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up in (A), (B), (C), and (D).  is also the first oscillator to jump down in (E) and
(F). The thick dashed curve represents the trajectory for . (A) This graph displays
typical trajectories for a pair of oscillators whose initial time difference is in region
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is in region II. (C) Trajectories for region III. (D) Trajectories for region IV. In (E)
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plays the trajectories region II of Figure 42. (F) This graph displays the trajectories
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