exactly Two exit when Constructs

204 CHAPTER V. CONCLUSION

5.3.3 Investigating the Worth of the Indexed Method

In Chapter I we showed the plausibility that the indexed method is more natural than
the other existing methods of proving program correctness. Now that the indexed
method is known to be sound and relatively complete, investigations into its practical
value can be pursued without fear that the method is otherwise flawed. Researchers
could perform empirical studies to compare practitioners’ performance when using the
competing methods to prove program correctness. Such use could be tool-supported
or not.

While tool support is essential for making proofs of program correctness econom-
ically feasible, there is a reason for people to prove some programs correct without
the use of automated tools. Practitioners need to learn how to write specifications;
this learning can be acquired, in part, by practicing proofs by hand. Teachers could
explore uses of the indexed method in the classroom.

The choice of proof method may also be important for the speed and power of
the tool support. Perhaps the indexed method has the benefit of procrastinating
expression elaboration (substitution) so that appropriate decisions for simplification
can be made later. As Deutsch observed: “One interesting aspect of Scott’s attempt
to reduce the idea of a program to its mathematical essence is that it essentially
removes the idea of ‘control’ from programs and converts them to static objects.”
This conversion “may greatly simplify their analysis [5, p. VII-9].” On the other
hand, perhaps the structure of the program itself could be used by an automatic tool
to make appropriate decisions to reduce the number of theorems that must be proved
later. Deutsch [5, p. III-3] based his work on this premise.

The question facing us here is how/where to factor the problem of program verifi-
cation. The indexed method is “based strictly on theorem-proving power [5, p. VII-5]”
because it moves directly from the realm of assertive programs to that of mathemat-
ical assertions. It preserves the relationship between the assertion and the program
through the use of indices. The problem of proving the assertion is saved for later.
Such procrastination may be a liability or an asset. It could be an asset if the au-
tomation of proofs of simple, tedious theorems is not much harder than doing the
same in the context of the programs themselves. Preserving the relationship between
the assertion and the program certainly is an asset if the proof fails—because the
parts of the assertion that cause it to be invalid correspond directly to the parts of
the program that are at fault.

5.4. CONTRIBUTIONS 205

5.4 Contributions

We have defended the following thesis:

1. The traditional formal method of reasoning about the behavior of programs is
not natural.

2. There is a sound formal basis for (the partial-correctness portion of) a more
natural reasoning method.

3. The soundness of this new formal basis is strong in the sense that the method
is also logically complete (relative to the (in)completeness of the mathematical
theories used in the program’s behavioral specification and explanation).

We showed that the traditional formal method supports reasoning according to sys-
tematic strategies only, whereas the indexed method also supports as-needed strate-
gies. Evidence suggests that people use both as-needed and systematic strategies to
reason about programs. Hence, the indexed method provides better support for peo-
ple’s natural tendencies. We formally defined the syntax and denotational semantics
of an imperative, procedural, assertive progamming language. We gave a formal def-
inition for the validity of these assertive programs. We established the formal proof
rules of the indexed method. Finally, based on our definition of validity, we proved
the system of proof rules to be both sound and relatively complete.

Beyond establishing the three-part thesis we set out to defend, a chief contribution
of this work is the novelty of the proof of soundness and relative completeness. It is
easy to be skeptical about the indexed method; how can an if-then-else statement be
correctly transformed into a sequence of statements in which both the former “then”
and “else” parts are always executed? The branch conditions play a key role, of
course, but how are we to show that their role is proper? Much of the answer lies in
the assert status, originally invented to handle external procedures [38]. The assert
status mimics logical implication, enabling an implication to represent all possible
executions. When coupled with the assert status, the indexed variables (and index
state) permit simultaneous (parallel) processing of statements arranged in a sequence
of statements. In other words, they permit simplifying the abstract syntax tree from
top to bottom rather than from back to front or front to back.

Another puzzle that required solution was the removal of executable statements,
replacing them with assume and confirm statements. Executable statements change
the current state; if an executable statement is simply removed, the current state no
longer changes at that point, retaining its value from the last time it was changed.

206 CHAPTER V. CONCLUSION

This dilemma was solved by including one or more alter all statements among the re-
placements for an executable statement. The “setup” component of the environment
was introduced to explain the semantics of alter all.

The level of detail we have used in presenting the syntax, semantics, proof rules,
and proofs is rare. We hope this presentation of detail reduces the mystery sometimes
associated with the logic of computer programming.

