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CHAPTER 5

SYNCHRONY AND DESYNCHRONY IN NETWORKS OF LOCALLY

COUPLED WILSON-COWAN OSCILLATORS

5.1 Introduction

In this Chapter, we study networks of locally coupled Wilson-Cowan (W-C) oscilla-
tors [Wilson and Cowan, 1972]. The W-C oscillator is a two variable system of ordinary
differential equations and represents an interacting population of excitatory and inhibitory
neurons. The amplitudes of the variables symbolize the proportion of each population of
neurons that is active. We study these equations because they represent neuronal groups,
which may be the basic processing units in the brain [Edelman, 1987]. The W-C equations
have a large number of parameters, which allow for a wide range of dynamics. These
equations have been used widely in modelling various brain processes [Feldman and
Cowan, 1975, König and Schillen, 1991, Borisyuk et al., 1993], in creating oscillatory
recall networks [Wang et al., 1990], and in exploring the binding problem [Horn
et al., 1991, von der Malsburg and Buhmann, 1992, Wang, 1995]. Because of the neuro-
physiological importance of the W-C equations, several authors have examined their
mathematical properties [Ermentrout and Cowan, 1979, Baird, 1986, Sakaguchi, 1988,
Ermentrout, 1990, Cairns et al., 1993]. Of particular relevance is a study by Cairns et al.
[Cairns et al., 1993], which indicates that synchronization is possible with these equations.
Despite extensive studies on W-C oscillators, it remains unclear to whether or not a locally
coupled network can exhibit synchrony. It is also unknown how desynchronization can be
achieved in such a network.

We study locally coupled networks because globally coupled networks lack topologi-
cal mappings [Sporns et al., 1989, Chawanya et al., 1993]. Specifically, in a two-dimen-
sional network of oscillators, all-to-all couplings indiscriminately connects multiple
objects. All pertinent geometrical information about each object, and about its relation-
ships with other objects is lost. This information should be preserved if the network is to
be used for segmentation and object recognition. Local couplings simply and efficiently
preserve these spatial relationships.
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We study W-C oscillator networks with diffusive coupling. This coupling arises natu-
rally from the equations, but, as mentioned in Chapter 3, oscillator networks with diffu-
sive couplings typically achieve synchrony at times proportional to  (see also [Kopell
and Ermentrout, 1986, Niebur et al., 1991b]). In order to achieve fast synchrony (in one
cycle), we adjust parameters so that the system is near a bifurcation. This causes the inter-
action to create and destroy fixed points in such a manner that synchrony is quickly
attained.

The two main aspects of the theory of oscillatory correlation (described in Section 1.2)
are synchronization within an object, and desynchronization between objects. In our
model desynchronization of multiple objects is accomplished with a global inhibitor (GI),
which receives input from the entire network, and feeds back to all oscillators. The global
connections serve to adjust the relative phases between oscillator groups, wherever they
may be on the network. The model we present uses short range coupling to achieve syn-
chrony, while global couplings with GI give rise to desynchronization.

The model is described in the following section. In Section 5.3, it is proven that syn-
chrony is the globally stable solution for a line of oscillators given sufficient coupling
strength, and a technique for fast entrainment is presented. GI and the dynamics of desyn-
chronization are described in Section 5.4. Computer simulations of a two dimensional net-
work with five objects are shown in Section 5.5. In Section 5.6 we discuss possible
extensions to our model.1

5.2 Model Definition

The basic architecture of the model is shown in Figure 53. GI is connected to the entire
network. The connections between oscillators are local. An oscillator located on a black
square can only be coupled with oscillators on adjacent diagonally striped squares. The
topology of the network is a rectangle, not a torus. The coupling strengths are dynamically
changed on a fast time scale compared to the period of the oscillations (further discussion
below). The dynamic couplings serve to increase the coupling strength between units that
are active, to decrease the coupling strength between excited units and inactive units, and
to decrease the connection strength between two silent units, all rapidly and temporarily.

Each functional element on the grid is a simplified W-C oscillator defined as,
(5.1.a)

(5.1.b)

(5.1.c)

The parameters have the following meanings:  and  are the values of self excitation in
the  and  units respectively.  is the strength of the coupling from the inhibitory unit, ,
to the excitatory unit, . The corresponding coupling strength from  to  is given by .

1. The majority of this work has been published in Campbell and Wang, 1996.
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 and  are the biases, or thresholds. Figure 54 shows the connections for single oscilla-
tor. The  and  variables are interpreted as the average activity of the population of exci-
tatory and inhibitory neurons respectively.  modifies the rate of change of the  unit. The
coupling strength between oscillators is given by αW.  is a noise term. The noise is
assumed to be Gaussian with statistical property

Global Inhibitor

Figure 53. Basic architecture of the model. The oscillators are arranged in a 2-D grid,
where each square on the grid represents an oscillator. The connections between oscilla-
tors are local. Three representative situations are shown in the figure, where an oscillator
located at a black site is connected only to oscillators on adjacent striped squares. Note
that we do not use periodic boundary conditions. The global inhibitor (GI) is pictured at
the top and is coupled with all oscillators in the network.
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Figure 54. A diagram showing the connections that each excitatory and inhibitory unit has
within an oscillator. Triangles represent excitatory connections, and circles represent
inhibitory connections.
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(5.2.a)

(5.2.b)

where  is the amplitude of the noise,  is the Dirac delta function, and  if
 and  otherwise. The  oscillator receives a binary input . A value of

corresponds to those parts of the sensory field that are stimulated and drives the oscillator
into a periodic regime. Oscillators that do not receive input, namely , remain silent.

 represents the activity of GI and will be specified in detail in Section 5.4. Though it may
seem unusual to denote the position of an oscillator in a 2-D array with only one index, we
do so to avoid using four indices to label the connections between oscillators. Figure 55
displays the nullclines, the curves along which the values of  or  are zero, and the tra-
jectory of a point near the limit cycle. The caption of Figure 55 lists values for the param-
eters ,  and .

 The interaction terms are given by

(5.3.a)

(5.3.b)

where the sum is over , and  is the set of neighbors that element  has. We call
this form of coupling scalar diffusive coupling following the terminology of Aronson et
al. [Aronson et al., 1990]. The terms  and  are specified below.
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Figure 55. The  nullcline (small dashes),  nullcline (large dashes), and trajectory (solid)
for a single oscillator are displayed. The parameters are , ,

, , , , , , and .
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The connections between the oscillators are allowed to change on a fast time scale, as
first suggested by von der Malsburg [von der Malsburg, 1981, von der Malsburg and
Schneider, 1986]. They obey the following Hebbian rule: the connections between excited
oscillators increase to a maximum, the connections between excited and unstimulated
oscillators decrease to zero, and the connections between unstimulated oscillators
decrease to zero. This rule uses of a pair of connection weights. The permanent links
denote existence of connections between  and , and reflect the architecture of the net-
work (locally connected 2-D grid, see Figure 53). The dynamic links ’s change on a fast
time scale compared to the period of oscillation, and represent the efficacy of the perma-
nent links. The idea of fast synaptic modulation is introduced on the basis of its computa-
tional advantages and neurobiological plausibility [von der Malsburg, 1981, von der
Malsburg and Schneider, 1986]. The permanent links are given by  if  are
neighbors and  otherwise. The dynamic links are computed as follows

(5.4)

where  is a measure of the activity of oscillator . It is defined as
, where  is some threshold, and  is the Heaviside step function.

Namely  if the temporal average of activity, , is greater than the threshold,
or  if otherwise. With (5.4) in place, only neighboring excited oscillators will
be effectively coupled. This is an implicit encoding of the Gestalt principle of connected-
ness [Rock and Palmer, 1990].

 With scalar diffusive coupling, the Hebbian rule defined above would destabilize the
synchronous solution. To understand how the instability arises, consider three excited
oscillators arranged in a row, and each with the same values of activities, i.e.

, and . Because of the Hebbian coupling rule, the middle
oscillator has the following interaction term , while the
first and third oscillators have the interaction terms  and

 respectively. These interaction terms are different, and cause
the trajectories of the oscillators to be different. An exact synchrony is not possible. An
obvious solution is to change  so that it equals the number of excited neighbors that
oscillator  is coupled with. We set

(5.5)

so that the interaction terms will be zero when the oscillators are synchronized. All the
oscillators will now have the same trajectory and remain synchronous. The effect of (5.5)
is similar to the dynamic normalization introduced by Wang [Wang, 1993a, Wang, 1995].
The original form of dynamic normalization served to normalize the connection strengths
between oscillators. In this model we do not normalize connection strengths, but instead
alter the multiplicative constant on the scalar diffusive coupling term. Either formulation
would have the same results with these equations, but we choose to normalize the multi-
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plicative constant because it is more direct. The effect of dynamic normalization is to
maintain a balanced interaction term so that coupled oscillators remain synchronous inde-
pendent of the number of connections that they have.

 The architecture of this network allows us to implement the basic aspects of oscilla-
tory correlation, synchrony and desynchrony. To illustrate, assume that the network
receives input as shown in Figure 56. The black squares represent units that receive stimu-
lation, and these units then produce oscillatory behavior. The dynamic couplings will dis-
connect excited units from unexcited units, and group connected units together. For the
five objects pictured in the input, there will be five corresponding groups of oscillators.
Connected oscillators synchronize, and GI ensures that no two spatially separated objects
have the same phase.

5.3 Synchronization

Much work has been done with coupled phase oscillators [Kuramoto and
Nishikawa, 1987, Daido, 1988, Strogatz and Mirollo, 1988, Ermentrout, 1990, Ermen-
trout and Kopell, 1990, Sompolinsky et al., 1991] because the phase model is the simplest
description of a smooth limit cycle. Phase oscillators are generally defined as

(5.6)

where  is the phase of the  oscillator,  is its intrinsic frequency.  is the coupling
strength between the  and the  oscillators. For phase oscillators with local diffusive
coupling, and identical intrinsic frequencies, the in-phase solution is asymptotically stable
[Cohen et al., 1982]. But the phase model does not exhibit the rich variety of behaviors
that other, more complex nonlinear oscillators, have when locally coupled (for example

global inhibitor

Figure 56. Input used for the network. Black squares denote oscillators that receive input.
Starting clockwise from the upper left hand corner, we name the objects as follows: a heli-
copter, a thick addition sign, a tree, a truck, and a house.
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[Schreiber and Marek, 1982, Ashkenazi and Othmer, 1978, Han et al., 1995]. Because the
system of W-C oscillators that we use differs significantly from those mentioned above,
we examine the properties of the following approximation to the W-C oscillator in detail.
We show that with a sufficiently large coupling strength synchrony occurs for a finite
number of oscillators, independent of their initial conditions.

Using basic matrix stability analysis, we show that a line of oscillators can achieve
synchrony. The equations we analyze are a bit different from those shown in (5.1). We do
not include parameter , , and we do not consider the effects of GI. We have also
dropped the  notation because the interaction terms can be explicitly included. A dia-
gram of the connections between units, arranged in a line, is given in Figure 57. Note that
the two ends are not connected with one another. Thus we are analyzing a line, not a ring,
of  oscillators. The equations are

(5.7.a)

(5.7.b)

...

(5.7.c)

(5.7.d)

...

(5.7.e)

(5.7.f)

where the sigmoid function  has been approximated with

η D 0=
S

x1

y1

x2

y2

xN

yN

Figure 57. A diagram showing the interactions between the excitatory and inhibitory units
in a chain of oscillators. See the caption of Figure 54 for the meaning of the notations.
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(5.8)

The constants , and  are positive values, , and  is the cou-
pling strength. We now state our major analytical result as the following theorem.

Theorem For the system of coupled oscillators defined in (5.7) and (5.8), the cou-
pling strength  can be chosen such that synchrony is asymptotically stable.

Proof: First, let , and let us define the following notations

, (5.9)

, and (5.10)

(5.11.a)

(5.11.b)

Note that  is a two element vector, and  is the positive square root of . The time
derivative of the distance between two oscillators can be written as

(5.12)

We will use the “dot” above a variable to denote its first order time derivative. According
to (5.7)we can write

(5.13)

In the above equation , and let the values of the undefined variables
. The functions  and  are bounded by

(5.14)

Thus, the second term on the RHS of  is bounded by

(5.15)
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The last term on the RHS of  is bounded by

(5.16)

Using (5.15) and (5.16), an upper bound and a lower bound on  can be written as

(5.17)

which now places a finite bound on  as a function of  and . If , and we divide
both sides by , then (5.17) becomes

(5.18)

which implies that  if . Consequently, the bounds will reach an equilibrium
such that , the maximum distance between any two connected oscillators, is less than,
or equal to . Thus, without any coupling whatsoever, there is a finite bound on .
Because the interaction terms are designed to give rise to synchrony, one would expect
that they would have the effect of reducing . We now show that we can control the
size of  by an appropriate choice of . We divide (5.17) by  and examine only the
upper bound, which we rewrite as a matrix equation

(5.19)

where  and  is a  column vector of all 1’s. Let  be
the matrix in (5.19). We will use the convention of denoting vectors with lower case bold
letters, and matrices with upper case bold letters. The superscript “t” denotes the trans-
pose. The eigenvalues of  are all negative, thus (5.19) approaches an equilibrium value
at an exponential rate. The equilibrium values of the elements in , which we denote with

, are defined by
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(5.21)

For  we can approximate  with , where

(5.22)

The inverse of this matrix follows a regular pattern and we can explicitly write

(5.23)

Because the elements of  change continuously and monotonically with  (see
[Bellman, 1970]), and also because  remains invertible in the range , we can
use (5.23) as an upper bound on the sum of all the elements in , i.e.

(5.24)

We use (5.23) and (5.24) to bound (5.21) as

(5.25)

It can be shown that the elements of matrix  are all negative. Given that the elements
of  are all 1’s, (5.20) implies that all the elements of  are greater than zero. With this
we can write the following inequality

(5.26)

where  is the maximum of the ’s. (5.26) and (5.25) give the following inequality
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Assume that both systems of  and  start with the same initial conditions, i.e.
. Given that  and , it is known that  for

 [Golomb and Shanks, 1965]. Thus, after some time, (5.18) will reach equilibrium,
and we can use (5.27) and that  to write

(5.28)

(5.28) shows that for fixed ,  is bounded by a quantity that is inversely proportional
to . In essence, we can decrease  by increasing . We use this control to further
constrain the upper bound of (5.15), because once  is smaller than a certain value,

(5.29)

the maximal values for  and  are no longer equal to 1. According to (5.8) and (5.11), if
 then one oscillator is at a location on the plane such that , and

the other oscillator must satisfy . In other words, the oscillators lie on
opposite sides of the piece-wise linear function , and do not lie on the intermediate
sloped line.  is the minimum distance between two oscillators such that . If the
distance between two oscillators is less than , then the two oscillators lie on the same, or
adjacent, pieces of function  and thus . There is also a corresponding value
for the function , but  due to the constraint  previously men-
tioned. If  then automatically  which implies that . Thus we want
to choose αW such that

(5.30)

If the inequality in (5.30) is satisfied, then  is less than  and, using (5.8) and (5.11),
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(5.32.b)

In  the terms involving  and  are multiplicative. Hence,
is the function that must be examined. If  we can use (5.32) to write
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For convenience let
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and assume that the initial conditions for both systems are identical, i.e. , then
 for . If all the eigenvalues of  are negative, then the matrix is stable. If

the matrix is stable all the elements of  approach zero, which forces all the elements of
to approach zero. We now examine the eigenvalues of  to find under what conditions
they become negative. The eigenvalues of  are given by

(5.40)

where  and . The condition for all eigenvalues to be negative can
be written as

(5.41)

For  this becomes

(5.42)

In summary, synchrony will be asymptotically stable for the chain of coupled oscillators
defined in (5.7) if  is chosen such that the inequalities in (5.30) and (5.41) are satisfied.
This concludes the proof.

The reported time for a human subject to identify a single object is estimated to be less
than 100 ms. [Biederman, 1987]. If oscillatory correlation is used by the brain, synchrony
must be achieved before identification takes place. Experimental evidence from the cat
visual cortex shows that synchrony is achieved quickly, within 25-50 ms., or 1-2 cycles in
40 Hz oscillations [Gray et al., 1991]. These experimental results emphasize the impor-
tance of fast synchrony. From practical considerations synchrony must also be achieved
quickly in order to deal with a rapidly changing environment. In this model we can control
the rate of synchrony by increasing the coupling strength. But that would lead to unrea-
sonably large values for . This problem can be avoided by careful adjustment of the
nullclines, and we now describe a method by which a chain of several hundred W-C oscil-
lators, as defined in (5.1), but arranged as a one dimensional chain, can be entrained within
the first cycle.

Our method of fast synchrony requires that there exist one region in the phase plane
where the  and  nullclines of the oscillator are very near to one another. More specifi-
cally, in the system of (5.1), the parameters were chosen so that this occurs in the upper
left hand corner, as seen in Figure 55. The oscillators travel slowly through this region
because, close to the nullclines, the values of  and  are near zero. Note that this need not
be true in general, but it is true in the smoothly varying W-C equations that we use. The
and  nullclines are so near each other that only a small perturbation is needed to push the

 nullcline to the left, and cause it to intersect the  nullcline (we will use the coupling
term to create this perturbation). When the nullclines intersect, two new fixed points are
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ẋ ẏ
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created. One of these fixed points is attracting, and will stop periodic motion. We neglect
the case when the nullclines just touch, as the single bifurcation point exists only momen-
tarily, and does not significantly affect the dynamics.

Let us examine the case of two coupled oscillators in detail. Specifically, we examine
two oscillators that are near to one another and approaching the upper left hand corner of
the unit square from the right, i.e. rotating counterclockwise. Figure 58 displays an
enlarged picture of this region. The interaction term will cause the  and  nullclines of
the leading oscillator to intersect, effectively trapping it at the newly created fixed point.
In Figure 58 the leading oscillator (black filled circle) is shown trapped at the attracting
fixed point, which is the top intersection of the  nullcline and the  nullcline. The other
oscillator is represented by an unfilled circle, and its movement along the limit cycle is not
impeded. As the oscillators come closer the interaction term decreases, and the  nullcline
of the leading oscillator moves to the right. When the oscillators are close enough, the
and  nullclines of the leading oscillator will separate, releasing the leading oscillator
from the fixed point and allowing its motion along the limit cycle to continue. We have
ignored the motion of the  nullcline because it moves up and down only a small amount
during this process. Since the  nullcline is almost completely vertical in this region, mov-
ing it by a small amount has a negligible effect. In summary, our method of fast synchrony
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Figure 58. An enlarged diagram of the upper left hand corner of Figure 55 that displays
the nullclines of two interacting oscillators. The two dashed curves are the nullclines for
the leading oscillator, and the black filled circle represents the position of the leading
oscillator. The interaction term causes the  nullcline (short dashed curve) of the leading
oscillator to be perturbed to the left so that it intersects the  nullcline (long dashed
curve). This creates an attracting fixed point, and a saddle fixed point. The interaction
term does not impede the motion of the trailing oscillator (open circle), which will
approximately follow the path given by the solid curve. The leading oscillator will be
trapped at the attracting fixed point until the distance between the oscillators is very small.
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requires that there be a region such that the parameters are near a saddle bifurcation, and
that the interaction terms be organized to alter the behavior of an oscillator in this region
appropriately as described above.

The distance between the oscillators can be controlled precisely in this manner. It
depends solely on the original separation of nullclines, and the size of . To be more
precise, for the parameters specified in the caption of Figure 55, a  interaction term
greater than  will cause the nullclines to intersect. Thus, the distance between the
oscillators in the  direction, , will have to be less than  before peri-
odic motion resumes. Because the oscillators are almost directly above one another,

, and the distance between the oscillators can be approximated by .
This distance is orders of magnitude smaller than the size of the limit cycle, so we can
safely call the oscillators separated by this distance synchronized. However, this phase
adjustment only occurs in the upper left hand corner of the limit cycle. One must ensure
that both oscillators are in this region and not on opposite sides of the limit cycle. We
increase the value of  to make sure the oscillators approach each other before moving
to the limit cycle. This behavior can be explained by examining only the interaction terms
in (5.1), and ignoring the oscillatory terms. We find that the scalar diffusive coupling
terms converge asymptotically to a single stable point. Thus, if αW is sufficiently large, the
interaction terms will dominate over the oscillatory terms, and cause the oscillators
approach each other. As the oscillators come together, the interaction terms decrease, and
the oscillatory terms start to contribute to the dynamics. So, with a sufficiently large αW,
the oscillators will be loosely synchronized before oscillatory motion starts. The oscilla-
tors will then approach the upper left hand corner of the limit cycle. If the distance
between the two oscillators is larger than , then the interaction term will
cause the nullclines of the leading oscillator to intersect. An attracting point will be cre-
ated and the leading oscillator will be trapped at this point until the second oscillator
moves to within a distance of . In summary, αW is used to loosely group the
oscillators together. The oscillators then travel along the limit cycle to the upper left hand
corner, where they become tightly synchronized.

By controlling αW, and the position of the nullclines, we can reduce the distance
between the two oscillators to an arbitrarily small value. Using these same techniques, we
can control the overall entrainment of a chain of oscillators. Figure 59 shows the x activi-
ties of 34 oscillators plotted on the same graph. The oscillators are those defined in (5.1),
but they are arranged in a chain, and are not connected to GI. The strong interaction terms
cause the oscillators to approach each other rapidly, creating a thick conglomeration of
curves, instead of 34 completely random curves. These loosely synchronized oscillators
will then approach the upper left hand corner of the limit cycle, where they become tightly
synchronized. By the next peak, one can see that only a single thin curve is exhibited, as
all the oscillators are at virtually the same  value at the same time. We make no claims
that an infinite number of oscillators can be entrained using this method. Large line
lengths ( ) could require excessively large coupling strengths. We are interested in
finite systems, and have tested this method with chain lengths up to several hundred oscil-
lators. We conjecture that the behavior for a matrix of  locally coupled oscilla-
tors would be similar in terms of their synchronization.
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The method described above can group many oscillators to within a small distance of
one another, and therefore within a small distance of the in-phase solution. Because we
have not shown that the actual W-C oscillators synchronize, a variational analysis
[Minorsky, 1962] is appropriate. In this analysis all the variables are perturbed by a small
amount from a known solution, in this case, the synchronous solution. The perturbations
are assumed to be sufficiently small so that their first order approximations are valid. The
properties of the resulting system of linear equations can then be examined. We assume
the existence of a smooth stable limit cycle, and do not consider the effects of noise or GI.
Our analysis has shown that the in-phase solution is locally stable. We omit the details of
this straightforward procedure of the analysis.

In summary, we have shown that the piece-wise linear form of the W-C oscillator will
synchronize if the coupling strength meets a certain criteria, and we have presented a
method for rapid synchrony. In our simulations, we have used both the piece-wise linear
approximation of the oscillator (5.7) and the actual W-C oscillators (5.1), and observed
that any positive coupling strength will give rise to synchrony, even if it does not satisfy
the conditions previously specified. Therefore we conclude that synchrony can be
achieved in populations of neural oscillators with local connections.

5.4 Desynchronization

As discussed previously, a method of desynchronization is necessary for minimizing
the possibility of accidental synchrony. Several models [Schillen and König, 1991,
von der Malsburg and Buhmann, 1992] have methods of desynchronization, but it is not
clear how these models perform with more than two objects. In Hansel and Sompolinsky
[Hansel and Sompolinsky, 1992], noise in a chaotic system is used to desynchronize
objects, but this can also synchronize objects. Hence this is not a reliable method of distin-
guishing multiple objects.
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Figure 59. This graph displays the combined  values of 34 oscillators with respect to
time. An accurate synchrony is achieved within the first cycle. The random initial condi-
tions used were restricted to the range of the limit cycle, i.e.  and
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In order to reliably desynchronize multiple objects, independent oscillations in an
oscillator network cannot be permitted. Thus we globally connect GI to and from every
oscillator in the network so that no two oscillators act fully independently. These connec-
tions serve to adjust phase relationships between oscillator groups representing different
objects. GI has a minimum value of zero, and is defined as

(5.43)

 is a binary value, which is turned on (set to one) if any oscillator lies within a small
region near the origin; it is defined as

(5.44)

The positive parameters U and  control the rate of growth and decay of . We call this
area near the origin the triggering region because when an oscillator enters this region,

, and the value of GI starts to increase.  controls the size of the triggering region.
As seen in (5.1), the value of GI is fed into the  unit of every oscillator. This manipula-
tion has the simple effect of raising or lowering the  nullcline of every oscillator. Figure
60 displays the triggering region and its position relative to the nullclines. Just to the right
of the triggering region there is another slow region, because the  and  nullclines are
relatively close. All oscillators rotate counterclockwise, so an oscillator will enter the trig-
gering region, and then pass through the slow region between the nullclines.
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Figure 60. A close look of the triggering region (black filled triangle), the  nullcline
(short dashed curve), and the  nullcline (long dashed curve). The value  was
used in the simulations, but other nearby values result in desynchronization also. The
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GI can only take on positive values, enabling it to raise nullclines or return them to
their original positions. An oscillator in the triggering region will cause the  nullcline of
every oscillator to rise, and will produce a marked increase the speed of those oscillators
in the slow area. Because the triggering region and the slow region are adjacent, any two
oscillators with nearby phases will be separated when the trailing oscillator enters the trig-
gering region. The movement of the  nullclines will affect oscillators elsewhere on the
limit cycle, but the change in their speed of motion will be negligible compared to the
increase in speed received by an oscillator in the slow area.

Figure 61 displays the ability of GI to separate two oscillators. The first two plots dis-
play the  activity of two oscillators in time. The third plot is the activity of GI with
respect to time. The oscillators are almost in phase in the first cycle, but a major shift
occurs during the second cycle. This occurs when oscillator 2, which trails oscillator 1,
enters the triggering region and thus excites GI, which then increases the speed of oscilla-
tor 1. The sharp change in the characteristic shape of oscillator 1 during the second cycle
demonstrates the increase in speed induced by GI while oscillator 1 was within the slow
region. Afterward, GI continues to cause minor phase shifts during every cycle. These
small phase shifts slowly decrease as the relative phase difference increases. Eventually,
an equilibrium is attained. The equilibrium, however, does not ensure an antiphase rela-
tionship between the two oscillators, but suffices to clearly distinguish their phases.

Naturally, the desynchronization of objects by this method acts in direct opposition to
the necessity of achieving synchrony within groups of oscillators. We resolve this problem
by increasing the coupling strength. Increased coupling maintains synchrony within
groups of connected oscillators, but does not alter the performance of GI because it does
not change the shape of the limit cycle.

x

x

Figure 61. The activities of two oscillators and the global separator are plotted with
respect to time. The two oscillators are desynchronized during the second cycle. The
shape of the first oscillator is significantly altered because its speed is increased by GI. All
parameters are the same as those previously listed in Figure 55 and Figure 60.
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5.5 Simulation Results

We now discuss the simulation results of this model using the input displayed in Fig-
ure 56. Figure 62A-F display network activity at specific time steps during numerical inte-
gration. Figure 62A represents the initial activity of the network. The sizes of the circles
are directly proportional to the  values of the corresponding oscillators. The random
sizes of the circles in Figure 62A represent the random initial conditions of the oscillators.
Figure 62B is a later time step when the object that resembles a house is at its highest acti-
vation. Figure 62C displays the time step after Figure 62B when the object resembling a
helicopter is maximally active. Figure 62D corresponds to the time step after Figure 62C
when the highest activation for the tree-like object is attained. This object was specifically
selected to emphasize that any connected region will synchronize, whether it is concave or
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Figure 62. Each picture represents network activity at a time step in the numerical simula-
tion. The size of the circle is proportional to the  activity of the corresponding oscillator.
(A) The oscillators have random positions on the phase plane at the first time step. (B)-(F)
Successive time steps that correspond to the maximal activities for each group of oscilla-
tors.  in this simulation. The other parameters are as specified in the captions
of Figure 55 and Figure 60. The random initial conditions used were restricted to the
range of the limit cycle, namely,  and .
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convex. Figure 62E shows a later time step when the truck shaped object is maximally
activated. The object resembling a thick addition symbol is also weakly activated at this
time step. Finally, Figure 62F shows the time step when the thick addition sign is at its
highest activation. The objects clearly “pop out” once every cycle.

In Figure 63, we display the activities of GI and the  activities of all stimulated oscil-
lators for the first few cycles. The first five plots display the combined  activities of all
oscillators that are stimulated by the five objects. Each of the properties we have described
in previous sections are shown in this graph. Initially the interaction terms dominate and
cause the oscillators to loosely synchronize. Loose synchrony is seen on the graph by
observing that each of plots quickly merge into a thick line. By the second peak, the oscil-
lators have been synchronized to such a degree that only a thin single curve is exhibited.
Desynchronization most noticeably occurs during the fourth activation of GI. The phase
difference between the oscillator groups representing the house and the addition sign is
significantly altered at this time. This shift in phase is signaled by the change in the char-
acteristic shape of the oscillator group representing the addition sign. The activity of GI is
displayed on the last frame of Figure 63, . GI is activated when any oscillator, or oscillator
group passes through the triggering region. When the oscillators are well separated, GI
will be active five times per cycle, signaling successive “pop outs” of the five objects.

x
x

Figure 63. The plot labeled “GI” displays the activity of the global separator with respect
to time. The other five plots display the combined  activities of all the oscillators stimu-
lated by the corresponding object. Each of the five oscillator groups is synchronized
within the first cycle, and by the second cycle is desynchronized from the other oscillator
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Only the first three cycles are depicted in this graph, but as we have tested, synchrony
within the oscillator groups, as well as desynchrony between the groups is maintained
afterwards without degradation.

We can reliably separate up to at least 9 objects (results not shown). Separating the
phases of more objects becomes increasingly difficult for this system. The finite time
required for an oscillator to travel through the triggering region, and the finite area
affected by GI, constrain the number of objects that can be separated. This limitation
seems consistent with the well-known psychological result that humans have a fundamen-
tal bound on the number of objects that can be held in their attentional span [Miller, 1956].

Even though noise was not used in the simulations presented here, we have tested the
network with various amounts of noise. As expected, the system is robust for small
amounts of noise, but cannot tolerate very large quantities. This is because noise by itself
can cause the nullclines to intersect and thus interfere with the mechanism we use to syn-
chronize oscillators. The amount of noise the system can tolerate increases with the size of
the coupling strength.

We used the numerical ODE solvers found in [Press et al., 1992] to conduct the above
simulations. An adaptive Runga-Kutta method was used for most of the simulations
reported. The Bulrisch-Stoer method was later used to confirm the numerical results. The
network had the same dynamics with either of the integration methods. So it is very
unlikely that numerical errors played any significant role in our simulation results.

5.6 Discussion

Our analysis of the W-C oscillator network demonstrates that it contains the basic fea-
tures necessary to achieve oscillatory correlation. This includes: dynamic couplings, local
excitatory connections to synchronize oscillators, and global excitatory connections to
desynchronize groups of oscillators. With this simple architecture, we have used the the-
ory of oscillatory correlation, together with the Gestalt principle of connectedness to illus-
trate sensory segmentation. The model retains information of spatial relationships through
local coupling, and does not suffer from the problems of accidental synchrony through the
use of a global separator to segregate objects.

Although we have not attempted to simulate the experimental findings of Gray et al.
[Gray et al., 1989], the network is neurally plausible. The W-C equations represent the
activities of neural groups, and local excitatory connections are consistent with lateral
connections widely seen in the brain [Kandel et al., 1991]. The global separator may be
viewed as part of an attentional mechanism. Experiments conducted by Treisman and
Gelade [Treisman and Gelade, 1980] suggest that if an object has several features, a cor-
rect conjunction of those features relies on attention. Thus, if feature binding is achieved
through oscillatory correlation, the attentive mechanism may serve to synchronize features
into a coherent object, as well as segment different objects. In performing desynchroniza-
tion, GI may accomplish a task that is fundamental to attention. GI also has structural sim-
ilarities to a proposed neural attentional mechanism. Crick [Crick, 1984] suggested that
the reticular complex of the thalamus may control attention, in part because it has connec-
tions both to and from many regions of the cortex. Thus, the reticular complex of the thal-
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amus may have influence over widely separated sensory processing regions. With its wide
range couplings, GI may have structural, as well as functional, relations to the proposed
attentional mechanisms.

We have shown that synchrony can occur in locally coupled oscillators if the coupling
is sufficiently large. This is proven using the piece-wise linear approximation to the W-C
oscillators. Numerically we observe that synchrony occurs, with local coupling, in the
actual W-C oscillators (5.1), as well as our approximation to them (5.7), with any positive
coupling strength. This implies that synchrony in such oscillator networks is possible with
local connections only. We have also demonstrated a method that can synchronize large
numbers of oscillators within the first cycle. The method is based on choosing parameters
such that the system is near a bifurcation. This technique is not specific to W-C oscillators,
or even scalar diffusive coupling. It should be applicable to other types of oscillators as
well. We do not know yet have an estimate for how the rate of synchrony changes with the
size of the system.

We also present a mechanism for desynchronization, which can segment up to 9 spa-
tially separate objects. Our mechanism requires only a basic control of speed through a
single region of the limit cycle, so it can be transferred to other oscillator models (see also
[Wang and Terman, 1995] and [Terman and Wang, 1995]).

The matrix analysis we have done for a chain of oscillators can be extended to analyze
higher dimensional oscillator lattices. We conjecture that synchrony can also be achieved
in more than two dimensions, with only a positive coupling strength. This is based on sim-
ulations that we have done with two dimensional grids that exhibit the same phase locking
behavior as we have seen in one dimensional chains. Also, this analysis can be done with
lateral connections farther than nearest neighbor connections. In fact, numerical simula-
tions (data not shown) in one and two dimensions show that longer range connections
facilitate synchronization. We speculate that analysis with longer range connections would
indicate a decrease in the connection strength required to achieve synchrony.

In our model, spatial relationships are preserved through local excitatory coupling.
The information contained in these relationships allows us to define objects using the
Gestalt principles of proximity and connectedness. Thus any spatially separate object can
be segmented, independent of its similarity to other objects in other features. That spatial
segmentation is fundamental to perceptual processes is supported by the work of Keele et
al. [Keele et al., 1988], who show that spatial location is a basic cue for feature binding.

Aside from explaining what may occur in the brain, oscillatory correlation offers a
unique approach to the engineering of pattern segmentation, figure/ground segregation,
and feature binding. Due to the nature of the oscillations, only a single object is active at
any given time, and multiple objects are sequentially activated. The model can be used as
a framework upon which more sophisticated methods of segmentation can be built. For
example, the network can be extended to handle gray level input also. Dynamic couplings
between excited neighboring oscillators could then be based on the contrast in the gray
level of the stimulus. Regions with smoothly changing input would be grouped together,
and segmented from regions with boundaries of sharp changes in gray level (see Chapter 2
for an implementation of this).
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A unique advantage of using oscillatory correlation for perceptual organization is that
the architecture is inherently parallel. Each oscillator operates simultaneously with all the
others, and computations are based only on connections and oscillations, both of which
are particularly feasible for VLSI chip implementation (for an actual chip implementation
exploring phase locking see [Andreou and Edwards, 1994]). It also provides an elegant
representation for real time processing. Given the enormous amount of information pro-
cessing required by sensory processing, a parallel architecture and the potential for VLSI
implementation are both very desirable qualities.

Perceptual tasks involving neural oscillations have also been observed in audition
[Galambos et al., 1981, Madler and Pöppel, 1987] (see Wang [Wang, 1996a] for a model)
and olfaction [Freeman, 1978]. Oscillations have also been explored in associative recall
networks [Buhmann, 1989, Wang et al., 1990, Abbott, 1990]. With its computational
properties plus the support of biological evidence, this model may offer a general
approach to pattern segmentation and figure/ground segregation.
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