
GATOR: Program Analysis Toolkit For Android

PRESTO Research Group

September 9, 2019

1 Overview

GATOR is a Program Analysis Toolkit For Android. It requires a Unix-like operating system to run, and
has been tested on Ubuntu 18.04 and Mac OS X 10.14. The toolkit takes as input an APK file and runs
analyses on top of the Soot program analysis framework.1

This release (version 3.7) includes the source code for the static analyses described in our CGO’14 [1],
ICSE’15 [4], ASE’15 [5], CC’16 [2] and JASE’18 [3] papers:

• GUI structural analysis [CGO’14] with extensions and modifications.

• Callback control flow-analysis [ICSE’15] with minor extensions.

• Analysis for constructing the window transition graph (WTG) [ASE’15, JASE’18] with minor exten-
sions.

• The analysis from [ICSE’15] is included as a building block of WTG construction and is not intended
for independent use.

• The analysis from [CC’16] is included as a client based on the WTG.

• The Android programs used in the experiments for these papers are also included.

Compared to the last release (version 3.6), the following changes were made:

• Bug fixes and performance enhancements, based on extensive testing with over 17K popular apps
from Google Play.

• Faster version of the GUI structural analysis (option -fast) useful for initial testing and debugging
of client analyses.

• Options to enable string analysis of GUI widget text properties.

2 Setup

GATOR can be run as a Docker container without additional manual setup. To run in a native environment
on a local machine, JDK, Python 3 and Android SDK are required.

1https://sable.github.io/soot

1

https://sable.github.io/soot

2.1 JDK

JDK 1.8+ is required to run GATOR. Please refer to https://www.oracle.com/technetwork/
java for details of how to obtain a copy of the JDK.

2.2 Python

Python 3 is required to run GATOR. Please refer to https://www.python.org for details of how to
obtain a copy of Python 3 runtime.

2.3 Android SDK

Android SDK is required to run GATOR. It can be downloaded from https://developer.android.
com. After installing the SDK, platform files for individual API levels should be installed. For example, if
you want to analyze an Android application developed for API level 17, platform files for android-4.2.2
must be installed. Android Studio includes a user-friendly SDK Manager with graphical user interface.2 As
a backup, GATOR will try its best to install missing files via sdkmanager3 if specific API levels are not
present.

In order to run GATOR on example apps included in this package, at least following API levels and
Google APIs should be installed:

• android-8

• android-10

• android-14

• android-15

• android-16

• android-17

3 Usage

3.1 Build GATOR

3.1.1 With Docker

$ docker build -t gator . # build image
$ docker run -it --rm --name running-gator gator sh # start a shell

3.1.2 In Local Environment

Two environment variables need to be defined, GatorRoot should be assigned the path which contains the
AndroidBench and gator subfolders and ANDROID SDK should be assigned the path to the Android
SDK, following the commands below:

$ export GatorRoot=/path/to/root/of/gator
$ export ANDROID_SDK=/path/to/android/sdk

2Note that some API levels and their Google APIs are only visible after unchecking the “Hide Obsolete Packages” box.
3https://developer.android.com/studio/command-line/sdkmanager

2

https://www.oracle.com/technetwork/java
https://www.oracle.com/technetwork/java
https://www.python.org
https://developer.android.com
https://developer.android.com
https://developer.android.com/studio/command-line/sdkmanager

GATOR uses Gradle4 to manage its dependencies. To build GATOR, go to gator sub-directory and
run the gator script as follows:

$ cd $GatorRoot/gator
$./gator b

3.2 Run Analyses

3.2.1 Using The gator Script

The release provides a Python script at $GatorRoot/gator/gator to invoke GATOR for the analysis
of any arbitrary application in APK format. The basic options for gator is:

gator analyze [-h] [-d] [-v] [--sdk ANDROID_SDK] [--log LOG_FILE]
[-t TIMEOUT] [-g] [--api API_LEVEL] -p APK

The usage of these options is printed when -h is provided. Below we give some examples. Option -v
enables verbose mode of GATOR, which will increase the details of logs printed to the stdout. Option
--api overrides the API level information sent to GATOR. By default, GATOR will use the application’s
target API level. But we have seen cases that applications use APIs from API levels higher than their
target API levels that may cause unexpected problems with GATOR. Option -g will allow GATOR to load
Google Play Service libraries if they exist under ANDROID SDK directory. Some old applications requires
this option. Option -t sets the timeout (3600 seconds by default). In our experience with thousands of apps,
a value of 300 seconds works reasonably well for most apps.

The options shown above is specific for the gator script. Parameters and options of GATOR (i.e., the
main Java program) should be added to control the behavior of the static analyses in GATOR. As an example,
if you want to perform analysis on an APK located at /tmp/example.apk using WTGDemoClient, use
following command:

$./gator a -p /tmp/example.apk -client WTGDemoClient

The ./gator a here is a shortcut for ./gator analyze. The -client WTGDemoClient (un-
known to the gator script) is passed to GATOR. The client is eventually invoked inside GATOR via reflec-
tion. As another example, if you want to perform analysis on the same APK using EnergyAnalysisClient,
use following command:

$./gator a -p /tmp/example.apk -client EnergyAnalysisClient -cp WTPK5

Here -cp is a shortcut for passing client parameters to GATOR. Please note that, for some obfuscated
apps, the apktool, which we used to extract APKs, may fail to decode correct tag names in the layout
XML files. Unless apktool fix this issue, GATOR may crash when performing analyses on these apps.
We will introduce more about parameters for GATOR (the main program, not the script) in Section 3.2.3.

3.2.2 Using Provided Script for Demo Applications

The release includes a script at $GatorRoot/AndroidBench/guiAnalysis.py that allows to run
GATOR on applications in the [CGO’14], [ICSE’15], [ASE’15] and [CC’16] papers.

There are several options to run the guiAnalysis.py script. The easiest is as follows:

$ cd $GatorRoot/AndroidBench
$./guiAnalysis.py runAll

4https://gradle.org

3

https://gradle.org

This performs analyses on applications with default clients. If you only want to perform analysis on
applications in [CGO’14] and [ASE’15], replace the option runAll with runAllCGO. If you only want
to perform analysis on applications in [CC’16], replace the option with runAllEnergy. It is also possible
to perform analysis on a single application, e.g., to perform analysis on apv, you can use:

$./guiAnalysis.py apv

The applications available are : apv, astrid, barcodescanner, beem, connectbot, fbreader,
k9, keepassdroid, mileage, mytracks, notepad, npr, openmanager, opensudoku, sipdroid,
supergenpass, tippytipper, vlc, vudroid and xbmc from [CGO’14] and [ASE’15], and droidar,
droidar-fixed, osmdroid, osmdroid-fixed, recycle-locator, recycle-locator-fixed,
sofia, sofia-fixed, ushahidi, ushahidi-fixed, speedometer, heregps, whereami,
locdemo and wigle from [CC’16].

If you want to change the analysis client used for analysis, please modify the configurations in $GatorRoot/
AndroidBench/cgo.json and $GatorRoot/AndroidBench/cc16.json.

Note that in the [CC’16] analysis results for ushahidi and ushahidi-fixed, the detected energy
defects reported by GATOR are for an activity named LocationMap. This activity indeed contains a
defect. However, it is not accessible by the user and therefore we removed it from the published paper.

3.2.3 Options and Parameters

GATOR provides several options to control its analyses. There are two categories of options, regular pa-
rameters (denoted by PARAM in the JSON config file mentioned above) and client parameters (denoted
by CLIENT PARAM). Regular parameters control the behavior of GATOR before the client analysis, while
client parameters are defined per client analysis. There is no constraint for these parameters and you could
define them upon your client’s needs. For a complete list of regular parameters/options allowed in GATOR,
please refer to the parseArgs method in class presto.android.Main.

As an example, -worker NUM OF THREADS is used to define the maximum number of threads
GATOR should use. In default setting, GATOR analyzes an application using 16 threads. However, in
rare cases, it may experience concurrency issues since part of the underlying Soot framework is not thread-
safe. In this case, you can put -worker 1 in PARAM. If the gator script is used, you can add it at the
end of the command, e.g., ./gator a -p some.apk -client SomeClient -worker 1.

As another example, -enableStringPropertyAnalysis is used to enable the string analysis
feature of GATOR, which allows the GUI structural analysis to process the text attribute of each widget de-
fined in the app’s layout XML files, as well as set programmatically by calls to view.setText(String)
and view.setText(int). Another option -enableStringAppendAnalysis allows GATOR to
process StringBuilder.append operations for string concatenation. Both options will increase the
overhead of GATOR so they are not enabled by default.

As the last example, option -fast is intended for prototyping. If enabled, only one iteration of the
fixed point computation is performed. It does not produce a complete solution, but it may be useful initial
testing and debugging of client analyses.

As introduced above, client parameters can be used to transfer parameters to the analysis client. For
example, for applications used in the [CC’16] paper, we use the option -clientParam WTPK5 (or -cp
WTPK5 for short) for the EnergyAnalysisClient to define the maximum length of WTG path it should
generate. If you want to change this limit to 3, you can replace this option to -clientParam WTPK3.
All CLIENT PARAM can be accessed programmatically via the following global variable anywhere in your
client:

public class presto.android.Configs {
public static Set<String> presto.android.Configs.clientParams;

4

}

4 Creating Your Own Client

In this section, we show how to create a customized GUI analysis client from scratch.

4.1 GUIAnalysisClient

In order to implement a customized GUIAnalysisClient, one needs to add her own class which im-
plements the GUIAnalysisClient interface in presto.android.gui.clients package. The
declaration of GUIAnalysisClient interface is:

public interface GUIAnalysisClient {
public void run(GUIAnalysisOutput output);

}

A client is invoked after GATOR’s default GUI analysis in [CGO’14], including reading XML files,
determining the relationships between widgets, creating abtract GUI objects, etc. When this is finished, if
one has specified some client via options for gator (described in the previous section), the run method
in the client will be called. The parameter output of the run method provides the results from the GUI
analysis in [CGO’14], which can be further used to build the GUI hierarchy or the Window Transition Graph
(WTG).

4.2 Build the GUI Hierarchy

We provide the GUIHierarchyPrinterClient for GUI hierarchy printing purposes. If you would like
to access the GUI hierarchy of the application within your own GUIAnalysisClient programmatically,
there are a few APIs to do that.

A basic example that print the GUI hierarchy to stdout is like this:

public class YourOwnClient implements GUIAnalysisClient {
@Override
public void run(GUIAnalysisOutput output) {
GUIHierarchy guiHier = new StaticGUIHierarchy(output);
List<GUIHierarchy.Activity> activities = guiHier.activities;
for (GUIHierarchy.Activity act : activities) {

dumpWindow(act, 0);
}

}

private String genIndent(int indent) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < indent; i++)

sb.append(" ");
return sb.toString();

}

private void dumpWindow(GUIHierarchy.ViewContainer w, int indent) {
if (w instanceof GUIHierarchy.Window) {

5

GUIHierarchy.Window win = (GUIHierarchy.Window) w;
Logger.verb("DUMPHIER", genIndent(indent) + "Window "

+win.getName());
} else if (w instanceof GUIHierarchy.View) {

GUIHierarchy.View v = (GUIHierarchy.View) w;
Logger.verb("DUMPHIER", genIndent(indent)

+ " View " + v.getType() + " " + v.getIdName());
}
for (GUIHierarchy.View v : w.getChildren()) {

dumpWindow(v, indent + 2);
}

}
}

The programmatic representation of the GUI hierarchy of an application can be built using GUIHierarchy
guiHier = new StaticGUIHierarchy(output) statement. The GUIHierarchy has a field
named activities which is a list of Activity objects, containing all declared activities of this ap-
plication. The views (widgets) declared in an activity can be accessed using getChildren() method,
which returns a list of View objects. The type of the View object can be retrieved using getType()
method. The numeric ID of the View object can be retrieved using getId() method. The ID name of the
View object can be retrieved using getIdName() method, as shown in the dumpWindow method in the
example. For more information, please refer to the StaticGUIHierarchy class.

4.3 Build the Window Transition Graph

The window transition graph (WTG) can be build inside a GUIAnalysisClient. A basic example is
like this:

public class TestingClient implements GUIAnalysisClient {
@Override
public void run(GUIAnalysisOutput output){
WTGBuilder wtgBuilder = new WTGBuilder();
wtgBuilder.build(output);
WTGAnalysisOutput ao = new WTGAnalysisOutput(output, wtgBuilder);
WTG wtg = ao.getWTG();
Collection<WTGEdge> edges = wtg.getEdges();
Collection<WTGNode> nodes = wtg.getNodes();
Logger.verb(mtdTag, "Number of nodes: "

+nodes.size() + "\tNumber of edges: "+ edges.size());
}

}

The example code shown above creates a WTG from the result saved in the output parameter. All
WTG nodes and WTG edges are stored in the WTG wtg variable. It then prints the number of WTG nodes
and edges on screen.

4.3.1 WTG Related APIs

We provide several APIs to access these nodes. As shown in the example above, WTG.getEdges() will
return all available edges in the WTG and WTG.getNodes() will return all available nodes in the WTG.

6

Every application has a launcher node which stands for starting the application from the launcher. This
node can be accessed by using:

public WTGNode WTG.getLauncherNode();

For each WTG node, the window (activity/dialog/menu) it represents can be accessed through:

public NObjectNode WTGNode.getWindow();

Any inbound WTG edges of a WTG node can be accessed by:

public Collection<WTGEdge> WTGNode.getInEdges();

Any outbound WTG edges of a WTG node can be accessed by:

public Collection<WTGEdge> WTGNode.getOutEdges()

For each WTG edge, its source and target window can be accessed through following APIs:

public WTGNode WTGEdge.getSourceNode();
public WTGNode WTGEdge.getTargetNode();

Each WTG edge is associate with an EventType, for example, it can be clicking on a button, or
pressing the BACK button. This information can be accessed through:

public EventType WTGEdge.getEventType();

The event handler triggered in this edge can be accessed through:

public Set<SootMethod> WTGEdge.getEventHandlers();

In some cases several possible event handlers may be associated with the same event; thus, this method
returns a set.

If the edge triggers window life cycle callbacks, these callback methods can be accessed by:

public List<EventHandler> WTGEdge.getCallbacks();

The sequence of lifecycle callbacks is provided as a list (i.e., the callbacks are ordered). These lifecycle
callbacks will occur after the GUI event handlers returned by method getEventHandlers() described
earlier. For historic reasons, this methods returns a helper EventHandler object. The EventHandler
object above is a wrapper for the SootMethod, which can be accessed via EventHandler.getEventHandler()
method.

Each WTG edge is annotated with a list of window stack operations, each element of which is a push
operation or a pop operation on a window. This information can be accessed by:

public List<StackOperation> WTGEdge.getStackOps();

The declaration of the StackOperation class is:

public class StackOperation {
public boolean isPushOp();
public NObjectNode getWindow();

}

The isPushOp() method will return whether current window stack operation is push. It will return
false if the window stack operation is pop. The getWindow() method will return the window this stack
operation is pushing or popping.

7

4.3.2 WTG Usage Example

Here is a demo of the APIs introduced above:

public class WTGDemoClient implements GUIAnalysisClient {
@Override
public void run(GUIAnalysisOutput output){
VarUtil.v().guiOutput = output;
WTGBuilder wtgBuilder = new WTGBuilder();
wtgBuilder.build(output);
WTGAnalysisOutput ao = new WTGAnalysisOutput(output, wtgBuilder);
WTG wtg = ao.getWTG();

Collection<WTGEdge> edges = wtg.getEdges();
Collection<WTGNode> nodes = wtg.getNodes();

Logger.verb("DEMO", "Application: " + Configs.benchmarkName);
Logger.verb("DEMO", "Launcher Node: " + wtg.getLauncherNode());

for (WTGNode n : nodes){
Logger.verb("DEMO", "Current Node: " + n.getWindow().toString());
Logger.verb("DEMO", "Number of in edges: "

+ Integer.toString(n.getInEdges().size()));
Logger.verb("DEMO", "Number of out edges: "

+ Integer.toString(n.getOutEdges().size()) + "\n");
}

for (WTGEdge e : edges){
Logger.verb("DEMO", "Current Edge ID: " + e.hashCode());
Logger.verb("DEMO", "Source Window: "

+ e.getSourceNode().getWindow().toString());
Logger.verb("DEMO", "Target Window: "

+ e.getTargetNode().getWindow().toString());
Logger.verb("DEMO", "EventType: " + e.getEventType().toString());
Logger.verb("DEMO", "Event Callbacks: ");
for (SootMethod m : e.getEventHandlers()) {
Logger.verb("DEMO", "\t"+ m.toString());

}
Logger.verb("DEMO", "Lifecycle Callbacks: ");
for (EventHandler eh : e.getCallbacks()) {
Logger.verb("DEMO", "\t"+ eh.getEventHandler().toString());

}
Logger.verb("DEMO", "Stack Operations: ");
for (StackOperation s : e.getStackOps()){
if (s.isPushOp())

Logger.verb("DEMO", "PUSH " + s.getWindow().toString());
else

Logger.verb("DEMO", "POP " + s.getWindow().toString());

8

}
}

}
}

This example prints out details information in the WTG nodes and WTG edges with the APIs intro-
duced above. There is another example client, presto.android.gui.clients.ASE15Client, in
GATOR’s source code. More advanced usages of the WTG could be found in that client.

5 Path Generation

We provide a generic class to perform WTG Path generation. The name of the class is DFSGenericPathGenerator.
As the name suggests. It performs depth-first traversal on the Window Transition Graph and will record the
path when certain users’ requirements are satisfied. One of its factory methods of this class is as follows:

public static DFSGenericPathGenerator create(
List<IPathFilter> pathFilters,
List<IPreEdgeFilter> edgeFilters,
List<WTGEdge> initEdges,
Map<String, List<List<WTGEdge>>> matchedPath,
boolean stopAtMatch,
boolean allowRepeatedEdge,
int K)

There are 2 interface objects required by this class. The first one is the interface IPathFilter, which
determines if the path traversed by DFSGenericPathGenerator satisfies the requirement of the user.
The declaration of this interface is:

public interface IPathFilter {
/**
* Specify the stop rule for the DFS traversal

*/
boolean match(List<WTGEdge> P, Stack<NObjectNode> S);

/**
* Return the name of the filter

*/
String getFilterName();

}

Whenever the DFSGenericPathGenerator generates a path, it calls the match method in the
IPathFilter, if the match method returns true, it means that the path is matched by the pattern defined
in this IPathFilter. The matched path will be recorded in matchedPath passed in the factory method.

Another interface, IEdgeFilter is used to determine if a WTG edge should be added to the generated
WTG path during the path expansion. The declaration of this interface is:

public interface IEdgeFilter {
/**
* Specify if Edge e should be discarded

* @param e Current edge

* @param P Current Path

9

* @param S Current WindowStack

* @return return true if this edge should be discarded. Otherwise

* return false

*/
boolean discard(WTGEdge e, List<WTGEdge> P, Stack<NObjectNode> S);

}

When the DFSGenericPathGenerator tries to add a new WTG edge into the current temporary
path, it calls the discard method in the IEdgeFilter. If the discard returns true, it means the edge
does not satisfy the requirement defined in this IEdgeFilter. The WTG Edge will be discarded.

The List<WTGEdge> initEdges parameter defines the starting point of the path generation. Every
WTG edge inside this list will be put in the first place in the generated path. This parameter should not be
empty.

The boolean parameter stopAtMatch defines the behavior of the DFS traversal when the match
method in IEdgeFilter returns true. When this boolean flag is set to true, which is its default value,
the DFS traversal will stop at this depth when all IPathFilter have been evaluated. The DFS traversal
will return the previous depth. If this boolean flag is set to false, the DFS traversal will continue no matter
what is returned by the match method.

The boolean parameter allowRepeatedEdge defines whether repeated edges are allowed in the
generated path. If it is set to true, the generated path might contain the same edge for multiple times,
which causes loops.

The integer parameter K defines the maximum length of the path. In our energy analysis, this value is
set to 5.

Here is an example which generates WTG paths from any activity with maximum length of 3:

public class PathGenerationDemoClient implements GUIAnalysisClient {
@Override
public void run(GUIAnalysisOutput output) {

//Perform WTG Construction
WTGBuilder wtgBuilder = new WTGBuilder();
wtgBuilder.build(output);
WTGAnalysisOutput ao = new WTGAnalysisOutput(output, wtgBuilder);
WTG wtg = ao.getWTG();

//Create a placeholder filter class
IPathFilter ph = new IPathFilter() {

@Override
public boolean match(List<WTGEdge> P, Stack<NObjectNode> S) {
return true;

}

@Override
public String getFilterName() {
return "PlaceHolder";

}
};

List<IPathFilter> pathFilterList = Lists.newArrayList();

10

pathFilterList.add(ph);

//Create Initial Edges.
//The path generation will begin from these
//Initial Edges

List<WTGEdge> initEdges = Lists.newArrayList();
for (WTGNode n : wtg.getNodes()){

if(!(n.getWindow() instanceof NActivityNode)){
//Ignore any window that is not Activity
continue;

}
List<WTGEdge> validInboundEdges = Lists.newArrayList();
for (WTGEdge curEdge : n.getInEdges()){
switch (curEdge.getEventType()) {

case implicit_back_event:
case implicit_home_event:
case implicit_rotate_event:
case implicit_power_event:

continue;
}
List<StackOperation> curStack = curEdge.getStackOps();
if (curStack != null && !curStack.isEmpty()) {

StackOperation curOp = curStack.get(curStack.size() - 1);
//If last op of this inbound edge is push
if (curOp.isPushOp()) {

NObjectNode pushedWindow = curOp.getWindow();
WTGNode pushedNode = wtg.getNode(pushedWindow);
if (pushedNode == n) {
validInboundEdges.add(curEdge);

}
}

}
}
initEdges.addAll(validInboundEdges);

}

Logger.verb("Demo", "Total Init Edges: " + initEdges.size());

//Create Output Map
Map<String, List<List<WTGEdge>>> outputMap = Maps.newHashMap();

DFSGenericPathGenerator dg = DFSGenericPathGenerator.create(
pathFilterList, null, initEdges, outputMap, false,false, 3);

dg.doPathGeneration();

Logger.verb("Demo", "K = " + 3);

11

Logger.verb("Demo", "Total path count: "
+ outputMap.get(ph.getFilterName()).size());

}
}

This example code uses the DFSGenericPathGenerator class to generate any path from any
Activity node of length less or equal to 3. It implements a IPathFilter that will always return
true, as the only requirement for the generated path is its length, which is already defined in the parameter
K.

The DFSGenericPathGenerator.doPathGeneration() method is invokde when the DFS
path generation starts. After the execution of this method, the recorded path can be accessed from pa-
rameter matchedPath passed in the factory method. The key of this map is the filter name defined in
IPathFilter.getFilterName() method.

References

[1] A. Rountev and D. Yan. Static reference analysis for GUI objects in Android software. In International
Symposium on Code Generation and Optimization, pages 143–153, 2014.

[2] H. Wu, S. Yang, and A. Rountev. Static detection of energy defect patterns in Android applications. In
International Conference on Compiler Construction, pages 185–195, 2016.

[3] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and A. Rountev. Static window transition
graphs for Android. International Journal of Automated Software Engineering, 25(4):833–873, Dec.
2018.

[4] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow analysis of user-driven callbacks
in Android applications. In International Conference on Software Engineering, pages 89–99, 2015.

[5] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev. Static window transition graphs for
Android. In IEEE/ACM International Conference on Automated Software Engineering, pages 658–668,
2015.

12

	Overview
	Setup
	JDK
	Python
	Android SDK

	Usage
	Build GATOR
	With Docker
	In Local Environment

	Run Analyses
	Using The gator Script
	Using Provided Script for Demo Applications
	Options and Parameters

	Creating Your Own Client
	GUIAnalysisClient
	Build the GUI Hierarchy
	Build the Window Transition Graph
	WTG Related APIs
	WTG Usage Example

	Path Generation

