LIST OF FIGURES

Figure

Page
1 Synchronization in cortical and thalamic cells. The first three graphs are simultaneous extracellular recordings of neurons from cortical areas 5, 7, and the thalamus. The fourth plot is of the simultaneously measured EEG. The three plots at the bottom are cross-correlations of the firing times of pairs of the three different recordings of neurons

2 The local field potential (first graph) and the multi-unit activity (second graph) in response to a moving bar. The third and fourth graphs are portions of the first two graphs with an expanded time scale.

3 An example of temporal correlation to solve the feature binding problem. (A) each grid of the array is an oscillator. Oscillators receiving stimulus are black. (B) A plot of the temporal activity of the oscillators receiving stimulus. All the oscillators comprising a single oscillator become synchronous, and are desynchronized from the other objects.

4 A diagram of a pair of integrate-and-fire oscillators with pulsatile coupling. The solid curves represent the potentials of the two coupled oscillators and the dashed lines represent the threshold. The initial potentials of the oscillators are chosen randomly. The oscillator labeled \mathbf{x}_{2} fires first and the potential of \mathbf{x}_{1} increases at that time. Similarly, when \mathbf{x}_{1} fires, the potential of \mathbf{x}_{2} increases. The phase shifts caused by the pulsatile interaction causes the oscillators to fire synchronously by the second cycle. The spikes shown when an oscillator fires are for illustration only. 16

5 (A) The return map for two pulse coupled integrate-and-fire oscillators. The phase difference between the oscillators before they have jumped (ϕ_{1}, horizontal axis) and after they have jumped (ϕ_{2}, vertical axis). (B) A plot of the number of cycles needed, C_{J}, before the two oscillators are synchronous as a function of ϕ_{1}. Both plots use $I_{0}=1.11$ and $\alpha_{I}=0.2$.18

6 A diagram displaying the evolution of a one-dimensional network of integrate-andfire oscillators. The vertical axis represents time and the horizontal axis represents
the position of the oscillator in the network. Each dot (line) represents the firing time of a single (several) oscillator. The parameters are $\alpha_{I}=0.2, I_{0}=1.11 \ldots 20$

7 The average time needed for a chain of n oscillators to synchronize as a function of $\log _{10}(n)$. Three different symbols represent different parameters; black diamonds, $\alpha_{I}=0.25, I_{0}=5.5$, open diamonds $\alpha_{I}=0.025, I_{0}=1.1$, and small diamonds $\alpha_{I}=0.2, I_{0}=1.11$. The data is based on approximately 300 trials with random initial conditions. The inset it displays the data for $\alpha_{I}=0.2, I_{0}=1.11$ along with the standard deviation of the averages.

8 A histogram of the synchronization times for a one-dimensional chain of 500 oscillators. This data is based on 20000 trials with random initial conditions. The parameters used are $\alpha_{I}=0.2, I_{0}=1.11$.

9 A block of oscillators immediately before (A) and after (B) they fire. The open circles indicate the two oscillators on the border of the block.

10 The average times for an $L \times L$ network of oscillators to synchronize are plotted as a function of $\log _{10}(2 L-1)$. The solid diamonds are for the parameters $\alpha_{I}=0.2, I_{0}=2.0$ and the open diamonds are for $\alpha_{I}=0.2, I_{0}=1.11$. Each average is computed from approximately one hundred trials with random initial conditions.

11 We display the inverse of the measured rate of synchrony as a function of $\left(I_{0}-1\right) / \alpha_{I}$. Most of the 140 different parameter pairs are near a straight line. A detailed analysis indicates that those points not near the line have values of $\alpha_{I}>0.8$ and/or values of $I_{0}<1.05$. Each point represents the average time to synchrony calculated from 250 trials with random initial conditions. 29

12 A plot of the measured rate of synchrony as a function of the coupling strength. The linear relationship between the coupling strength and the time to synchrony is maintained for $\alpha_{I}<0.8$. A value of $I_{0}=5.0$ was used. The inset indicates the rate of synchrony predicted from the return map for two oscillators. 30

13 The inverse of the measured rate of synchrony (times α_{I}) is plotted as a function of I_{0}. The filled diamonds are for $\alpha_{I}=0.25$ and the plus symbols are for $\alpha_{I}=0.8$. The data is from a chain of 1000 oscillators using 100 trials with random initial conditions. The inset represents the rate of synchrony predicted from the return map for two oscillators. 30

14 The time needed to correct a given size error in a two-dimensional network of inte-grate-and-fire oscillators. The error is a right isosceles triangle region that contains oscillators with random initial conditions. B represents the size of the base of the triangle.

15 (A) A diagram of the network architecture. Each unit has local excitatory connections. The global inhibitor is coupled with every unit in the network and serves to desynchronize different groups of oscillators. (B) The input we use to demonstrate the behavior of our network. The black squares represent those units which receive stimulus and the units corresponding to the unfilled squares receive no stimulus. (C) We display the temporal activities of all units comprising each of the four objects in (B). The parameters used are $I_{i}=1.05$ for those oscillators receiving stimulus, $\alpha_{I}=0.2$, and $\Gamma=0.01$. 35

16 (A) An aerial image with 128×128 pixels and (B) the segmentation results for (A). The network produced 29 different synchronized groups. Each synchronized group is represented by a single grey-level. Black pixels represent those oscillators that do not exhibit periodic activity. The threshold for the pixel difference test is $19, Q(i)$ is a region of size 7×7, with $I_{i}=1.025, I_{E}=0.99, \alpha_{I}=0.2$, and $\Gamma=0.01$. (C) A 128×128 CT image of a slice of a human head (the bright regions indicate bone). (D) The segmentation results for (C). The network produced 25 different groups of synchronized oscillators. Each synchronized group is represented by a single greylevel. Black pixels represent those oscillators that do not exhibit periodic activity. The threshold for the pixel difference test is 15 and $Q(i)$ is a region of size 9×9 and the other parameters are listed above. 37

17 A plot of the nullclines and limit cycle of a relaxation oscillator. The dotted curve is the x-nullcline and the dash-dot curve is the y-nullcline. The limit cycle is given by the thick dark curve. The abbreviations are described in the text. The parameters used are $\lambda=8, \gamma=12, \varepsilon=0.005$, and $\beta=1000 \ldots \ldots \ldots \ldots \ldots \ldots . \ldots 44$

18 A plot of the nullclines and limit cycle for a pair of synchronous relaxation oscillators. The two dotted curves represent the two x-nullclines of this system and the dash-dot curve is the y-nullcline. The limit cycle is given by the thick dark curve. The parameters used are $\alpha_{R}=2$ and the other parameters are as listed in Figure 17. The abbreviations are described in the text. 45

19 An example of the trajectories for a pair of coupled relaxation oscillators. The thin solid curve represents the first oscillator to jump and the thick solid curve represents the oscillator that receives excitation. The two dotted curves are the excited and unexcited cubics. The parameters are the same as in Figure 18 with $\alpha_{R}=6.0 \ldots . .46$
(A) The return map for two relaxation oscillators. The horizontal axis represents the initial time difference, t_{l}, between the two oscillators on the lower left branch and the vertical axis represents the time difference between the two oscillators when they are next on the lower left branch, t_{2}. (B) A plot of the number of periods needed before both oscillators are in the jumping region, C_{J}, as a function of the initial time difference between the two oscillators, t_{l}. The parameters used are given in the Figure 18 caption. 50

21 (A) The trajectories of two neighboring oscillators that have a desynchronous relation in a chain of oscillators. (B) The three pertinent portions of the x-nullclines which play a role in the desynchronous solutions. The symbols τ_{A}, τ_{B}, and τ_{C} represent the time needed to traverse the indicated portions of the cubics.. 52

22 The average block size as a function of the coupling strength for several chains of length n . The parameters used are $\lambda=9$ and $\gamma=12$. The critical coupling strength is $\alpha_{R}^{C}=2.3786$ using (3.18). Each point represents the average block size calculated from several hundred trials with random initial conditions.

23 The positions of 16 oscillators in a travelling wave are shown at four different instants in time. The time slices are shown in consecutive order in (A), (B), (C), and (D). The oscillators are arranged in a one-dimensional ring. The parameters are $\lambda=$ 9, $\gamma=12$, and $\alpha_{R}=4$.

24 The average time to synchrony for a chain of n relaxation oscillators as a function of $\log _{10}(n)$. The time on oscillator spends on the lower left branch represents 99.92% of the period, or $B_{r}=1190$. The error bars are shown and indicate the variance resulting from 500 trials, except for the last two points, which result from 100 and 10 trials respectively. The parameters used are $\lambda=2079, \gamma=2082$, and $\alpha_{R}=$ 3.5. The initial conditions were randomly distributed on the entire limit cycle. . 59

25 The average time to synchrony for chains of n relaxation oscillators as a function of $\log _{10}(n)$. The four different symbols represent four different branch ratios, also indicated are the four different percentages for the amount of time an oscillator spends in the silent phase as compared to the total period. The initial conditions were randomly distributed on the limit cycle. 60

26 The average time to synchronize a chain of n relaxation oscillators as a function of $\log _{10}(n)$ for five different values of B_{r}. The averages are based on several hundred trials. The initial conditions were randomly distributed on the limit cycle. 62

27 A log-log plot of the time to synchrony as a function of the system size for several different parameters. The inset is the $\log -\log$ plot for $B_{r}=7.15$ and is shown to indicate the standard deviations associated with each average. Each point corresponds to the average computed from several hundred trials with initial conditions uniformly and randomly distributed throughout the entire limit cycle.. 63

28 The temporal evolution of a chain of 400 relaxation oscillators with $B_{r}=102$. The thin (thick) lines represent the time each oscillator jumps up (down), but these lines are too close together to distinguish. The rectangle highlights an area where some oscillators fire with different blocks. The parameters used are $\alpha_{R}=3.5, \lambda=179$, and $\gamma=182$. The oscillators were randomly distributed on the limit cycle.

29 The temporal evolution of a system of 400 relaxation oscillators is displayed. Each thin (thick) dot, or line, represents the time each oscillator (or block of oscillators) jumps up (down). The parameters used are $\alpha_{R}=3.5, \lambda=1.75$, and $\gamma=4.75$, with initial conditions randomly distributed on the entire limit cycle. 65

30 The time to synchrony as a function of the wave number of spin wave type initial conditions in a one-dimensional network of 500 relaxation oscillators. The oscillators were evenly distributed (temporally) on the limit cycle of the travelling wave. The parameters used are $\alpha_{R}=5.5, \lambda=2.75$, and $\gamma=5.75$

31 A network of 100 relaxation oscillators with spin wave type initial conditions. Only one region of natural frequency forms (at the lower right) and the frequency defects wait until they interact with this region to be corrected. Since there is only one region with the synchronous frequency, only one defect is corrected at a time. The pa-

32 The average time to synchrony in an $L \times L$ network of relaxation oscillators as a function of $\log _{10}(2 L-1)$. (A) A network with parameters such that $B_{r}=47.7\left(\alpha_{R}=\right.$ $8, \lambda=112$, and $\gamma=115$) and the initial conditions were chosen randomly and uniformly from the entire limit cycle. (B) A network with parameters such that $B_{r}=$ 3.03 ($\alpha_{R}=8, \lambda=8$, and $\gamma=11$). The averages are based on several hundred trials and the initial conditions were chosen randomly and uniformly on the lower left branch of the limit cycle. 69

33 One type of spatiotemporal pattern observed in a network of relaxation oscillators with periodic boundary conditions. The smaller circles represent those oscillators which have recently jumped up to the right branch. The larger circles represent oscillators which are on the right branch of the limit cycle. The parameters used to create this diagram are $\alpha_{R}=3.5, \lambda=1.75$, and $\gamma=4.75$. 70

34 One type of spatiotemporal pattern observed in a network of relaxation oscillators with a grid topology with the connection weights normalized using (3.17). The filled circles represent oscillators which are on the right branch of the limit cycle. The parameters used are the same as in Figure 33.

35 A plot of the average time to synchrony in a chain of n oscillators as a function of $\log _{10}(n)$ for relaxation oscillators with an instantaneous active phase and integrate-and-fire oscillators. Both oscillators have jumping regions which are 70% of the limit cycle and both the data shown is the average of several hundred trials using random initial conditions. The parameters used are $I_{0}=1.11$ and $\alpha_{I}=0.2$ for the integrate-and-fire oscillators and $\alpha_{R}=3.5, \lambda=4$, and $\gamma=7$ for the relaxation oscillator.

36 The histograms of the time to synchrony for chains of length $n=25$ (thin) and $n=$

50 (thick). The histograms are scaled by n^{2}. All histograms are based on more than 1000 trials. (A) The scaled histograms for $\varepsilon=1.0$, (B) $\varepsilon=0.1$, and (C) $\varepsilon=0.01$. The other parameters used are $\alpha_{R}=6, \lambda=3, \gamma=42, \theta=-0.5$, and $\beta=1000 \ldots \ldots .96$

37 Histograms of the time to synchrony using a highly nonlinear interaction. The histograms are scaled by the size of the network. Two histograms are shown in each graph and the thin lines represent $\mathrm{n}=25$ and the thick lines are for $\mathrm{n}=50$. (A) The histograms with $\mathrm{e}=1.0$ and (B) with $\mathrm{e}=0.1$. The other parameters are as listed in Figure 36.

38 We display the average time to synchrony (in units of periods) for different values of n, ε, and κ. (A) is our data for $\kappa=1.0$ and (B) is our data for $\kappa=5000$. The data indicate an increase in the time to synchrony as n^{2} for $\kappa=1.0$ and as n for $\kappa=5000$. The data also suggest that the time to synchrony is proportional to $\varepsilon^{2 / 3}$ for both cases. 76

39 A trajectory of x is plotted as a function of t without time delay (thick curve) and with time delay (thin curve), using $\tau=0.15$. The latter trajectory quickly grows beyond the boundaries of the box and appears as a sequence of nearly vertical lines.

40 A plot of the nullclines and limit cycle of a relaxation oscillator defined in (4.1). The dotted curve is the x -nullcline and the dash-dot curve is the y -nullcline. The thick solid curve represents the limit cycle, which is the result of numerical calculation. The parameters used are $\lambda=8, \gamma=12, \varepsilon=0.005$, and $\beta=1000 \ldots \ldots$.

41 A plot of the nullclines and limit cycle for a pair of relaxation oscillators. See the Figure 40 caption for curve conventions. All trajectories in this figure are the result of numerical calculation. The parameters used are $\alpha_{R}=2, \theta=-0.5$, and $\kappa=500$ with the other parameters as listed in Figure 40.

42 A diagram in parameter space indicating regions of distinct behaviors. Regions IIV are distinguished by specific classes of trajectories and these regions result in loosely synchronous solutions. Numerical simulations indicate that much of region V consists of desynchronous solutions. The unlabeled region is not analyzed because it contains initial conditions which do not lie on the limit cycle for a given value of the time delay. The axes do not have the same scale. The equations specifying the boundaries of regions I-IV are given in Section 4.3.2 and also in Appendix B.. 897

43 Plots of trajectories in x and y space for various classes of initial conditions. All trajectories are numerically calculated using parameters listed in the captions of Figure 40 and Figure 41 with a time delay of $\tau=0.03 T$ and $\alpha_{R}=2$. The thin solid curve represents the trajectory of O_{1}, which is always the first oscillator to jump
up in (A), (B), (C), and (D). O_{1} is also the first oscillator to jump down in (E) and (F). The thick dashed curve represents the trajectory for O_{2}. (A) This graph displays typical trajectories for a pair of oscillators whose initial time difference is in region I of Figure 42. (B) Trajectories for a pair of oscillators whose initial time difference is in region II. (C) Trajectories for region III. (D) Trajectories for region IV. In (E) and (F) we display the two classes of trajectories arising when two oscillators jump down from the active phase to the silent phase of the limit cycle. (E) This graph displays the trajectories region II of Figure 42. (F) This graph displays the trajectories analogous to region III of Figure 42.

44 A plot of antiphase behavior arising in region V of Figure 42. The parameter values used are listed in the captions of Figure 40 and Figure 41 with $\tau=7, \alpha_{R}=6$, and $\varepsilon=0.025$.92

45 Loose synchrony in a chain of relaxation oscillators. The temporal activities of 50 oscillators with nearest neighbor coupling are shown. Numerical calculations indicate that this network achieves stability by the $3^{r d}$ cycle and that all neighboring oscillators satisfy the condition $\left|\Gamma\left(y_{i}(t), y_{i+1}(t)\right)\right| \leq \tau$. The parameter values used are $\lambda=8, \gamma=12, \beta=1000, \kappa=500, \tau=0.03 T, \alpha_{R}=6, \theta=-0.5$, and $\varepsilon=0.025$. 95

46 Loose synchrony in a two dimensional grid of oscillators. This figure displays the temporal activities of every oscillator from a 10×10 network. Each oscillator is coupled with its four nearest neighbors. The network achieves stability by the third cycle, and for all neighboring oscillators i and $j,\left|\Gamma\left(y_{i}(t), y_{j}(t)\right)\right| \leq \tau$. The parameter values used are the same as in Figure 45. 96

47 Antiphase behavior in a chain of relaxation oscillators. The temporal activities of 15 oscillators in a one dimensional chain with nearest neighbor connections are shown. Neighboring oscillators exhibit antiphase relationships and approach a period of approximately 2τ. The parameter values are listed in the caption of Figure 45 with $\tau=0.08 T$.

48 Desynchronous solutions in a chain of relaxation oscillators. If the coupling strength is below the lower bound specified in (4.15), desynchronous solutions can arise. In this simulation, $\alpha_{R}=1$, which is below the lower bound specified in (4.15), and all other parameters are as listed in the caption of Figure 44. Oscillators 12 and 13 had initial conditions such that they are able to remain in a desynchronous relationship. All other neighboring oscillators are loosely synchronous.97

49 An example of LEGION dynamics with time delays in the coupling between oscillators. The temporal activity is displayed for 60 oscillators and GI. The activity of GI is displayed beneath the oscillators. The following parameter values are used: $\gamma=6, \quad \lambda=3.95, \quad \alpha_{R}=2, \tau=1, \kappa=500, \quad \beta=1000, \quad \theta=-0.5$, and
$\varepsilon=0.025$.
50 The histograms of Υ^{k} for one dimensional networks. The histograms Υ^{k} are based on simulations whose initial conditions were restricted to the lower left branch of the limit cycle so that the time difference between any two oscillators were in regions I-III of Figure 42 The horizontal axis represents the maximum difference attained, and the vertical axis represent the number of times it was attained. The data was taken after the system had evolved for 11 cycles. The average time needed to achieve stability was approximately 3 cycles. (A) and (B) are the results for 50 and 100 oscillators respectively. The data for in (A) and (B) are based on 2250 and 2160 simulations respectively. The parameters used are given in the caption of Figure 45.

51 The histograms of Υ^{k} for two dimensional networks. These histograms are based on simulations with initial conditions as described in the caption of Figure 50. The data was taken during the $11^{\text {th }}$ cycle. The average time needed to achieve stability was approximately 3 cycles. (A) and (B) are the results for 5×5 and 10×10 oscillator networks respectively. The data for Υ^{k} in (A) and (B) are based on 2530 and 1320 simulations respectively. The parameter values used are the same as in the caption of Figure 45.

52 A plot of the evolution of the maximum time difference for 1980 trials. The trials are arranged in order from largest to smallest to emphasize that most of the trials resulted in a decrease in Υ^{k}. The thick line is a plot of $\Upsilon^{2}-\Upsilon^{1}$ and $\Upsilon^{3}-\Upsilon^{2}$ is indicated by the thin line. The network is almost stable by the third cycle and the change in $\Upsilon^{3}-\Upsilon^{2}$ is not nearly as great as for $\Upsilon^{2}-\Upsilon^{1}$. The dotted line displays $\Upsilon^{7}-\Upsilon^{6}$. The parameters used are the same as in the caption of Figure 42 with the exceptions that $\lambda=7$ and $\tau=0.04 T \ldots$. 104

53 Basic architecture of the model. The oscillators are arranged in a 2-D grid, where each square on the grid represents an oscillator. The connections between oscillators are local. Three representative situations are shown in the figure, where an oscillator located at a black site is connected only to oscillators on adjacent striped squares. Note that we do not use periodic boundary conditions. The global inhibitor (GI) is pictured at the top and is coupled with all oscillators in the network. . . 109

54 A diagram showing the connections that each excitatory and inhibitory unit has within an oscillator. Triangles represent excitatory connections, and circles represent inhibitory connections. 109

55 The y nullcline (small dashes), x nullcline (large dashes), and trajectory (solid) for a single oscillator are displayed. The parameters are $a=10.0, b=7.0$, $\phi_{x}=4.075, \quad c=10.0, \quad d=10.2129, \quad \phi_{y}=7.0, \quad \sigma=2.1, \quad \eta=7.0, \quad$ and

56 Input used for the network. Black squares denote oscillators that receive input. Starting clockwise from the upper left hand corner, we name the objects as follows: a helicopter, a thick addition sign, a tree, a truck, and a house. 112

57 A diagram showing the interactions between the excitatory and inhibitory units in a chain of oscillators. See the caption of Figure 54 for the meaning of the notations. 113

58 An enlarged diagram of the upper left hand corner of Figure 55 that displays the nullclines of two interacting oscillators. The two dashed curves are the nullclines for the leading oscillator, and the black filled circle represents the position of the leading oscillator. The interaction term causes the y-nullcline (short dashed curve) of the leading oscillator to be perturbed to the left so that it intersects the x-nullcline (long dashed curve). This creates an attracting fixed point, and a saddle fixed point. The interaction term does not impede the motion of the trailing oscillator (open circle), which will approximately follow the path given by the solid curve. The leading oscillator will be trapped at the attracting fixed point until the distance between the oscillators is very small.

59 This graph displays the combined x values of 34 oscillators with respect to time. An accurate synchrony is achieved within the first cycle. The random initial conditions used were restricted to the range of the limit cycle, i.e. $0.0 \leq x \leq 0.5$ and $0.0 \leq y \leq 1.0$. Parameters $\alpha_{W}=90$ and $\sigma=0$. 122

60 A close look of the triggering region (black filled triangle), the x nullcline (short dashed curve), and the y nullcline (long dashed curve). The value $\mu=0.048$ was used in the simulations, but other nearby values result in desynchronization also. The other parameters were $U=2.9$ and $v=2.0$.. 123

61 The activities of two oscillators and the global separator are plotted with respect to time. The two oscillators are desynchronized during the second cycle. The shape of the first oscillator is significantly altered because its speed is increased by GI. All parameters are the same as those listed in Figure 55 and Figure 60. 124

62 Each picture represents network activity at a time step in the numerical simulation. The size of the circle is proportional to the x activity of the corresponding oscillator. (A) The oscillators have random positions on the phase plane at the first time step. (B)-(F) Successive time steps that correspond to the maximal activities for each group of oscillators. $\alpha_{W}=10.0$ in this simulation. The other parameters are as specified in the captions of Figure 55 and Figure 60. The random initial conditions used were restricted to the range of the limit cycle, namely, $0.0 \leq x \leq 0.5$ and $0.0 \leq y \leq 1.0$.. 125

63 The plot labeled "GI" displays the activity of the global separator with respect to
time. The other five plots display the combined x activities of all the oscillators stimulated by the corresponding object. Each of the five oscillator groups is synchronized within the first cycle, and by the second cycle is desynchronized from the other oscillator groups.

64 A diagram showing the qualitative direction of motion for system (A.1). The two curves represent the x - and y -nullclines. 136

65 (A) The limit (thick curve) cycle for (A.1) with $\varepsilon=1.0$. The x - and y -nullclines are the thinner curves. (B) The temporal evolution of the x-variable and the y-variable.. 137

66 Three different limit cycles and their respective plots as a function of time are shown for three different values of ε. (A) $\varepsilon=0.33$. (B) $\varepsilon=0.1$. (C) $\varepsilon=0.01$. . 138

67 A plot of the nullclines and the synchronous limit cycle of a relaxation oscillator defined in (A.2). The dotted cubics are the excited and unexcited x-nullclines, and the dash-dot curve is the y-nullcline. The thick solid curve represents the synchronous limit cycle for a pair of oscillators, which is the result of numerical calculation. The parameters used are $\alpha_{R}=2, \theta=-0.5, \kappa=5000, \lambda=8, \gamma=12, \varepsilon=0.005$, and $\beta=1000$. 139

68 The trajectories of the three cases that lead to synchrony in a pair of coupled oscillators. In (A), (B), and (C) the first oscillator to jump is given by the dotted line and the second is denoted by the solid line. (A), (B) and (C) display the evolution of the system in $x-y$ space. (D),(E), and (F) display the x-activities of both oscillators as a function of time. The parameters used are the same as in Figure 67.. 141

69 An example of a desynchronous solution that arises because the coupling strength is not large enough. The first oscillator to jump is given by the dotted line and the second is denoted by the solid line. (A) displays the evolution of the system in $x-y$ space, and (B) displays the x-activities of both oscillators as a function of time. The parameter $\alpha_{R}=0.8$ was used with the other parameters as in Figure 67. 142

