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Abstract
Evaluating the complexity of an algorithm is an important
step when developing applications, as it impacts both its
time and energy performance. Computational complexity,
which is the number of dynamic operations regardless of
the execution order, is easy to characterize for affine pro-
grams. Data movement (or, I/O) complexity is more complex
to evaluate as it refers, when considering all possible valid
schedules, to the minimum required number of I/O between
a slow (e.g. main memory) and a fast (e.g. local scratchpad)
storage location.
This paper presents IOOpt, a fully automated tool that

automatically bounds the data movement of an affine (tilable)
program. Given a tilable program described in a DSL, it auto-
matically computes: 1. a lower bound of the I/O complexity
as a symbolic expression of the cache size and program pa-
rameters; 2. an upper bound that allows one to assess the
tightness of the lower bound; 3. a tiling recommendation
(loop permutation and tile sizes) that matches the upper
bound. For the lower bound algorithm which can be applied
to any affine program, a substantial effort has been made to
provide bounds that are as tight as possible for neural net-
works: In particular, it extends the previous work of Olivry
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et al. to handle multi-dimensional reductions and expose
the constraints associated with small dimensions that are
present in convolutions. For the upper bound algorithm that
reasons on the tile band of the program (e.g. output of a
polyhedral compiler such as PluTo), the algebraic compu-
tations involved have been tuned to behave well on tensor
computations such as direct tensor contractions or direct
convolutions. As a bonus, the upper bound algorithm that
has been extended to multi-level cache can provide the pro-
grammer with a useful tiling recommendation.
We demonstrate the effectiveness of our tool by deriv-

ing the symbolic lower and upper bounds for several tensor
contraction and convolution kernels. Then we evaluate nu-
merically the tightness of our bound using the convolution
layers of Yolo9000 and representative tensor contractions
from the TCCG benchmark suite. Finally, we show the perti-
nence of our I/O complexity model by reporting the running
time of the recommended tiled code for the convolution
layers of Yolo9000.

CCS Concepts: • Theory of computation→Design and
analysis of algorithms; • Software and its engineering
→ Automated static analysis.
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1 Introduction
Over the last few decades, the rate of improvement of the
peak arithmetic (computational) performance (GFLOPs) of
processors has exceeded the rate of improvement of the
peak data movement bandwidth from memory. The machine
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for(i = 0; i < Ni; i++)
for(j = 0; j < Nj; j++)
for(k = 0; k < Nk; k++)
C[i][j] += A[i][k] * B[k][j];

for(i1 = 0; i1 < Ni; i1+=Ti)
for(j1 = 0; j1 < Nj; j1+=Tj)
for(k = 0; k < Nk; k++)
for(i = i1; i < i1+Ti; i++)
for(j = j1; j < j1+Tj; j++)
C[i][j] += A[i][k] * B[k][j];

Listing 1. Matrix-matrix multiplication (untiled and tiled
versions)

balance of systems, the ratio of peak computational perfor-
mance to memory performance [9], has steadily increased.
Unless a computation has an operational intensity (ratio of
number of executed arithmetic operations to number of data
elements moved from/to main memory) that exceeds the
machine balance, the performance achieved will be limited
by the memory bandwidth bottleneck.
While the computational complexity of algorithms, that

is, the number of arithmetic/logic operations, is well under-
stood, their data movement complexity, that is, the minimum
required number of data movement operations to/frommem-
ory, is very challenging to characterize. The early work of
Hong and Kung [20] devised a methodology for (manually)
deriving asymptotic data movement lower bounds (they used
the term I/O lower bounds, and we will do so too). Recent
work in program analysis [14, 28], using novel mathematical
ideas [11], has resulted in tools for the automated derivation
of I/O lower bounds for affine computations, as expressions
of symbolic problem size parameters and the size of fast
memory. Thus, for specific problem sizes and cache size, a
lower bound on the minimum required I/O can be computed.
However, an open problem has been the assessment of the
tightness of the derived lower bounds for programs. Indeed,
zero is a valid lower bound on the I/O for any computation
and any cache size, but it is a useless and trivial lower bound.

The only way of establishing the tightness of an I/O lower
bound is to find a matching upper bound on I/O for the
computation, by exhibiting an implementation that attains
it. Consider the example of matrix-matrix multiplication.
Hong and Kung established that for a fast memory of size
𝑆 , at least Ω

(
𝑁 3
√
𝑆

)
I/O operations would be required for any

valid schedule for the standard 𝑂 (𝑁 3) algorithm for matrix-
matrix multiplication. More recent analysis [36] established
a lower bound with scaling constant as 2𝑁 3

√
𝑆
− 3𝑆 , which

exactly matches the highest order term for the data move-
ment of an optimally tiled implementation of matrix-matrix
multiplication (see Listing 1).

In this paper, we present the first automated static
analysis tool (IOUB) that derives parametric expres-
sions for I/O upper bounds for affine computations. In
addition, we present an improvement to the prior state of
the art in automated I/O lower bounds (IOLB), of particular
relevance to modeling the I/O complexity of convolutional
neural networks. IOOpt, which combines the IOLB and IOUB
tools, has been used to tightly bound the inherent I/O com-
plexity of two important classes of affine computations that
we highlight as case studies in this paper: the family of tensor
contraction expressions, and convolutional neural networks.
IOOpt can also recommend a tiled code (with appropriate
loop permutation and tiles sizes) that minimizes the data
movement as modeled in our formulation. The complete
flow of our analysis is depicted in Figure 1.

The paper makes the following contributions:
1. Design of the first algorithm for computing a symbolic

over-approximation of the data movement for a para-
metric (multi-dimensional) tiled version of an affine
code;

2. Design of the first fully automated scheme for express-
ing as an operations research problem the minimiza-
tion of this data movement expression;

3. Extension of the state of the art [28] for the derivation
of tight I/O complexity lower bounds in the presence
of small dimensions;

4. Integration of these techniques into a tool that com-
putes, for a class of affine computations: 1. an arith-
metic complexity; 2. proved lower and upper bounds
on I/O complexity; 3. a suggested tiled code that mini-
mizes data movement.

We evaluate our tool by considering both the layers (con-
volutions) of Yolo9000 [32] and the main benchmarks (tensor
contractions) of the TCCG suite [37]. To assess the tightness
of our lower and upper data movement bounds, we compute
those bounds for a range of cache sizes.

The rest of the paper is organized as follows: Sec. 2 presents
a high-level overview of our contributions through an exam-
ple. Sec. 3 provides some useful formalism along with the
required background. Sec. 4 describes our upper bound algo-
rithm. Sec. 5 describes our contributions to the lower bound
algorithm. Sec. 6 reports the results of our experiments. Sec. 7
discusses related work, before Sec 8 concludes.

2 Overview
I/O lower and upper bounds. Let us consider a simple

memory model with two levels: a small and fast memory (of
size 𝑆) and a slow but infinite memory. We assume that a
piece of data has to be in the fast memory in order to be used
in a computation, but we have the possibility of transferring
data between the two memory levels. Now, given a program,
supposing we can reorder operations and have complete
control over data transfers, how many transfers between these
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Figure 1.Organisation of the different components of IOOpt

memories do we need to perform at the very least in order to
compute it? This quantity is called the I/O complexity of
a program. To compute it exactly is usually intractable, as
one would have to simulate every possible valid schedule of
operations. Hence the need to find lower and upper bounds
on this complexity.

It is possible to derive a lower bound of the I/O complexity
by studying the structure of the program through a graph
representation called a CDAG, which represents operations
and data dependencies between computations [3, 20, 28].
However, we also wish to evaluate how tight this bound
is. Thus, we seek an upper bound of the smallest volume of
I/O required by a computation. This upper bound can be
obtained by simply exhibiting a schedule of the computa-
tion that has this volume of I/O. Our contribution is a novel
algorithm which finds such a schedule, then compares the
corresponding upper bound on the I/O to the lower bound,
in order to evaluate its tightness. We also improve the state-
of-the-art automated lower bound method, allowing us to
find matching bounds in more cases.
In the rest of this section, we apply our algorithms in-

formally to the matrix multiplication example described in
Listing 1, in order to provide some intuitions on how they
work. This program has three parameters 𝑁𝑖 , 𝑁 𝑗 and 𝑁𝑘 ,
corresponding to matrix sizes. Its arithmetic complexity is
𝑁𝑖𝑁 𝑗𝑁𝑘 .

Derivation of an upper bound on the I/O complexity.
Any valid schedule of a program provides an upper bound
on its I/O complexity. For a given schedule, a memory allo-
cation strategy, and fixed numerical values of memory size
𝑆 and loop bounds, it is sufficient to count loads and stores.
However, the goal is to get a symbolic bound.
For the category of programs we consider, the key trans-

formation to get an I/O-efficient schedule is tiling [42]. Thus,
we first designed a method to compute an upper bound of
the required I/O of a given tiled program: For a given tiled
program with parametric tile sizes, IOUB automatically com-
putes the corresponding I/O cost (a symbolic expression as a
function of program parameters and tile sizes) along with the
footprint constraint (an analytical inequality that bounds the
tile footprint with the cache size 𝑆). This expression can then
be used by IOUB to derive an upper bound on the actual I/O

complexity, that is, to find the best tile sizes that minimize
the I/O cost under the footprint constraint.
Another key component is the selection of a subset of

relevant tiling schemes (loop permutation). The bottom code
in Listing. 1 corresponds to the best tiling scheme found by
IOUB: here, 𝑇𝑖 and 𝑇𝑗 are tile sizes along loop dimensions
𝑖 and 𝑗 , and tiles have size 1 along dimension 𝑘 . The corre-
sponding symbolic expressions of the I/O cost and footprint
constraint found by IOUB are IO = 𝑁𝑖𝑁 𝑗𝑁𝑘

(
1
𝑇𝑖

+ 1
𝑇𝑗

+ 1
𝑁𝑘

)
,

and𝑇𝑖𝑇𝑗 +𝑇𝑖 +𝑇𝑗 ≤ 𝑆 . We would also like to derive a symbolic
expression of the I/O complexity upper bound which only
depends on program parameters and memory size 𝑆 , but not
on tile sizes. To do so, we designed a procedure to fix tile
sizes as functions of 𝑆 , using computer algebra (see Sec. 6 for
more details). For matrix multiplication, the final expression
is

𝑈𝐵 = 𝑁𝑖𝑁 𝑗

(
2𝑁𝑘√
𝑆 + 1 − 1

+ 1
)
.

As this underlying optimization problem is difficult in gen-
eral, TileOpt (see Fig. 1) can look for a numerical solution by
using fixed given values for 𝑁 {𝑖, 𝑗,𝑘 } and 𝑆 . As an example, for
𝑁𝑖 = 2000, 𝑁 𝑗 = 𝑁𝑘 = 1500, and 𝑆 = 1024, IO is minimized
for 𝑇𝑖 = 𝑇𝑗 = 31. For those values, UB = 296322580.

Lower bound and tightness. Now that we have auto-
matically derived a symbolic upper bound on the I/O cost
for matrix multiplication, we can compare it with the lower
bound obtained from the IOLB tool [28] to evaluate its tight-
ness. The lower bound we find is:

𝐿𝐵 = 2𝑁𝑖 + 𝑁𝑘 + 2𝑁 𝑗 +
2𝑁𝑖𝑁 𝑗𝑁𝑘√

𝑆

where 𝑆 is the size of the fast memory. We can check that
this bound is asymptotically tight (see Sec. 6).

However, these bounds are not always tight. For example,
on a convolution (as shown in Sec. 5.4), the lower bound
derived by the currently published version of IOLB is sev-
eral asymptotic orders below the derived upper bound. This
lower bound can be improved by taking into account (i)
the reductions across multiple dimensions, which refines
the dependence analysis performed in the first steps of the
algorithm, and (ii) small dimensions. Small dimensions are
dimensions with a much smaller number of iterations than
the size of the fast memory 𝑆 . This property can be used
to improve the power factor of the asymptotic bound. Both
improvements to the IOLB algorithm are described in Sec-
tion 5, and allow us to obtain asymptotically tight bounds
for tensor contraction and convolution computations.

Lower vs. upper boundmethod. Bothmethods are based
on polyhedral compilation tools, for abstract program rep-
resentation and to compute cardinalities of polyhedra with
Barvinok’s algorithm [40], but the two approaches are funda-
mentally different. The lower bound algorithm converts the
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for(c = 0; c < Nc; c++)
for(f = 0; f < Nf; f++)
for(x = 0; x < Nx; x++)
for(w = 0; w < Nw; w++)
Out[f][x] += Image[x+w][c]

* Filter[f][w][c];

Listing 2. Running example - 1D Convolution

polyhedral program to a graph representation and uses geo-
metric reasoning on this graph to bound the maximum size
of a tile that can fit in the fast memory. It does not provide
a schedule, but rather a proof that no schedule can do less
than a certain amount of I/O. On the other hand, the upper
bound algorithm extends polyhedral tools to compute the
data footprint of affine codes, and uses this to get a symbolic
expression of its I/O. It also includes heuritics to prune the
search space for tiling schemes (loop permutations).

3 Background
In this section, we present the class of programs, its represen-
tations, and the memory model we consider in our analysis.

3.1 Class of Programs
Imperfectly nested affine loop programs. We consider

imperfectly nested loop programs, which can be recursively
defined as a sequence of statements and for loops, each be-
ing itself composed of imperfectly nested loops. A program
parameter is a symbolic constant during the compilation,
whose value will be known during the execution of the pro-
gram (for example, array sizes). The access functions made
by statements to arrays are affine expressions of surrounding
loop indices and program parameters. We also assume that
conditions on loop indices are affine expressions of surround-
ing loop indices and program parameters [7].
For example, the 1D-convolution described in Listing 2

matches these criteria. This program is even perfectly nested:
all loops are nested with a single statement inside. Constants
Nc, Nf, Nx and Nw are the program parameters. All loop indices
are bounded by affine constraints (e.g. 0 ≤ 𝑐 < Nc), and all
array subscripts are affine expressions (e.g. (𝑥 + 𝑤, 𝑐) for
array Image).

Fully-tilable program. The tiling transformation [42] is
a key loop transformation to improve the data locality of a
program. Given a list of consecutive dimensions (called loop
band), this transformation groups their iterations into tiles,
which are executed atomically. Listing 1 shows an example
of tiling transformation for the matrix multiplication exam-
ple: the tiled dimensions are i and j and the iterations are
grouped into rectangles of size Ti× Tj (tile shape). Note that
when the tiling shape is rectangular, each tiled dimension
(e.g. i) is strip-mined, giving rise to the tile dimension that

will iterate over the tiles (e.g. i1), and the local dimension
that iterates inside a tile (e.g. i in the transformed program).
A tiling is legal when there is no cycle of dependencies

between the computation of different tiles, that is, when the
atomicity condition between tiles can be respected by the
schedule of the program. The algorithms presented in this
paper are described on the assumption that the input pro-
gram is fully tilable using rectangular tiles, which means that
all its dimensions can be legally tiled by using rectangular
tiles.
In theory, any affine program could be pre-processed us-

ing a polyhedral compiler to provide a fully permutable (that
is, tilable using rectangular tiles) loop band, but the reality
is more complex, as analyzing a non-regular iteration do-
main involves being able to cope with the simplification and
solving of a complex system of symbolic expressions. Nev-
ertheless, several important classes of computation fit our
simplified hypothesis, such as a convolution, all kinds of ten-
sor contractions andmany linear algebraic kernels, including
matrix multiplication. Listing 2 shows another example of
such computation, which is a simplified convolution. It will
be used as our running example.

3.2 Program Representation
In this paper, we will mainly use two representations of a
program. The CDAG representation is an unrolled graph rep-
resentation of the program, and is used as the base formalism
for proving lower bounds. The polyhedral representation is a
mathematical and concise representation of the structure of
the program, and corresponds to the intermediate represen-
tation manipulated by our algorithms.

Computational Directed Acyclic Graph (CDAG). This
representation will be used by our data movement model.
Definition 3.1. (CDAG) A computational directed acyclic
graph G = (𝑉 , 𝐸,𝑂) is a graph formed by:

• a finite set of nodes 𝑉 , each one representing an elemen-
tary computation, producing a piece of data,

• a finite set of edges 𝐸, representing data dependencies:
there is an edge from a node 𝑣 to a node𝑤 if the compu-
tation at𝑤 requires the data from 𝑣 .

The input data of the program is represented by the nodes with
no incoming edge. The output data is represented by a set 𝑂 of
nodes, potentially with no outgoing edges.

We will consider a subset of a CDAG, which is itself a
CDAG: Given a sub-graph (𝑉 ′, 𝐸 ′), the corresponding sub-
CDAG is (𝑉 ′, 𝐸 ′,𝑂 ′) where 𝑂 ′ = 𝑂 ∩𝑉 ′.

Polyhedral representation. The iteration domain I𝑆 of a
statement 𝑆 is the set of integral values that the surrounding
loop indices take during execution. Each point of this space
is associated with an execution instance of the statement.
Due to the hypotheses made on the loop bounds, the itera-
tion domain of a statement is a Z-polyhedron, that is, a set
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of integral points whose coordinates satisfy a set of affine
constraints. The computation of the cardinality of a set 𝐸
(denoted |𝐸 | – symbolic expression as a function of the pro-
gram parameters), can be efficiently done using the Barvinok
algorithm1 [6] available in any polyhedral framework library
such as ISL [38].
Each array 𝐴 is associated with a memory domain M𝐴,

which is the multidimensional set of valid array indices for
the array𝐴. Given a statement 𝑆 containing a read or a write
to an array 𝐴, this occurrence is associated with a memory
access function 𝑓𝐴 : D𝑆 ↦→ M𝐴, which is an affine function.
For any given sub-domain𝐷𝑆 ⊂ I𝑆 defined as aZ-polyhedron,
the associated data footprint 𝑓𝐴 (𝐷𝑆 ) is also a Z-polyhedron
that can be easily computed by polyhedral compilation tools.
For the matrix-matrix multiplication example (Listing 1,

untiled version), the dimensions are D = {𝑖, 𝑗, 𝑘} and the
iteration domain is I = {(𝑖, 𝑗, 𝑘) | 0 ≤ 𝑖 < 𝑁𝑖 ∧ 0 ≤ 𝑗 <

𝑁 𝑗 ∧ 0 ≤ 𝑘 < 𝑁𝑘 }. A 3-dimensional rectangular subset
of this domain will be defined as [𝑙𝑖 , 𝑢𝑖 ] × [𝑙 𝑗 , 𝑢 𝑗 ] × [𝑙𝑘 , 𝑢𝑘 ],
where, for each dimension 𝑑 ∈ D, 0 ≤ 𝑙𝑑 ≤ 𝑢𝑑 < 𝑁𝑑 . The
example code also contains three array accesses:

• for array 𝐴, with domainM𝐴 = {𝑥,𝑦 | 0 ≤ 𝑥 < 𝑁𝑖 ∧
0 ≤ 𝑦 < 𝑁𝑘 } and access function 𝑓𝐴 (𝑖, 𝑗, 𝑘) = (𝑖, 𝑘);

• for array 𝐵, with domainM𝐵 = {𝑥,𝑦 | 0 ≤ 𝑥 < 𝑁𝑘 ∧
0 ≤ 𝑦 < 𝑁 𝑗 } and access function 𝑓𝐵 (𝑖, 𝑗, 𝑘) = (𝑘, 𝑗);

• and for array 𝐶 , with domain M𝐶 = {𝑥,𝑦 | 0 ≤ 𝑥 <

𝑁𝑖 ∧ 0 ≤ 𝑦 < 𝑁 𝑗 } and access function 𝑓𝐶 (𝑖, 𝑗, 𝑘) =

(𝑖, 𝑗).

3.3 Memory Model
In order to model the amount of data movement needed, we
use the red-white pebble game, which is a variation of Hong
& Kung’s red-blue pebble game [20]. It was introduced in
Olivry et al.’s work [28] to provide a convenient framework
for deriving I/O lower bounds, and in particular to model
the no recomputation assumption. Since this work also deals
with lower bounds, we use this formalism for both upper
and lower bounds.

We consider a hierarchy of two memories:
• An infinite slow memory which contains the input
data at the beginning of the execution.

• A fast scratchpad of limited capacity 𝑆 , which must
contain the data used by a computation.

In the red-white pebble game, pebbles can be placed on the
nodes of the CDAG. A white pebble represents a data which
has been computed, and a red pebble represents a data which
is present in the fast memory. To account for the limited size
of the fast memory, there are only 𝑆 red pebbles. There is an
unlimited number of white pebbles.

1In theory, Barvinok’s algorithm has an exponential complexity in the
number of dimensions of the set. In practice, its execution time is usually
less than a few seconds, when applied to the polyhedral sets commonly
encountered during program analysis.

We can place or remove a pebble of a given color according
to the following set of rules, assuming that the limit con-
straint on the number of simultaneously used red pebbles is
fulfilled:

• Fetch rule: A red pebble can be placed on any node
that has a white pebble.

• Spill rule: A red pebble can be removed from any
node.

• Computation rule: If a node has no white pebble and
all its immediate predecessors have red pebbles, then
a red and a white pebble can be placed on this node.

A valid game sequence is a list of applications of these
rules (moves) on specific nodes and edges of the CDAG, such
that:

• At the start of the game, there is a white pebble placed
on every input node.

• At the end of the game, all the nodes of the graph are
covered by white pebbles,

• At any point of the game, there are at most 𝑆 nodes
with red pebbles.

A game sequence mirrors the data movement that can be
performed by a computation. Thus, the amount of loads
from the slow memory done by a computation corresponds
to the number of times the fetch rule is used in a valid game
sequence.

4 Upper Bound on Data Movement
In this section, we first present an algorithm that computes
an over-approximation of the required I/O for a given para-
metric tiled program. We then show how to use this sym-
bolic expression to select a permutation and tiles sizes that
minimize the amount of I/O. As an actual valid schedule is
associated with the computed I/O, this provides a valid up-
per bound for the data movement complexity. An interesting
side effect of the method is that the computed optimizing
schedule can be exposed to the user as a suggested loop
transformation.

4.1 Loop Permutation and Tiling
Let us consider the example of Listing 1 that reports a

tiled and non-tiled code for matrix-matrix multiplication.
The original code contains three dimensions 𝑖 , 𝑗 , and 𝑘 . The
tiled code contains five loops on dimensions 𝑖 , 𝑗 , 𝑘 , 𝑖 , 𝑗 , from
outer to inner. The three outermost loops span the entire
iteration domain of size Ni×Nj×Nk, while the two innermost
ones span a polyhedron of size Ti×Tj. We refer to the inner-
most (resp. outermost) part as the intra-tile (resp. inter-tile)
dimensions. As we will see later, unlike the permutation of
the inter-tile dimensions, that of the intra-tile dimensions
is not relevant in our model. In other words, while a dif-
ferent schedule with loops ordered as (from outer to inner)
(i1,k,j1,i,j) could lead to a different I/O estimation than
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for(c1 = 0; c1 < Nc; c+=Tc)
for(f1 = 0; f1 < Nf; f+=Tf)
for(x = 0; x < Nx; x++)
for(c = c1; c < c1+Tc; c++)
for(w = 0; w < Nw; w++)
for(f = f1; f < f1+Tf; f++)
Out[f][x] += Image[x+w][c]

* Filter[f][w][c];

Tile limit

Listing 3. Tiled code for 1D-convolution for tiling schedule(
(𝑤, 𝑐, 𝑓 , 𝑥) ,

{
𝑇𝑐 = Tc,𝑇𝑓 = Tf,𝑇𝑥 = 1,𝑇𝑤 = Nw

})
for the schedule with loops ordered as (i1,j1,k,i,j) (as
in Listing. 1), our cost model will not be affected if we per-
mute 𝑖 and 𝑗 as in loop order (i1,j1,k,j,i). This motivates
the following notation to represent the tiling schedule of
Listing. 1: ((𝑖, 𝑗, 𝑘),

{
𝑇𝑖 = Ti,𝑇𝑗 = Tj,𝑇𝑘 = 1

})
where the or-

dered list P = (𝑖, 𝑗, 𝑘) describes the permutation of the inter-
tile loop dimensions, and T = {𝑇𝑖 = Ti,𝑇𝑗 = Tj,𝑇𝑘 = 1}
describes the tile sizes. Similarly, for the example in Listing 2,
the tiling shown in Listing 3 is represented as ((𝑤, 𝑐, 𝑓 , 𝑥),{
𝑇𝑐 = Tc,𝑇𝑓 = Tf , 𝑇𝑥 = 1,𝑇𝑤 = Nw}). Note that the loop on
𝑤 in the inter-tile loops (outermost loops), and the loop on
𝑥 in the intra-tile loops are both omitted in the code as they
would have only one iteration. The permutation of intra-tile
loops in the code is arbitrary.

More formally, a tiling schedule is defined as a tuple (P,T)
where P =

(
𝑑 𝑗
)
|D |≥ 𝑗≥1 is a permutation of dimensions D

representing the inter-tile loop order, and T = {𝑇𝑑 }𝑑∈D
represent the tile dimensions. In P, 𝑑 |D | represents the out-
ermost loop dimension, while 𝑑1 represents the innermost
loop dimension that encloses the tile: the permutation or-
der is outer (leftmost) to inner (rightmost). The tile size for
dimension 𝑑 is 𝑇𝑑 .
For an inter-tile loop dimension 𝑑 𝑗 , we define its sub-

domain as the set of points in the iteration domain such
that the indices of the enclosing loops 𝑑𝑘 (|D| ≥ 𝑘 ≥ 𝑗 ) have
fixed values. Taking the example of the 1D-convolution of
Listing 3, the sub-domain SD𝑑2 (c1,f1) for loop dimension
𝑑 𝑗 = 𝑑2 = 𝑓 (recall that 𝑑4 = 𝑤, 𝑑3 = 𝑐, 𝑑2 = 𝑓 , 𝑑1 = 𝑥) is
{(𝑤, 𝑐, 𝑓 , 𝑥) | 0 ≤ 𝑥 < Nx ∧c1 ≤ 𝑐 < c1+Tc∧ 0 ≤ 𝑤 < Nw ∧
f1 ≤ 𝑓 < f1+Tf}.
More generally, if we denote by ik the fixed index value

at level 𝑘 :

SD𝑑 𝑗
(iD, . . . , ij) = {𝑖 |D |, . . . , 𝑖1 ∈ I |

∀𝑘 ≥ 𝑗, ik ≤ 𝑖𝑘 < ik +𝑇𝑑𝑘 }

A Sub-Domain data Footprint for an array 𝐴 at level 𝑗 is
defined as:

SDF𝐴,𝑗 (iD, . . . , ij) =
���𝑓𝐴 (

SD𝑑 𝑗
(iD, . . . , ij)

)���

As an example, for the 1D-convolution running example we
have:

SDFImage,2 (c1,f1) = (Nx+Nw-1) × Tc

Whenever there is a non-empty overlap of data used be-
tween two consecutive sub-domains, estimating it allows us
to refine our cost model. We define the inter-Sub-Domain
Reuse for an array 𝐴 at level 𝑗 as:

SDR𝐴,𝑗 (iD, . . . , ij) =
���𝑓𝐴 (

SD𝑑 𝑗
(iD, . . . , ij)

)
∩

𝑓𝐴

(
SD𝑑 𝑗

(iD, . . . , ij −𝑇𝑑 𝑗
)
)���

A sharp eye would have observed that the notion of reuse
from a “previous” sub-domain is meaningful for all sub-
domains but the first one in the loop. To handle this subtlety,
for a given loop dimension 𝑑 𝑗 (assuming its loop index starts
at 0), we split the iteration space into two sub-domains: the
front domain

𝐼front = {(𝑖 |D |, . . . , 𝑖1) ∈ I | 𝑖 𝑗 = 0}

and the back domain

𝐼back = {(𝑖 |D |, . . . , 𝑖1) ∈ I | 𝑖 𝑗 ≠ 0}

This allows us to define, for a given sub-domain and an
array 𝐴, its inverse density as the ratio:

ID𝐴,𝑗 (iD, . . . , ij ≠ 0) =
SDF𝐴,𝑗 (iD, . . . , ij) − SDR𝐴,𝑗 (iD, . . . , ij)��SD𝑑 𝑗

(iD, . . . , ij)
��

ID𝐴,𝑗 (iD,. . . ,0) =
SDF𝐴,𝑗 (iD, . . . , ij)��SD𝑑 𝑗

(iD, . . . , ij)
��

As we will see later, the inverse density is an over-approxi-
mation of the best attainable inverse operational intensity
(data movement per computation unit). As an example, for
the 1D-convolution example,

SD𝑥 (c1,f1,x) = {𝑐, 𝑓 ,𝑤, 𝑥 | 0 ≤ 𝑤 < Nw ∧
𝑥 = x ∧ c1 ≤ 𝑐 < c1+Tc ∧ f1 ≤ 𝑓 < f1+Tf}

|SD𝑥 (c1,f1,x) | = Nw × Tc × Tf

SDFImage,1 (c1,f1,x) = Nw × Tc

SDRImage,1 (c1,f1,x) = Tc × (Nw − 1)
IDImage,1 (c1,f1,x ≠ 0) = 1/(Nw × Tf)

IDImage,1 (c1,f1,0) = 1/Tf

To avoid complicated expressions for non-rectangular do-
mains, we consider the maximum value for the inverse den-
sity that we specialize for the front and the back:

IDfront
𝐴,𝑗 = max

iD,...,ij/ij=0
ID𝐴,𝑗 (iD, . . . , ij)

IDback
𝐴,𝑗 = max

iD,...,ij/ij≠0
ID𝐴,𝑗 (iD, . . . , ij)
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In many cases, the sub-domain sizes and intersections do
not depend on loop indices, and there is no need to take the
maximum.

4.2 Cost Model
Let us start with the case where there is a single array 𝐴. We
consider a tiling (P = (𝑑 |D |, . . . , 𝑑1),T = {𝑇𝑑 }𝑑∈D).

First, the data footprint of a tile has to be smaller than the
cache capacity 𝑆 :

SDF𝐴,1 ≤ 𝑆.
Second, let us define the outermost reuse dimension as the
“first” (smallest possible 𝑙) dimension 𝑑𝑙 in P such that the
sub-domain data footprint of𝐴 is less than the cache capacity
𝑆 . That is, 𝑙 is the leftmost index in P such that

SDF𝐴,𝑙 ≤ 𝑆.

The total I/O cost for array 𝐴 derived from the inverse
density as follows constitutes an upper bound on the cost of
an optimal red-white pebble game:

𝐼𝑂𝐴 = IDfront
𝐴,𝑙

× |𝐼front | + IDback
𝐴,𝑙

× |𝐼back |

Indeed, by construction, each sub-domain can be executed
by bringing only once (before starting execution) all the
required data. Every sub-domain in the back can reuse the
data used in the previous sub-domain and the corresponding
I/O can thus be saved. This means that the optimal inverse
operational intensity for any sub-domain in the front (resp.
in the back) is no more than IDfront

𝐴,𝑙
(resp. IDback

𝐴,𝑙
).

When there are multiple arrays 𝐴1, . . . , 𝐴𝑠 , we “cut” the
cache into array-specific regions of sizes 𝑆1, . . . , 𝑆𝑠 , such that
𝑆1 + · · · + 𝑆𝑠 = 𝑆 . The conditions are the same as above,
replacing 𝐴 and 𝑆 by 𝐴 𝑗 and 𝑆 𝑗 .

On our running example, for array Image, supposing the
outermost reuse dimension is 𝑥 :

𝐼𝑂Image = IDfront
Image,1 × |𝐼front | + IDback

Image,1 × |𝐼back |

=
1
Tf

× Nw.Nc.Nf + 1
Nw.Tf

× Nw.Nc.Nf.(Nx − 1)

=
Nc.Nf.(Nx + Nw − 1)

Tf

The same computation for arrays Out and Filter yields
(assuming the outermost reuse dimensions are respectively
𝑥 and 𝑓 ):

𝐼𝑂Out = Nc.Nf.Nx/Tc
𝐼𝑂Filter = Nc.Nf.Nw

The red-white pebble game and the corresponding lower
bound reasoning frameworks can be extended to multi-level
memory hierarchies [34]. The above computation of I/O
can also be extended by simply considering one tiling band
per cache level and independently applying the previous
reasoning to each level.

4.3 Loop Permutation Selection
We have only focused on computing the required I/O cost
for a given permutation of the inter-tile loops. Having a sym-
bolic expression as a function of the tile sizes allows the use
of a Non-Linear optimization Problem (NLP) solver such as
IPOPT [41] to find optimizing tile sizes for this particular
permutation. Unfortunately, the search space of all possi-
ble permutations grows exponentially with the number of
dimensions and with the memory depth.

However, it is straightforward to see that many permuta-
tions are equivalent in terms of I/O cost: for example, switch-
ing the two outer loops c1 and f1 in the conv-1D example
in Listing 3 would not change the I/O costs. Moreover, some
permutations are better than others: for example, it is not
worth exploring the permutation whose innermost dimen-
sions do not allow any data reuse between two successive
tiles. In this section, we provide some insights into how to
select a subset of relevant permutations for a given code.
First, we define a notion of reuse: for a given dimension

𝑑 and an array 𝐴, there is reuse for array 𝐴 on dimension
𝑑 if, when putting dimension 𝑑 innermost (that is, setting
𝑑1 = 𝑑), the sub-domain data footprint at level 2 for 𝐴 does
not increase much compared to level 1:

SDF𝐴,2 − SDF𝐴,1 ≪ SDF𝐴,1
This allows us to decide which dimensions are worth putting
at the innermost levels.

In simple cases, this notion is not ambiguous: for array Out
in the conv-1D example, 𝑐 is a reuse dimension as setting it
innermost would lead to SDFOut2 = SDFOut1 = Tf × Tx, while
𝑓 is not a reuse dimension as setting it innermost would lead
to SDFOut2 − SDFOut1 = (Nf − Tf) × Tx (unless Nf = Tf but
in that case it means that 𝑓 iterates only once). For more
complex subscript expressions, such as for array Image, the
criterion is less clear: setting𝑤 as innermost and assuming
it is not part of the tile would lead to comparing Tw − 1 with
Tx (as SDFImage2 = (Tx + Tw − 1) × Tc, SDFImage1 = Tx × Tc).
In other words, a reuse criterion requires an “oracle” (such
as the user) to provide information about small and large
dimensions.

Assuming such an oracle and a reuse criterion, Algorithm 1
selects a set of representative permutations. This algorithm
builds a permutation from the innermost to the outermost
dimensions while keeping track of the set of remaining di-
mensions (variable D ′), and of the set 𝑆 of arrays having a
potential reuse along each dimension 𝑑 (variable 𝑅). When
a dimension is chosen, the set of potential reuse is updated.
When there is no more potential reuse, an arbitrary permu-
tation of the remaining dimensions is chosen.
Figure 2 illustrates the steps of the algorithm on the 1D

convolution (Listing 2), and how it narrows the loop per-
mutation space to three permutations (one of them is the
one used for the running example in Listing 3). Note that
some permutations are pruned during the selection process
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input :dimensions D, arrays A, reuse oracle
output : list of permutations P

1 function genPerm(D ′, 𝑅)
2 if D ′ = ∅ then
3 return {()};
4 if 𝑆 = ∅ for all (𝑑, 𝑆) ∈ 𝑅 then
5 return {𝑃} where 𝑃 is an arbitrary

permutation of D ′;
6 P := ∅;
7 forall (𝑑, 𝑆) ∈ 𝑅 such that �(𝑑 ′, 𝑆 ′) ∈ 𝑅, 𝑆 ⊊ 𝑆 ′

do
8 D ′

𝑑
:= D ′ \ {𝑑};

9 𝑅𝑑 := {(𝑑 ′, 𝑆 ′ ∩ 𝑆), (𝑑 ′, 𝑆 ′) ∈ 𝑅 \ {(𝑑, 𝑆)}};
10 P𝑑 := genPerm(D ′

𝑑
, 𝑅𝑑);

11 P := P ∪ {(𝑃,𝑑), 𝑃 ∈ P𝑑 };
12 return P;

13 𝑅 := {(𝑑, {𝐴 ∈ A, reuse(A, d)}), 𝑑 ∈ D};
14 return genPerm (D, 𝑅);
Algorithm1:Generation of the list of loop permutations
that maximize reuse

𝑥 : {Filter},𝑤 : {Out, Image},
𝑓 : {Image}, 𝑐 : {Output}

𝑤 : ∅, 𝑓 : ∅, 𝑐 : ∅

(𝑤, 𝑐, 𝑓 , 𝑥)

𝑥 𝑐

𝑥 : ∅, 𝑓 : {Image}, 𝑐 : {Out}

𝑥

𝑥 : ∅, 𝑐 : ∅

(𝑥, 𝑐, 𝑓 ,𝑤)

𝑓

𝑥 : ∅, 𝑓 : ∅

(𝑥, 𝑓 , 𝑐,𝑤)

𝑐

𝑤 𝑓

Figure 2. Application of Algorithm 1 to the 1D convolution
kernel

(red cross in Figure 2), because they have strictly less reuse
potential than others. For example, selecting dimension 𝑐 as
the innermost dimension allows us to have reuse on array
Out, but dimension𝑤 allows us to have reuse on one more
array (Out and Image).

4.4 Putting It All Together
The IOUB tool combines the permutation selection and I/O
cost computation as follows: it first selects a list of permuta-
tions and generates the corresponding set of tiled versions
(with tile sizes as parameters) using Algorithm 1. For each
permutation, it computes a symbolic expression (as a func-
tion of program parameters, tile sizes, and cache size) that

represents the required I/O, using the method described in
Sec. 4.1 and 4.2, as well as constraints on tile sizes. This is
implemented using the ISL [38] and Sympy [27] libraries.
Then, this can be fed to TileOpt, which uses an NLP solver
(IPOPT [41]) to find the best tile sizes for each permutation.
The final I/O cost is the minimum over all versions, and
TileOpt also provides a basic tiled code that implements the
corresponding tiling scheme. It can also be useful to have a
symbolic bound that does not depend on tile sizes, but only
on program parameters and cache size. A discussion on how
to derive such an expression for the examples we used in
experiments can be found in Sec. 6.

5 Lower Bound on Data Movement
In this section, we consider the problem of finding a symbolic
lower bound on the volume of loads needed to perform an
affine computation. We first present the main intuitions be-
hind the partitioningmethod, which is one of the state-of-the-
art techniques to derive a symbolic lower bound [11, 20, 28].
We then provide two improvements on this method, namely
reductions and small dimensions. These are needed to find
asymptotically tight bounds for some programs, in particu-
lar convolutions. Indeed, let us consider the 2D convolution
from Figure 3a. For the sake of examining the asymptotic
behavior of the bound, let us assume that all program pa-
rameters are equal to 𝑁 and greater than the small memory
size 𝑆 . With the state-of-the-art method, the lower bound
that is found is 𝑂 (𝑁 4). If we detect the reduction and adapt
the dependence analysis before applying the partitioning
method (Section 5.3), the bound is improved to𝑂 (𝑁 7/𝑆). We
can further improve this bound by exploiting the fact that 𝐻
and𝑊 are usually small parameters that are much smaller
than 𝑆 . By refining the partitioning method (Section 5.2), we
obtain 𝑂 (

√
𝐻𝑊𝑁 5/

√
𝑆) as a lower bound, and this bound is

asymptotically tight.

5.1 Background: The Partitioning Method for IOLB
The partitioning method considers a red-white pebble game
over the CDAG of a computation (both notions were intro-
duced in Section 3). A complete mathematical formalization
of the content of this subsection can be found in [28].
Another key notion is a 𝐾-bounded set, which is a set

of nodes of the CDAG with at most 𝐾 predecessors. If we
consider a (𝑆 +𝑇 )-bounded set (where 𝑆 is still the size of
the fast memory and 𝑇 > 0), then we need to load at least
𝑇 pieces of data in the fast memory to be able to perform
the computation. This gives a lower bound on the amount
of communication needed to compute this set. Any valid
sequence of moves in the red-white pebble game can be
decomposed into a (𝑆 +𝑇 )-partition, i.e., a partition of the
CDAG into (𝑆 +𝑇 )-bounded sets. Therefore, a lower bound
on the total number of loads can be deduced from an upper
bound on the number of sets in a (𝑆 +𝑇 )-partition.
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When the dependencies of the computation are affine, we
can find an upper bound on the size of a (𝑆 +𝑇 )-bounded set
by using a geometrical argument called the Brascamp-Lieb
inequality. Its mathematical formulation is:

Theorem 5.1 (Brascamp-Lieb inequality). Let 𝑑 and 𝑑 𝑗 be
non-negative integers and 𝜙 𝑗 : Z𝑑 ↦→ Z𝑑 𝑗 be group homomor-
phisms for all 1 ≤ 𝑗 ≤ 𝑚.

If we have a set of 𝑠 𝑗 ∈ [0, 1] such that, for all subgroupsH
of Z𝑑 :

𝑟𝑎𝑛𝑘 (H) ≤
𝑚∑
𝑗=1

𝑠 𝑗 · 𝑟𝑎𝑛𝑘 (𝜙 𝑗 (H))

Then, for all nonempty finite sets 𝐸 ∈ Z𝑑 :

|𝐸 | ≤
𝑚∏
𝑗=1

|𝜙 𝑗 (𝐸) |𝑠 𝑗

Here, 𝑟𝑎𝑛𝑘 (𝐺) is the subgroup rank, defined as the small-
est cardinality of a generating set for 𝐺 . This can be seen as
an equivalent to the dimension of a vector space in a discrete
setting.
This result can intuitively be seen as a generalization of

the following inequality for 3-dimensional vector spaces:
If the surfaces of all three projections of a 3-dimensional

volume 𝑉 on planes 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 are bounded by some
constant 𝐶 , then |𝑉 | ≤ 𝐶3/2.
Vertices in the CDAG are mapped to points in a multidi-

mensional geometric space E ≃ Z𝑑 through some mapping
𝜌 (where dimensions are typically loop indices), and regular
data dependencies in the CDAG are represented as projec-
tions on a lower-dimensional space. The condition “set of
vertices 𝑃 ⊂ 𝑉 is (𝑆 +𝑇 )-bounded” in the CDAG corresponds
to a condition of the form “the size of the projections of 𝜌 (𝑃)
in E is bounded by 𝑆 + 𝑇 ”. Finding a bound on the size of
a (𝑆 + 𝑇 )-bounded set in a CDAG can thus be reduced to
finding a bound on the size of a set 𝐸 in a geometric space,
given the cardinality bounds on some of its projections.

This theorem is applied to a 𝐾-bounded set 𝐸 (where 𝐾 =

𝑆 + 𝑇 ). We select the group homomorphisms 𝜙 𝑗 such that
their images are included in the input set of 𝐸. Indeed, by
definition of a 𝐾-bounded set, we will have |𝜙 𝑗 (𝐸) | ≤ 𝐾 , for
all 1 ≤ 𝑗 ≤ 𝑚. Therefore, we will obtain the upper bound:
|𝐸 | ≤ 𝐾𝜎 where 𝜎 =

∑
𝑗 𝑠 𝑗 .

To select such homomorphisms 𝜙 𝑗 , we study the paths of
affine dependence of the CDAG involving 𝐸 that originate
with a vertex in the input set of 𝐸. These paths are associated
by a path relation, which is the composition of the affine
functions of the dependencies composing a path. We build a
homomorphism from each path relation.

Then, we need to find a set of rationals 𝑠 𝑗 that satisfy the
linear constraints fromTheorem 5.1, andminimize𝜎 . In order
to find the subgroups H that lead to the tightest constraints
on 𝑠 𝑗 , we use bases of 𝐾𝑒𝑟 (𝜙 𝑗 ). We select a combination of

vectors of these bases, and consider the subgroup generated
by these vectors to build a constraint on 𝑠 𝑗 .
Once we have a symbolic upper bound of the size of a

(𝑆 +𝑇 )-bounded set, we obtain a symbolic lower bound on
the volume of data communications by the program, for any
schedule.

5.2 Adapting the Partitioning Method to Small
Dimensions

We assume that some of the dimensions of the iteration do-
main are small, i.e., their size is orders of magnitude smaller
than𝐶 .We note the product of all the sizes of the small dimen-
sions 𝑁𝑠𝑑 . We adapt the partitioning method by considering
an additional group homomorphism 𝜙𝑠𝑑 to the application
of Theorem 5.1. This group homomorphism is a projection
of the space on the small dimensions, which gives us a much
tighter bound |𝜙𝑠𝑑 (𝐸) | ≤ 𝑁𝑠𝑑 .
Assuming a set of 𝑠 𝑗 and 𝑠𝑠𝑑 (coefficient associated with

𝜙𝑠𝑑 ) satisfying the constraints of Theorem 5.1, we obtain the
following upper bound:

|𝐸 | ≤
∏
𝑗

|𝜙 𝑗 (𝐸) |𝑠 𝑗 · |𝜙𝑠𝑑 (𝐸) |𝑠𝑠𝑑 ≤ 𝐾𝜎 · 𝑁 𝑠𝑠𝑑
𝑠𝑑

where 𝜎 =
∑

𝑗 𝑠 𝑗 , not including 𝑠𝑠𝑑 .
Note that the constraints on the 𝑠 𝑗 are relaxed due to the

contribution of 𝑠𝑠𝑑 , giving us an opportunity to find smaller
values of 𝑠 𝑗 , compared to the usual method. Moreover, in
order to tighten this upper bound, we should minimize 𝜎
first, then 𝑠𝑠𝑑 next.

5.3 Using Reductions
A reduction is the successive application of an associative
and commutative binary operator over a set of values. For
example, in the convolution kernel described in Figure 3, we
have a reduction over 3 dimensions (𝑐 , ℎ and 𝑤 ) with the
addition operation. We only consider reductions that sum all
the values along some dimensions, called reduced dimensions.
This property can be used to sum the values of a set in any
order, instead of having a fixed sequence of summation.

Because the program is expressed as a loop nest, its reduc-
tion is sequential. Thus, when we examine the CDAG, we
have a chain of dependencies linking the nodes along the
reduced dimensions. When there are more than 2 reduced
dimensions, it impacts negatively our study of the paths of
dependencies of a CDAG, thus the quality of the extracted
homomorphisms 𝜙 𝑗 and the upper bound found on the size
of 𝐸.
We detect a simple class of reduction by performing a

pattern-matching on the affine dependencies of the CDAG.
We impose that the reduced dimensions are defined over a
rectangular domain and that the summation is performed in
a lexicographic order over a permutation of these reduced
dimensions. Once a reduction is detected, we replace the
sequential chain of dependencies (between the nodes of the
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for (b = 0; b < B; b++)
for (c = 0; c < C; c++)
for (f = 0; f < F; f++)

for (x = 0; x < X; x++)
for (y = 0; y < Y; y++)
for (h = 0; h < H; h++)

for (w = 0; w < W; w++) {
Out[f,x,y,b] += Image[x+h,y+w,c,b]

* Filter[f,h,w,c];
}

(a) Convolution kernel.

𝜙1 (𝑏, 𝑐, 𝑓 , 𝑥,𝑦, ℎ,𝑤) = (𝑏, 0, 𝑓 , 𝑥,𝑦, 0, 0) (from reduction)
𝜙2 (𝑏, 𝑐, 𝑓 , 𝑥,𝑦, ℎ,𝑤) = (𝑥 + ℎ,𝑦 +𝑤, 𝑐, 𝑏) (from Image)
𝜙3 (𝑏, 𝑐, 𝑓 , 𝑥,𝑦, ℎ,𝑤) = (𝑓 , ℎ,𝑤, 𝑐) (from Filter)
𝜙𝑠𝑑 (𝑏, 𝑐, 𝑓 , 𝑥,𝑦, ℎ,𝑤) = (ℎ,𝑤) (small dimensions)
(b) Homomorphisms used in Brascamp-Lieb

inequality.

( ®𝑓 ) 1 ≤ 𝑠1 + 𝑠3
( ®𝑏) 1 ≤ 𝑠1 + 𝑠2
(®𝑐) 1 ≤ 𝑠2 + 𝑠3
( ®𝑥) 1 ≤ 𝑠1 + 𝑠2
( ®𝑤) 1 ≤ 𝑠2 + 𝑠3 +𝑠𝑠𝑑
( ®𝑤 − ®𝑥) 1 ≤ 𝑠1 + 𝑠3 +𝑠𝑠𝑑
( ®𝑤, ®𝑥) 2 ≤ 𝑠1 + 𝑠2 + 𝑠3 +𝑠𝑠𝑑
( ®𝑦) 1 ≤ 𝑠1 + 𝑠2
( ®ℎ) 1 ≤ 𝑠2 + 𝑠3 +𝑠𝑠𝑑
( ®ℎ − ®𝑦) 1 ≤ 𝑠1 + 𝑠3 +𝑠𝑠𝑑
( ®ℎ, ®𝑦) 2 ≤ 𝑠1 + 𝑠2 + 𝑠3 +𝑠𝑠𝑑

(c) Constraints on 𝑠 𝑗 from Brascamp-Lieb
inequality.

• No small dimensions: 𝑠 𝑗 = 2
3 , 𝜎 = 2.

• Small dimensions: 𝑠 𝑗 = 1
2 , 𝑠𝑠𝑑 = 1

2 , 𝜎 = 3
2 .

(d) Solution obtained for the 𝑠 𝑗 , minimizing
𝜎 =

∑
𝑗 𝑠 𝑗 .

Figure 3. Partitioning method - Brascamp-Lieb inequality applied to a convolution, without and with small dimensions (H
and W).

reduction) by two sets of broadcast dependencies: (i) starting
from the computations using the final result of the reduction
to all the nodes of the reduction, and (ii) starting from the
initialization of the reduction to the nodes of the reduction.
On the convolution example of Figure 3, if we do de-

tect the reduction, the dependence on Out is along the di-
mension 𝑠 , and we will find as a corresponding homomor-
phism 𝜙1 (𝑏, 𝑐, 𝑓 , 𝑥,𝑦, ℎ,𝑤) = (𝑏, 𝑐, 𝑓 , 𝑥,𝑦, ℎ, 0). If we detect
the reduction, the homomorphism of the new path becomes
𝜙1 (𝑏, 𝑐, 𝑓 , 𝑥,𝑦, ℎ,𝑤) = (𝑏, 0, 𝑓 , 𝑥,𝑦, 0, 0), which leads to a big-
ger kernel and better constraints on 𝑠 𝑗 .

5.4 Example - Convolution
To illustrate this method, we consider a convolution compu-
tation, described in Figure 3a.

Derivation with no small dimensions. This derivation
corresponds to the one found in Demmel and Dihn [12]. By
examining the affine dependencies of the program, we find
three homomorphisms 𝜙1, 𝜙2 and 𝜙3, described in Figure 3b.
As stated by Theorem 5.1, we consider the subgroups H

generated from the combination of kernel vectors of the
𝜙 𝑗 . We obtain the constraints shown in Figure 3c, ignoring
the rightmost column. Their corresponding subgroups are
shown in the leftmost column.

Finally, we solve this system of linear inequality to obtain
a solution for the 𝑠 𝑗 , which corresponds to the upper bound
on the size of a 𝐾-bounded set: |𝐸 | ≤ 𝐾2.

Derivation with small dimensions. Now, we assume
that the product of the problem size parameters 𝐻 and𝑊 is

small compared to the size of the small memory (𝑆). Com-
pared to the first derivation, we have an additional homo-
morphism 𝜙𝑠𝑑 , shown in Figure 3b. The presence of this new
homomorphism adds a new coefficient 𝑠𝑠𝑑 to the constraints
on the 𝑠 𝑗 , as shown in Figure 3c. We obtain a better solution
for the 𝑠 𝑗 , which corresponds to the upper bound on the size
of a 𝐾-bounded set: |𝐸 | ≤ 𝐾

3
2 · (𝐻 ·𝑊 ) 1

2 . This is a tighter
upper bound.

6 Experiments
Using our new I/O cost computation method, and our im-
provements to the lower bound algorithm for computing
I/O complexity, IOOpt is able to provide tight bounds for
both tensor contractions (even with small dimensions) and
convolutions.

Benchmarks. We illustrate this by running it on repre-
sentative benchmarks: For convolutions, we considered 11
different layers of Yolo9000 [32]. The parameter values for
each layer are shown in Fig. 4. For tensor contractions, we
considered the ones from TCCG [37].
The benchmark Python script from TCCG source code

gathers 73 tensor contraction kernels (originating from var-
ious sources), that can be reduced to 49 different kernels,
once synonyms are identified. For each kernel, TCCG selects
the sizes of every dimension so that they are multiple of 8,
roughly equal, and so that the product of all sizes is around
200 × 220.

We can further reduce the number of relevant kernels that
need to be considered in our analysis, by grouping them
according to the number of dimensions of each array, and
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Layer F C X Y W H
Yolo9000-0 32 3 544 544 3 3
Yolo9000-2 64 32 272 272 3 3
Yolo9000-4 128 64 136 136 3 3
Yolo9000-5 64 128 136 136 1 1
Yolo9000-8 256 128 68 68 3 3
Yolo9000-9 128 256 68 68 1 1
Yolo9000-12 512 256 34 34 3 3
Yolo9000-13 256 512 34 34 1 1
Yolo9000-18 1024 512 17 17 3 3
Yolo9000-19 512 1024 17 17 1 1
Yolo9000-23 28272 1024 17 17 1 1

Figure 4. Parameter values for convolutional layers of
Yolo9000

Kernel dim. s. d. Problem sizes
abcde-efbad-cf 5 5 2 4 1 1 48/32/24/32/48/32
abcd-dbea-ec 4 4 2 3 1 1 72/72/24/72/72
abc-bda-dc 3 3 2 2 1 1 312/312/296/312

abcdef-dega-gfbc 6 4 4 3 3 1 24/16/16/24/16/16/24
abc-adec-ebd 3 4 3 2 1 2 72/72/72/72/72
ab-cad-dcb 2 3 3 1 1 2 312/296/312/312
ab-ac-cb 2 2 2 1 1 1 5136/5136/5120

abcd-aebf-fdec 4 4 4 2 2 2 72/72/72/72/72/72

Figure 5. Classes of Tensor Contraction kernels from the
TCCG benchmarks. The classes are determined from the
number of dimensions of the arrays (Out / In1 / In2), and the
number of shared dimensions (s. d.) between arrays (Out+In1
/ Out+In2 / In1+In2)

the number of dimensions shared between them. Indeed, the
array layouts (dimension order) do not impact our analy-
sis. This yields eight classes of tensor contraction kernels,
described in Figure 5.

Parametric lower bound expressions. Figure 6 shows
the parametric lower bound found for the tensor contraction
kernels and the 2D convolution kernels. For each line of this
array, the first term of the maximum function is the sum of
the volumes of the input arrays used by the computation,
which is trivially a lower bound of the number of I/O. Because
the lower bound derived is still sound, even if the small
dimension hypothesis is not satisfied, we have to combine
various lower bounds for different small dimension scenarios
together.
For the tensor contraction kernels, we considered 8 =

23 small dimension scenarios. Dimensions shared between
two arrays are grouped together, and every combination of
small/regular dimensions for those three groups is examined.
For convolution kernels, we considered 5 small dimension
scenarios, based on array sizes: (i) no small parameters, (ii)𝐻
and𝑊 small parameters, (iii) 𝐻 ,𝑊 and 𝐵 small parameters,

(iv) 𝐻 ,𝑊 , 𝑋 , 𝑌 and 𝐵 small parameters, and (v) 𝐶 , 𝐻 ,𝑊
and 𝐵 small parameters. Among those bounds, only the first
three scenarios lead to interesting bounds. They correspond
to the last three rows in the expression. The previous version
of the algorithm (without reduction management or small
dimensions) fails to find an interesting bound, and returns
the sum of array sizes (first row in the expression).

Symbolic upper bound expressions. The method pre-
sented in Sec. 4 provides a symbolic expression for the I/O
of a program, as a function of program parameters and tile
sizes. To compare them with the parametric lower bound
expressions, we would like to remove tile sizes from the ex-
pression, and express them as functions of the cache size
instead. In general, this is too complicated to solve. However,
for the benchmarks we consider, this is possible by using
only a few assumptions.
Let us start with the matrix multiplication example from

Listing 1, with tiling
(
(𝑖, 𝑗, 𝑘),

{
𝑇𝑖 = Ti,𝑇𝑗 = Tj,𝑇𝑘 = 1

})
. The

IO cost expression and the constraints on tile sizes are:

𝐼𝑂 = 𝐼𝑂𝐴 + 𝐼𝑂𝐵 + 𝐼𝑂𝐶 = Ni · Nj · Nk ·
(
1
Ti

+ 1
Tj

+ 1
Nk

)
(1)

𝑆𝐷𝐹𝐴,1 + 𝑆𝐷𝐹𝐵,1 + 𝑆𝐷𝐹𝐶,1 = Ti + Tj + Ti · Tj ≤ 𝑆 (2)

Then, we consider square tiles, by assuming that Ti and
Tj are equal to the same value 𝑇 . We also assume that the
tile completely fills the cache, which means that we consider
that inequality (2) is actually an equality. While this may
not be the best solution, these hypotheses will still provide a
valid bound. We obtain the following equality:

2𝑇 +𝑇 2 = 𝑆.

It has a unique positive solution:

𝑇 =
√
𝑆 + 1 − 1.

We can then plug this value back into expression (1) to get
our symbolic bound:

𝐼𝑂 = Ni · Nj ·
(

2Nk
√
𝑆 + 1 − 1

+ 1
)

Note that the dominant term matches the dominant term of
the I/O lower bound for matrix multiplication.
Here, we chose the tiling scheme manually, but this can

be automated using TileOpt with some relevant numerical
values of parameters. It will return a permutation and nu-
merical tile sizes, and we can use the information on which
dimensions have 𝑇𝑑 = 1 or 𝑇𝑑 = 𝑁𝑑 to guide our symbolic
solving. If the problem sizes are significantly bigger than

√
𝑆 ,

the best tiling found by the solver will precisely be this one.
To generalize this reasoning to tensor contraction kernels,

we only need to add some extra information on the expected
order of magnitude of tile sizes.
Dimensions in a tensor contraction computation can be

divided into three groups such that after “merging” the di-
mensions in each group, the computation is equivalent to
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Kernel I/O bounds: lower (LB) and upper (UB)

TC abcde-efbad-cf UB = 2𝐴𝐵𝐶𝐷𝐸𝐹√
𝑆+1−1 +𝐶𝐹

LB = max
(
𝐴𝐵𝐶𝐷𝐸 + 𝐸𝐹𝐵𝐴𝐷 +𝐶𝐹,−2 + 𝐹 − 𝑆 + 2𝐶 + 2𝐴𝐵𝐷𝐸 + 2𝐴𝐵𝐶𝐷𝐸 (𝐹−1)√

𝑆

)
TC abcd-dbea-ec UB = 2𝐴𝐵𝐶𝐷𝐸√

𝑆+1−1 +𝐶𝐸
LB = max

(
𝐴𝐵𝐶𝐷 + 𝐷𝐵𝐸𝐴 + 𝐸𝐶,−2 + 𝐸 − 𝑆 + 2𝐶 + 2𝐴𝐵𝐷 + 2𝐴𝐵𝐶𝐷 (𝐸−1)√

𝑆

)
TC abc-bda-dc UB = 2𝐴𝐵𝐶𝐷√

𝑆+1−1 +𝐶𝐷
LB = max

(
𝐴𝐵𝐶 + 𝐵𝐷𝐴 + 𝐷𝐶,−2 + 𝐷 − 𝑆 + 2𝐶 + 2𝐴𝐵 + 2𝐴𝐵𝐶 (𝐷−1)√

𝑆

)
TC abcdef-dega-gfbc UB = 2𝐴𝐵𝐶𝐷𝐸𝐹𝐺√

𝑆+1−1 + 𝐵𝐶𝐹𝐺
LB = max

(
𝐴𝐵𝐶𝐷𝐸𝐹 + 𝐷𝐸𝐺𝐴 +𝐺𝐹𝐵𝐶,−2 +𝐺 − 𝑆 + 2𝐴𝐷𝐸 + 2𝐵𝐶𝐹 + 2𝐴𝐵𝐶𝐷𝐸𝐹 (𝐺−1)√

𝑆

)
TC abc-adec-ebd UB = 2𝐴𝐵𝐶𝐷𝐸√

𝑆+1−1 + 𝐵𝐷𝐸
LB = max

(
𝐴𝐵𝐶 +𝐴𝐷𝐸𝐶 + 𝐸𝐵𝐷,−3 + 𝐷𝐸 − 𝑆 + 3𝐴𝐶 + 3𝐵 −𝐴𝐵𝐶 + 2𝐴𝐵𝐶 (𝐷𝐸−1)√

𝑆

)
TC ab-cad-dcb UB = 2𝐴𝐵𝐶𝐷√

𝑆+1−1 +𝐴𝐵
LB = max

(
𝐴𝐵 +𝐶𝐴𝐷 + 𝐷𝐶𝐵,−3 +𝐶𝐷 − 𝑆 + 3𝐴 + 3𝐵 −𝐴𝐵 + 2𝐴𝐵 (𝐶𝐷−1)√

𝑆

)
TC ab-ac-cb UB = 2𝐴𝐵𝐶√

𝑆+1−1 + 𝐵𝐶
LB = max

(
𝐴𝐵 +𝐴𝐶 +𝐶𝐵,−2 +𝐶 − 𝑆 + 2𝐴 + 2𝐵 + 2𝐴𝐵 (𝐶−1)√

𝑆

)
TC abcd-aebf-fdec UB = 2𝐴𝐵𝐶𝐷𝐸𝐹√

𝑆+1−1 +𝐶𝐷𝐸𝐹
LB = max

(
𝐴𝐵𝐶𝐷 +𝐴𝐸𝐵𝐹 + 𝐹𝐷𝐸𝐶,−3 + 𝐸𝐹 − 𝑆 + 3𝐴𝐵 + 3𝐶𝐷 −𝐴𝐵𝐶𝐷 + 2𝐴𝐵𝐶𝐷 (𝐸𝐹−1)√

𝑆

)
2D Convolution

UB = 𝐶𝐹𝐻𝑊𝑋𝑌

(
1

𝑋𝑌
+ 1

𝐻Δ𝑊 + (𝐻+Δ−1) (𝑊 +𝑋−1)
𝐻Δ2𝑊𝑋

)
where Δ = −𝐻𝑊 +𝑊 +

√
𝐻 2𝑊 2+4𝐻𝑆𝑊 −2𝐻𝑊 2+4𝑆𝑊 +4𝑆+𝑊 2

2(𝐻𝑊 +𝑊 +1)

LB = max
(
𝐵𝐶 (𝑌 + 𝐻 − 1) (𝑋 +𝑊 − 1) + 𝐵𝐹𝑋𝑌 + 𝐹𝐶𝐻𝑊 ,

−2 − 𝑆 +𝐶 + 4𝐹 + 𝐵𝑌 + 𝐵𝑋 + 2𝐵𝑋𝑌 − 2𝐵𝑋𝑌𝐹 + 𝐵𝐹𝑋𝑌 (𝑊𝐻𝐶−1)
𝑆

,

−2 − 𝑆 +𝐶 + 4𝐹 + 𝐵𝑌 + 𝐵𝑋 + 2𝐵𝑋𝑌 − 2𝐵𝑋𝐹𝑌 + 2𝐵𝑋𝑌𝐶𝐹
√
𝐻𝑊√

𝑆
− 2𝐵𝑋𝑌𝐹√

𝐻𝑊𝑆
,

−2 − 𝑆 +𝐶 + 4𝐹 + 𝐵𝑌 + 𝐵𝑋 + 2𝐵𝑋𝑌 − 2𝐵𝑋𝐹𝑌 + 2𝑋𝑌𝐶𝐹
√
𝐵𝐻𝑊√

𝑆
− 2𝑋𝑌𝐹

√
𝐵√

𝐻𝑊𝑆

)
Figure 6. Combined parametric I/O bounds of tensor contraction (TC) and 2D convolution kernels. 𝑆 is the small memory size
and other uppercase letters are problem sizes (for TC kernels A. . . F are tensor dimensions, for convolution see Fig. 3a).

a matrix multiplication. This corresponds to the “shared di-
mensions” in Fig. 5. The condition we impose is that the
products of tile sizes inside each group are equal. For ex-
ample abc-adec-ebd, the three groups are {𝑎, 𝑐}, {𝑏} and
{𝑑, 𝑒}, and the condition is 𝑇𝑎𝑇𝑐 = 𝑇𝑏 = 𝑇𝑑𝑇𝑒 .
The expressions are shown in Figure 6. They correspond to

the “general case” where the input size is not the bottleneck,
i.e., when parameters are sufficiently large compared to 𝑆 .
The expression for convolution is quite complex, but an

asymptotic analysis shows that the highest order term is
2𝐶𝐹𝑋𝑌

√
𝐻𝑊√

𝑆
when 𝐶, 𝐹, 𝑋 and 𝑌 are sufficiently large, which

matches the third term in the lower bound (the 𝐵 factor does
not appear since it is equal to 1 in all our benchmarks).

Comparison of upper and lower bounds for different
cache sizes. Figure 7 shows a comparison between lower

and upper bounds for the considered benchmarks. For several
cache sizes (from 16 kB to 4MB), the lower bound is computed
by plugging the actual values in the symbolic expressions
shown above, and the upper bound is obtained by running
TileOpt on the optimization problems generated by IOUB.

As a sanity check, we confirm that the upper bound found
is always above the lower bound, which was not trivial for
the convolution bounds, and that both curves are decreas-
ing or are constant along 𝑆 . Both bounds are close to each
other, ranging from at most a factor of 3 between them for
Yolo9000-2 on the smallest value of S, to almost the same
values for the ab-ac-cb TC kernel, which is also known as
matrix multiplication. Moreover, the upper bound and the
lower bound come closer for the largest values of 𝑆 , which
shows a match between the asymptotic dominant term of
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Figure 7. I/O bounds (lower is blue and upper is orange) of tensor contractions (TCCG) and convolutions (Yolo) for different
cache sizes

both bounds. When the cache size becomes very large, the
dominant cost becomes the initial loading of the input data,
hence the matching bounds and the horizontal line for some
benchmarks.

Evaluation of the tiling recommendation. We evalu-
ate the efficiency of the tiling recommendation we produce
on the Yolo-9000 benchmark (Figure 4). The tiling recommen-
dation has been obtained using a simplemulti-level extension
of the cache model where the objective function minimizes
the weighted (with available measured inverse bandwidth)
sum of data movements between the different cache levels.
We fix the innermost dimension of the permutation in order
to force vectorization on dimension 𝑓 . Note that fixing the
innermost dimensions of our tiling recommendation does
not impact the rest of our model.
In Figure 8, we compare the original code (no tiling), the

tiled code based on our tiling recommendation, with the con-
volution from OneDNN [21], a state-of-the-art library. We
ran our experiment on an Intel i9-7940X Skylake-X machine
with AVX-512 vector instructions, a 32kB L1 cache, a 1MB
L2 cache and a shared 20MB L3 cache. Each code is run 200
times, and the median is taken.
As expected, our implementation does not outperform

OneDNN (with the exception of the first layer), but is still
reasonably fast. Indeed, many optimizations such as regis-
ter tiling that expose instruction level parallelism without
stressing too much register pressure, packing, versioning,
etc., which are implemented by OneDNN, are not present in

Kernel No Tiling OneDNN Tiling reco
Yolo9000-0 8% 27% 31%
Yolo9000-2 14% 52% 28%
Yolo9000-4 18% 64% 36%
Yolo9000-5 14% 77% 48%
Yolo9000-8 14% 76% 34%
Yolo9000-9 15% 84% 35%
Yolo9000-12 14% 77% 34%
Yolo9000-13 8% 74% 27%
Yolo9000-18 13% 66% 33%
Yolo9000-19 6% 73% 6%
Yolo9000-23 3% 72% 3%

Figure 8. Comparison of the efficiency of our tiling recom-
mendation with a state-of-the-art convolution implementa-
tion. The numbers are percentages of performance compared
to the theoretical machine peak.

our “naive” implementation. Thus, our tiling strategy can be
improved in order to obtain a good performance.

Limitations. While the methodology presented here is
very general on the theoretical side, practical implementation
has some limitations. When iteration domains get complex,
for instance when loop counters depend on one another,
or loop bounds are more involved functions of parameters,
cardinalities computed by Barvinok’s algorithm get more
complex, with several possible expressions depending on
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relations between parameters. This can greatly increase the
size of the optimization problem, making it currently in-
tractable. Another limit is the method to generate symbolic
upper bounds: currently we rely on solving a polynomial
equation, which is not generally doable when the degree ex-
ceeds four. This could be addressed by relaxing the problem
of finding the precise expression of a tile size that completely
fills the cache to only finding a size that does not exceed the
cache capacity.

7 Related Work
I/O complexity lower bound. Most papers on computing

lower bounds are handmade proofs for specific algorithms.
While early works including the seminal paper of Hong
and Kung [20] focused on deriving asymptotic order lower
bounds without bothering about the constant factor, several
more recent contributions have finally derived tight (up to
lower order terms) lower bounds with scaling constants for a
few specific classes of algorithms [1–3, 13, 22, 23, 30, 31, 36].
The early work of Chris et al. [11], followed by that of Elango
et al. [14], paved the way to algorithmic approaches for au-
tomatic derivation of I/O complexity lower bounds for the
subclass of affine programs. The first tool able to actually
automate the process and apply it to a full benchmark suite
is IOLB from Olivry et al. [28]. One important issue of IOLB
with regard to neural networks is the looseness of the ob-
tained bound for convolutions. This is due to its inability to
exploit the presence of small dimensions, as opposed to the
recent work of Demmel et al. [12] which uses a similar trick
to that of Elango et al. in [14] for deriving tight bounds for
CNN. The main limitation of [12, 14] resides in the inabil-
ity to provide scaling constants. The algorithm presented
in Sec. 5 extends the work of Olivry et al. for exploiting
the presence of small dimensions without losing its main
advantage: being able to provide an exact (not restricted to
asymptotic order inequality) bound with scaling constant.

I/O complexity upper bound, cache miss prediction &
tile size selection . Computing an I/O complexity upper
bound for an algorithm is the most reasonable way to as-
sess the tightness of a lower bound. While this computation
is usually done by hand using ad hoc techniques specific
to each studied algorithm [1, 12, 23, 28, 31, 36], Fauzia et
al. [15] proposed a heuristic that directly reasons on the
CDAG, which unfortunately does not scale to real programs.
Finding an upper bound for a fixed architecture can also be
viewed as finding an optimized program transformation that
minimizes data movement costs, which also implies being
able to evaluate this cost. Thus, restricting the analysis to
affine programs and using the polyhedral framework appears
to be appropriate for this problem. However, while the sem-
inal scheduling algorithm from PluTo [8] is able to expose
tilable loops and generate tiled code, it can only handle fixed
tile sizes. This is because parametric tiling is not an affine

transformation: a tiled affine code with parametric tile sizes
is no longer affine. A consequence is that existing polyhe-
dral tools cannot be used to evaluate the I/O cost of such a
code. These tools include PolyFeat [4], which computes an
approximation of the number of capacity misses for arbitrary
affine programs, as well as other algorithms [5, 10, 18] which
focus on precisely modeling conflict misses. Some of these
algorithms are restricted to a small class of programs, and
most of them can only model a one-level cache. They all
need to consider fixed parameters and fixed tile sizes. Other
works [24, 35, 43] implemented ad hoc computation of this
cost function for very restricted sub-classes of programs, but
our algorithm is the first to be able to automatically generate
a symbolic expression of it for arbitrary parametric tiled
affine programs, in a multi-level cache setting.
We showed how we use this cost function to find the

best loop permutations and tile sizes for a given architec-
ture, using operations research. Once again, this is out of
the scope of polyhedral analysis, as cost functions are not
affine. So the usual optimization strategies used by polyhe-
dral compilers [8, 19, 39], mostly based on parametric integer
programming [16], cannot be used. Some literature exists
on tile size selection, but it mostly deals with performance
model design and is either handcrafted for specific kernels
and access function patterns [25, 29] or uses machine learn-
ing [43] and even cache simulators [26]. Polyhedral analysis
is only used for the tiling transformation. Renganarayana
and Rajopadhye [33] showed that most performance models
for tile size selection used in the literature are polynomi-
als that are operations research-friendly. Our automatically
generated cost function, which matches the distinct-access
model promoted by Ferrante et al. [17], fits into this category.

8 Conclusion
We have presented an algorithm which computes an upper
bound on the data movement complexity of a polyhedral
program. It outputs a symbolic formula on the problem sizes
and the cache size, and advises a loop permutation and tiling
which minimizes it. Additionally, we have improved an al-
gorithm which computes the lower bound of the data move-
ment complexity, by exploiting the fact that some parameters
are much smaller than the cache size. Both algorithms were
implemented as a fully automatic tool and evaluated on mul-
tiple convolution and tensor contraction kernels. We have
evaluated the numerical tightness of these bounds by evalu-
ating them for the problem sizes of tensor contraction and
convolution benchmarks.
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