Computer Program Verification: Improvements for Human Reasoning

By

Wayne David Heym, Ph.D.

The Ohio State University, 1995

Bruce W. Weide, Adviser

To ably create or modify computer programs that behave according to specification, programmers find it necessary to reason about their programs’ behavior. We have formalized, in a direct, natural way, the informal pattern of reasoning generally used with programs written in modular, imperative languages. This formal system provides a solid basis against which to check the soundness and (relative) completeness of an informal reasoning method.

Formal proof that a program meets a specification can be done in this new system or in existing systems (e.g., calculating weakest preconditions using Hoare-style axioms or using symbolic execution). Each system prescribes a way to translate the program-specification pair to a mathematical assertion whose truth implies that the program satisfies the specification. Alternative systems are distinguished, however, by how well they fit programmers’ informal reasoning methods. Programmers think of the effect that the execution of a given statement will have on variables’ values, and they consider what conditions must hold for those values in each branch of the program. The new method is organized accordingly, unlike previous methods, which are organized for the convenience of mathematicians.
COMPUTER PROGRAM VERIFICATION:
IMPROVEMENTS FOR HUMAN REASONING

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of The Ohio State University

By

Wayne David Heym, B.Phil., M.S., M.S.

* * * * *

The Ohio State University

1995

Dissertation Committee: Approved by
Bruce W. Weide Adviser
William F. Ogden
Stuart H. Zweben

Department of Computer and Information Science
For my loving wife, Kimberly Wells Heym
ACKNOWLEDGMENTS

My advisor, Bruce W. Weide, has guided and encouraged me through all the stages of graduate study, ever since my first visit to the campus. I am grateful for his wisdom in suggesting the topic for this dissertation. The number of helpful suggestions and ideas Bruce has offered in our regular meetings together is beyond counting, and his steadfast encouragement has helped me to persevere. I am thankful for William F. Ogden and his insightful, skeptical approach to my work. More than anyone else, he has guided the form of the proof rules, the explanation of the semantics, and the presentation of the proofs of soundness and relative completeness. Bill’s hearty and healthy skepticism led the way to identifying the crucial ideas in the soundness proofs. Stuart H. Zweben encouraged me to work with him on testing and was instrumental in helping me learn most of what I know about the subject. He persevered in getting me to properly defend, with reference to the literature, the claim that my proposed new method, the indexed method of correctness proof, is more natural than the existing method. Stu’s careful reading and corrections of early drafts were invaluable, and he completed his readings with amazing, and much appreciated, speed. These three professors regularly meet with a group of students interested in the effective production of quality software from the standpoint of reusability—the Reusable Software Research Group (RSRG) at The Ohio State University. The participants in RSRG have helped me learn many of the important issues in software engineering. This thesis has benefited greatly from the RSRG’s intelligently dedicated effort to learn how to do software right.

We gratefully acknowledge the support of the National Science Foundation through grants CCR-9111892 and CCR-9311702; the Advanced Research Projects Agency under ARPA contract number F30602-93-C-0243, monitored by the USAF Material Command, Rome Laboratories, ARPA order number A714; and the Army Research Office through grant DAAH04-95-1-0457.
VITA

July 3, 1956 ... Born - Cleveland, Ohio

1978 .. B.Phil. Interdisciplinary Studies, Miami University

1980 .. M.S. Operations Research, Cornell University

1980-1983 .. Programmer/Analyst I, Eastman Kodak Company

1984-1988 .. Research Support Specialist, Cornell University

1988-1989 .. University Fellow, The Ohio State University

1989 .. M.S. Computer and Information Science, The Ohio State University

1989-1991 .. Graduate Teaching Associate, The Ohio State University

1991-1995 .. Graduate Research Associate, The Ohio State University

1994-1995 .. Instructor of Computer Science, Otterbein College

Publications

Research Publications

Fields of Study

Major Field: Computer and Information Science

Studies in:

- Software Engineering
 - Prof. Bruce W. Weide
- Programming Languages
 - Prof. Wolfgang W. Kuechlin
- Theory of Computation
 - Prof. Timothy J. Long
Table of Contents

DEDICATION ... iii

ACKNOWLEDGMENTS ... v

VITA .. vii

LIST OF TABLES .. xiii

LIST OF FIGURES .. xv

CHAPTER	PAGE
I Introduction ... 1
 1.1 How People Want to Reason About Program Behavior 3
 1.2 Formal Bases for Reasoning 5
 1.3 The Problem ... 8
 1.4 The Thesis ... 9
 1.5 Traditional Formal Reasoning Is Not Natural 9
 1.5.1 An Example of Traditional Reasoning 11
 1.5.2 An Example of More Natural Reasoning 13
 1.5.3 Changing the Postcondition 24
 1.5.4 Conclusions ... 26
 1.6 Importance of Proving Soundness and Completeness 27
 1.7 Outline of Dissertation 30

II Syntax and Semantics .. 31
 2.1 Syntax .. 32
 2.1.1 Aspects of the Syntax That Are Context-Free 32
 2.1.2 Aspects of the Syntax That Are Not Context-Free 38
2.2 Semantics 41
 2.2.1 Semantic Space 43
 2.2.2 Semantic Definition 48
 2.2.3 Validity 57

III Proof Rules 61
 3.1 Assertive Program Language Subsets 63
 3.2 How the Rules are Defined 68
 3.3 The Context Attribute 70
 3.4 The Bridge Rule 72
 3.5 The Rule for assume 78
 3.6 The Rule for Procedure Call 80
 3.7 Rules for Selection 83
 3.8 The loop while Rule 89
 3.9 The Rule for confirm 92
 3.10 The Rule for Empty Guarded Blocks 95
 3.11 The Rule for alter all 95
 3.12 The Rule for Consecutive assume Statements 98
 3.13 The assume-confirm Rule 103
 3.14 The Rule for Consecutive confirm Statements ... 103
 3.15 The Rule of Inference Bridging Predicate Logic and the Indexed Method 106
 3.16 Example Application of the loop while Rule 107
 3.17 Summary 110

IV Soundness and Relative Completeness 111
 4.1 Soundness 111
 4.2 Relative Completeness 112
 4.3 General Auxiliary Lemmas 119
 4.3.1 Proof Rules Are Well-Formed 119
 4.3.2 Factoring Statement Sequences 123
 4.3.3 Shallow Lemmas 123
 4.3.4 Deeper Lemmas 125
 4.3.5 Negative-Branch-Condition Independence 138
 4.3.6 Internal-Index Independence 153
 4.4 Soundness Lemmas 154
 4.5 Relative Completeness Lemmas 178
4.5.1 Related Valid Program Differing in Assertions Only 178
4.5.2 System of Rewrite Rules Is Terminating 178
4.5.3 Preservation of Invalidity in the Program Direction 181
4.5.4 The loop while Rule . 191
4.5.5 The Procedure Call Rule . 193
4.6 Relaxing a Simplifying Assumption 194
4.7 Summary . 196

V Conclusion . 197

5.1 Informal and Formal Indexed Methods 197
5.2 Relationships Among Methods 198
5.3 Opportunities for Future Work 200
 5.3.1 Miscellaneous Issues 200
 5.3.2 The “loop exit when” Rule 201
 5.3.3 Investigating the Worth of the Indexed Method . . . 204
5.4 Contributions . 205

BIBLIOGRAPHY . 207

List of Tables

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nonterminal Symbols Whose Definitions Are Assumed</td>
<td>33</td>
</tr>
<tr>
<td>2 Multipliers for Function Meas</td>
<td>179</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human Reasoning and Formal Bases</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>A Specification of Procedure Set_Maximum</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>An Implementation for Procedure Set_Maximum</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Traditional Back Substitution Method: First Step</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Traditional Back Substitution Method: Second Step</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Traditional Back Substitution Method: Third Step</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Traditional Back Substitution Method: Fourth Step</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Traditional Back Substitution Method: Final Assertion</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Indexed Method: Mark Between-Statement Spaces</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Indexed Method: Mark Each Branch Condition</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>Indexed Method: Write Obligation at Last Position</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Indexed Method: Replacing an Assignment Statement with a Fact</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Indexed Method: Replacing the Second if-then Statement with Two Facts</td>
<td>19</td>
</tr>
</tbody>
</table>
14 Indexed Method: Replacing Statements Inside Branch Conditions with Facts ... 20
15 Indexed Method: Replacing the First if-then Statement with Two Facts 21
16 Indexed Method: Sequence of Facts and Obligations 22
17 Indexed Method: Final Assertion 23
18 Another Correct Implementation for Procedure Set_Maximum 25
19 An Improved Specification: Procedure Useful_Set_Max 25
20 Evidence of Unsoundness: First Step 28
21 A Specification of Procedure Stay_two 29
22 Evidence of Unsoundness: Second Step 29
23 Evidence of Unsoundness: Third Step 29
24 Context-free Grammar of Assertive Programs 39
25 Specification of Procedure Set_State_by_Addition 40
26 Specification of Procedure Add 41
27 Definition of Domains in the Semantic Space 45
28 Six Projection Functions on Environments 48
29 Notation for Environment Named “env” 49
30 Nested Loops and Old Variable Names 56
31 Transforming Programs to Mathematical Assertions in Phases 62
32 Context-free Grammar of Subsets of Assertive Programs 66

xvi
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammar Productions Restricted for <code><p_body></code></td>
<td>67</td>
</tr>
<tr>
<td>Grammar Productions Restricted for <code><in_code></code>, <code><cd_prefix></code>, <code><cd_suffix></code>, and <code><cd_kern></code> Inside Selection or Iteration, But Not Part of Procedure Body</td>
<td>67</td>
</tr>
<tr>
<td>Grammar Productions Restricted for <code><in_code></code>, <code><cd_prefix></code>, <code><cd_suffix></code>, and <code><cd_kern></code> Outside Selection and Iteration, and Not Part of Procedure Body</td>
<td>67</td>
</tr>
<tr>
<td>Grammar Productions Restricted for <code><top_lev_code></code></td>
<td>68</td>
</tr>
<tr>
<td>Example Subgoal</td>
<td>70</td>
</tr>
<tr>
<td>Example Context</td>
<td>71</td>
</tr>
<tr>
<td>Application of Krone’s Procedure Declaration Rule</td>
<td>71</td>
</tr>
<tr>
<td>Equations Defining the Bridge Rule</td>
<td>73</td>
</tr>
<tr>
<td>Grammatic Derivation of Body of Change_X</td>
<td>74</td>
</tr>
<tr>
<td>Grammatic Derivation of Stows_Added(Body of Change_X)</td>
<td>75</td>
</tr>
<tr>
<td>Application of the Bridge Rule: Inst(\mathcal{M})</td>
<td>76</td>
</tr>
<tr>
<td>Equations Defining the Rule for <code>assume</code></td>
<td>78</td>
</tr>
<tr>
<td>First Application of Rule for <code>assume</code></td>
<td>79</td>
</tr>
<tr>
<td>Equations and Additional Syntactic Restriction Defining the Rule for Procedure Call</td>
<td>81</td>
</tr>
<tr>
<td>First Application of Procedure Call Rule</td>
<td>82</td>
</tr>
<tr>
<td>Equations Defining the Rule for Selection in the Absence of an <code>else</code> Clause</td>
<td>84</td>
</tr>
</tbody>
</table>

xvii
Definition of \mathcal{P} for the Rule for Selection in the Presence of an else Clause .. 85

Definition of \mathcal{M} for the Rule for Selection in the Presence of an else Clause .. 86

Second Application of Rule for assume ... 87

Application of Rule for Selection in the Presence of an else Clause . 88

Definition of \mathcal{P} for the loop while Rule 90

Definition of \mathcal{M} for the loop while Rule 91

Equations Defining the Rule for confirm .. 93

Application of Rule for confirm ... 94

Third Application of Rule for assume ... 96

Second Application of Procedure Call Rule 97

Equations Defining the Rule for Empty Guarded Blocks 98

First Application of Rule for Empty Guarded Blocks 99

Application of Three Different Rules ... 100

Equations and Additional Syntactic Restriction Defining the Rule for alter all ... 101

Seven Applications of the Rule for alter all 101

Equations Defining the Rule for Consecutive assume Statements ... 102

Four Applications of the Rule for Consecutive assume Statements ... 102
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Equations Defining the assume-confirm Rule 103</td>
</tr>
<tr>
<td>67</td>
<td>An Application of the assume-confirm Rule 104</td>
</tr>
<tr>
<td>68</td>
<td>Equations Defining the Rule for Consecutive confirm Statements .. 104</td>
</tr>
<tr>
<td>69</td>
<td>An Application of the Rule for Consecutive confirm Statements .. 105</td>
</tr>
<tr>
<td>70</td>
<td>Five Rule Applications .. 106</td>
</tr>
<tr>
<td>71</td>
<td>Mathematical Assertion in Context C' 107</td>
</tr>
<tr>
<td>72</td>
<td>Example: Iteration ... 108</td>
</tr>
<tr>
<td>73</td>
<td>Application of the loop while Rule 109</td>
</tr>
<tr>
<td>74</td>
<td>A Valid Assertive Program .. 113</td>
</tr>
<tr>
<td>75</td>
<td>An Invalid Assertive Program 115</td>
</tr>
<tr>
<td>76</td>
<td>An Assertive Program That Is Valid According to Functional Semantics .. 117</td>
</tr>
<tr>
<td>77</td>
<td>Environments Defined for \mathcal{P} of the Rule for Selection in the Presence of an else Clause 156</td>
</tr>
<tr>
<td>78</td>
<td>Environments Defined for \mathcal{M} of the Rule for Selection in the Presence of an else Clause 157</td>
</tr>
<tr>
<td>79</td>
<td>Environments Defined for \mathcal{P} of the Rule for Selection in the Absence of an else Clause 161</td>
</tr>
<tr>
<td>80</td>
<td>Environments Defined for \mathcal{M} of the Rule for Selection in the Absence of an else Clause 162</td>
</tr>
<tr>
<td>81</td>
<td>Environments Defined for \mathcal{P} of the loop while Rule 164</td>
</tr>
<tr>
<td>82</td>
<td>Environments Defined for \mathcal{M} of the loop while Rule 165</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>83</td>
<td>Environments Defined for \mathcal{P} and \mathcal{M} of the Rule for Procedure Call</td>
</tr>
<tr>
<td>84</td>
<td>The Rule for a Procedure Call That Is Not the First Statement Within a $\textit{whenever}$ Statement</td>
</tr>
<tr>
<td>85</td>
<td>Action Directions Differ Among the Three Methods</td>
</tr>
<tr>
<td>86</td>
<td>Redefinition of $\langle \text{iter} \rangle$</td>
</tr>
<tr>
<td>87</td>
<td>Definition of \mathcal{P} for a Proof Rule That Would Handle the “$\textit{loop exit when}$” Statement Having Exactly Two $\textit{exit when}$ Constructs</td>
</tr>
<tr>
<td>88</td>
<td>Definition of \mathcal{M} for a Proof Rule That Would Handle the “$\textit{loop exit when}$” Statement Having Exactly Two $\textit{exit when}$ Constructs</td>
</tr>
</tbody>
</table>