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CHAPTER 4

RELAXATION OSCILLATORS WITH TIME DELAY COUPLING

4.1 Introduction

Thus far we have studied synchronization in networks of locally coupled neurobiolog-
ically based oscillator models. One additional detail that would make these models more
realistic is time delays in the interaction. Time delays in signal transmission are inevitable
in both the brain and physical systems. In unmyelinated axons, the speed of signal conduc-
tion is approximately 1mm/ms [Kandel et al., 1991]. Connected neurons which are 1mm
apart may have a time delay of approximately 4% of the period of oscillation (assuming
40 Hz oscillations). How synchronization is achieved in the presence of significant time
delays is an important question. Furthermore, in any physical implementation (such as
analog VLSI) of an oscillator network, transmission delays are unavoidable. Since even
small delays may alter the dynamics of differential equations with time delays
[Kuang, 1993], it is necessary to understand how conduction delays change the behavior
of oscillator networks.

The inclusion of time delays in a differential equation immediately causes the dimen-
sionality of the system to become infinite because the system is now dependent on an infi-
nite set of initial conditions. To illustrate the effects time delays may have, we discuss the
following equation,

The above equation has an asymptotically stable fixed point at zero. A trajectory for the
above equation is the thick curve displayed in Figure 39. If one introduces a time delay,

then the trivial solution becomes unstable for any positive delay  [Kuang, 1993]. One
such trajectory for this time delay differential equation is the thin curve in Figure 39.

In this Chapter we study relaxation oscillators with time delay coupling. We choose to
study time delays in relaxation oscillators for several reasons. They are based on neurobi-
ology [Fitzhugh, 1961, Nagumo et al., 1962]. They exhibit better properties of synchrony
when compared to non-relaxation type, such as sinusoidal oscillators [Somers and
Kopell, 1993, Wang, 1993a, Terman and Wang, 1995, Somers and Kopell, 1995, also see
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Chapter 3]. Also, relaxation oscillators have been analytically shown to have robust prop-
erties of desynchronization [Terman and Wang, 1995] and have been used for feature
binding tasks [Wang, 1996b, Wang and Terman, 1997]. Furthermore, they can exhibit
properties of both sinusoidal and integrate-and-fire type oscillators by proper adjustment
of parameters. Studying time delays in relaxation oscillators might result in understanding
time delays in networks consisting of these other types of oscillators. Due to these unique
properties, we have chosen to examine the effects of time delays in relaxation oscillators.

To our knowledge, time delays in networks of relaxation oscillators have not been
extensively studied. In Grasman and Jansen [Grasman and Jansen, 1979], a perturbation
analysis was carried out for coupled relaxation oscillators with time delays. The coupling
was assumed to be small and the interaction term was not based on excitatory chemical
synapses, as is ours. Due to the differences in the coupling term, it is not surprising their
results do not agree with ours. Studies of time delays in other oscillator networks have
revealed a diverse and interesting range of behaviors. For example, in a network of identi-
cal phase oscillators with local coupling, the inclusion of a time delay in the interactions
decreases the frequency [Niebur et al., 1991a]. See [Plant, 1981, Schuster and
Wagner, 1989, MacDonald, 1989, Ernst et al., 1995, Luzyanina, 1995, Foss et al., 1996,
Gerstner, 1996] for other examples of delays in differential equations.

In this Chapter, the dynamics of relaxation oscillators without time delay coupling is
first described in Section 4.2. In Section 4.3 we present analysis for a pair of relaxation
oscillators with time delay coupling. We show that the oscillators always become loosely
synchronous (approach each other so that their time difference is less than or equal to the
time delay) for a wide range of initial conditions and time delays. In Section 4.4 we
describe that the dynamics of one- and two-dimensional oscillator networks is similar to
that of a pair of oscillators. Here we define our measure of synchrony for networks of
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Figure 39. A trajectory of  is plotted as a function of  without time delay (thick curve)
and with time delay (thin curve), using . The latter trajectory quickly grows
beyond the boundaries of the box and appears as a sequence of nearly vertical lines.
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oscillators. We also show a simulation of LEGION with time delay coupling between
oscillators, and suggest that its properties of grouping oscillators together and desynchro-
nizing different oscillator groups are maintained. In Section 4.5 we study our measure of
synchrony for one and two dimensional networks of oscillators. A particular case of initial
conditions is discussed, where the degree of synchrony does not degrade as the network
evolves. Section 4.6 concludes the Chapter.1

4.2 Basic Dynamics of Neural Oscillators

Before treating the dynamics of relaxation oscillators coupled with time delays, it is
useful to describe their dynamics without time delays. We examine a specific oscillator
model. A more general description of a pair of coupled relaxation oscillators can be found
in [Somers and Kopell, 1993]. The oscillator we study is defined as

(4.1.a)

(4.1.b)

These functions are equivalent to those used in [Terman and Wang, 1995]. The x-
nullcline, , is a cubic function. Two important values of this cubic are the y-values
of the local extrema. In Figure 40 the extrema are denoted by RK (right knee) and LK (left
knee). The y-nullcline, , is a sigmoid and is assumed to be below the left branch
(LB) and above the right branch (RB) of the cubic as shown in Figure 40. The parameter

 controls the steepness of the sigmoid and we use . The value  is chosen to be
small, , so  is a fast variable and  is a slow variable. The oscillator thus defined
is a typical relaxation oscillator. The limit cycle is made up of four pieces: two slowly
changing pieces along the left branch and right branch, and two fast pieces that connect
the left and right solutions. The parameters  and  are used to modify the amount of time
an oscillator spends on the left and right branches. The trajectory and nullclines for this
oscillator are shown in Figure 40.

To illustrate the coupling, we examine two oscillators, defined as

(4.2.a)

(4.2.b)

(4.2.c)

(4.2.d)

(4.2.e)

1. Most of the contents of this Chapter are based on material that is to appear in Physica D.
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The value  is the coupling strength, and the interaction term is a sigmoid, mimicking
excitatory synaptic coupling. The value of  modifies the steepness of this sigmoid and
we use . Increasing the value of  results in a raise of the x-nullcline, .
This is a property seen in several descriptions of neural behavior [Hodgkin and
Huxley, 1952, Fitzhugh, 1961, Wilson and Cowan, 1972, Morris and Lecar, 1981]. In the
limit, , with the threshold of the interaction term, , between the outer branches of
the cubic, the system behaves as if  is a step function. Thus the interaction is either
nonexistent, or excitatory. When an oscillator travels from a left branch to a right branch,
the other oscillator receives excitation. The excitation raises the x-nullcline of the oscilla-
tor. The excited oscillator then exhibits dynamics based on its modified phase space, a
mechanism referred to as fast threshold modulation [Somers and Kopell, 1993]. The three
pertinent nullclines for this system are pictured in Figure 41. As before, the pertinent val-
ues of the x-nullclines are the y-values of their local extrema. For the particular equations
we use in (4.2), the x-nullcline shifts upward in direct proportion with a change in .
The local extrema are denoted by the lower left knee (LLK) and the lower right knee
(LRK) for the unexcited x-nullcline, and the upper left knee (ULK) and the upper right
knee (URK) for the excited nullcline. The values of the extrema are

The term ‘jump’ is used when an oscillator moves from either of the left branches to either
of the right branches, or vice versa. The term ‘hop’ is used to describe the relatively
smaller movements when an oscillator moves from an upper to a lower branch, or vice
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Figure 40. A plot of the nullclines and limit cycle of a relaxation oscillator defined in
(4.1). The dotted curve is the x-nullcline and the dash-dot curve is the y-nullcline. The
thick solid curve represents the limit cycle, which is the result of numerical calculation.
The parameters used are , , , and .λ 8= γ 12= ε 0.005= β 1000=
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versa. Also, when an oscillator is on either of the left branches, we say that it is in the
silent phase and when an oscillator is on either of the right branches, we say that it is in the
active phase.

A basic description of the behavior of (4.2) now follows. Let the oscillators be denoted
by  and . Let both oscillators begin on the lower left branch (LLB), with . We
assume that the time an oscillator spends traveling along LLB is longer than the time an
oscillator spends on the upper right branch (URB). Because the motion is counter-clock-
wise along the limit cycle,  leads . The leading oscillator, , will reach  first,
and jump up to the lower right branch (LRB). There are four basic trajectories that can
arise based on the position of  at the time  jumps up. Somers and Kopell [Somers
and Kopell, 1993] have described similar trajectories, so we give only a brief summary
here. If  is below  it will jump up to URB. When  crosses the interaction
threshold,  will hop from LRB to URB. The order of the oscillators is reversed for this
case. If, however,  is above  when  jumps up,  will hop to the upper
left branch (ULB). Its motion will continue along ULB until it reaches , at
which time it will jump up to URB. There are two possibilities for the relative positions of
the oscillators on the active phase: the order may be reversed or not. This accounts for two
more cases. The fourth trajectory occurs when  jumps up, and  is above
by such an amount that it is possible for  to traverse the active phase, and return to the
silent phase before  can jump up. Parameters can be found so that each case results in a
significant phase contraction between the two oscillators. Terman and Wang [Terman and
Wang, 1995] showed that rapid synchrony is achieved in a network of locally coupled
relaxation oscillators. This fast synchrony is independent of the dimension, or the size of
the network.
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Figure 41. A plot of the nullclines and limit cycle for a pair of relaxation oscillators. See
the Figure 40 caption for curve conventions. All trajectories in this figure are the result of
numerical calculation. The parameters used are , , and , with
the other parameters as listed in Figure 40.
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4.3 Dynamics Including Time Delay

4.3.1 Singular Solutions

We now introduce a time delay in the interactions. The equations are

(4.3.a)

(4.3.b)

(4.3.c)

(4.3.d)

The time delay is only in the interaction between the  variables. The fast system of (4.3)
is obtained by setting . This results in

(4.4.a)

(4.4.b)

where  and . The slow system for (4.3) is derived by introducing a slow
time scale  and then setting . The slow system for the lower left branch is

(4.5.a)

(4.5.b)

where  describes the lower left branch of (4.3). System (4.5) determines the slow
evolution of an oscillator on the lower left branch. Because  and , we
rewrite (4.5.b) as

(4.6)

For an oscillator on the upper left branch, (4.6) will again result because ,
where  defines the upper left branch. Thus an oscillator has the same velocity in
the y-direction along either of the left branches. For the right branches, these same steps
result in the following analogous equation,

(4.7)
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The velocity in the y-direction of an oscillator along either of the right branches is given
by (4.7). Because of this, the hops that occur along the upper and lower cubics do not
affect the time difference between the two oscillators. Only the jumps from a left branch to
a right branch and vice versa can result in changes in the time difference between the two
oscillators. In more generalized versions of relaxation oscillators, the speed along differ-
ent cubics may be different. We briefly address this issue in Section 4.3.4.

In the singular limit, , system (4.3) reduces to two variables. The exact form of
the x-nullcline is not important as long as a general cubic shape is maintained. The evolu-
tion of the system is determined by solving (4.6) and (4.7). The equation describing
along either of the left branches is

(4.8)

The y-position of an oscillator along either of the right branches is given by

(4.9)

We compute the total period of oscillation, , for the synchronous solution using (4.8)
and (4.9). The time it takes to travel from  to , along the upper right
branch, is given by

(4.10)

The time needed to travel from  to , along the lower left branch, is given
by

(4.11)

Thus, we have .The evolution (4.3) can be solved with knowledge of
the initial conditions, the branches the oscillators are on, and the times at which the oscil-
lators receive excitation. This can become somewhat complicated in this time delay sys-
tem, especially for larger delays, but some general classes of trajectories can be analyzed
easily.

Our analysis in this section and Section 4.3.2 is derived at the singular limit (ε = 0).
We have not carried out a perturbation analysis. We note, however, that Terman and Wang
[Terman and Wang, 1995] have carried out an analysis of networks of relaxation oscilla-
tors in the singular limit and extended their analysis from  to small positive . Our
networks differ from theirs in the inclusion of time delays between the oscillators, but it
may be possible that a singular perturbation analysis can be carried out similarly. We have
done substantial testing with various values of . Our results indicate that values of

 do not significantly alter any of the dynamics discussed.
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4.3.2 Loosely Synchronous Solutions

As part of our analysis, we need a measure of the distance between the two oscillators.
The Euclidean measure of distance does not yield intuitive results because of the con-
stantly changing speed of motion along the limit cycle. We instead use the time difference
between the two oscillators,  [LoFaro, 1994, Terman and Wang, 1995], defined
as

(4.12)

where yi represents the y-value of Oi. This function measures the time it takes an oscillator
at  to travel to  and is only valid if both oscillators are on the same branch of the limit
cycle. Two oscillators are defined to be loosely synchronous if the time difference between
them is less than or equal to the time delay, or .

We describe various solutions for (4.3) in the singular limit, but only for a set of spe-
cific initial conditions and a limited range of time delays. We assume that both oscillators
lie on LLB so that they are on the limit cycle during the time , with . This
assumption bounds the maximum initial time difference by . By restricting the
initial conditions in this manner, the behavior of the system is determined by two parame-
ters; the initial time difference between the two oscillators and the time delay. In broad
regions of this parameter space we find distinct classes of trajectories. For some of these
classes we are able to calculate the time difference between the two oscillators. For other
regions we rely on numerical simulations to indicate the final state of the system. In
Figure 42 we summarize five regions of the parameter space that we have examined. In
regions I-IV we show that loosely synchronous solutions arise provided that the coupling
strength is appropriately bounded. Numerical simulations in region V indicate that
antiphase solutions of high frequency can result. We examine time delays in the range
to . The value  (the subscript RM stands for right minimum) is the time needed to
traverse the fastest branch in the system, which in our system is LRB, and is given by

(4.13)

This value can be a significant portion of the period of oscillation and we present analytic
results within this range. Numerical simulations indicate that for , loose synchrony
is not commonly achieved.

We first describe region I of Figure 42. Here the oscillators have an initial time differ-
ence of less than or equal to , or . In this situation,  will jump up to
LRB before receiving excitation. Thus, the only effect of the interaction is to cause  to
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Figure 42. A diagram in parameter space indicating regions of distinct behaviors. Regions
I-IV are distinguished by specific classes of trajectories and these regions result in loosely
synchronous solutions. Numerical simulations indicate that much of region V consists of
desynchronous solutions. The unlabeled region is not analyzed because it contains initial
conditions which do not lie on the limit cycle for a given value of the time delay. The axes
do not have the same scale. The equations specifying the boundaries of regions I-IV are
given in Section 4.3.2 and also in Appendix B.
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hop from LRB to URB. Since this hop does not affect the speed of an oscillator in the y-
direction, or its y-value, it has no effect on the time difference between the two oscillators.
In this region the oscillators have simple periodic motion and maintain a constant time dif-
ference. Any small perturbation within this region changes the time difference; thus region
I is neutrally stable. Solutions in region I are always loosely synchronous. Typical trajec-
tories for a pair of oscillators in region I are shown in Figure 43A. There are two bound-
aries for region I, and the first is given simply by  for .
For time delays larger than , there is a different relation between the initial separa-
tion and the time delay. In order for loose synchrony to occur, we must ensure that
does not traverse LRB and jump down to LLB before receiving excitation. This condition
results in  for . If , then

 receives excitation after it has jumped down to LLB. For this case, one oscillator is in
the silent phase, and the other oscillator is in the active phase. Numerical simulations indi-
cate that desynchronous solutions typically result from this type of trajectory.

Region II of Figure 42 contains trajectories such that when  receives excitation, it
is able to immediately jump up to URB, and  receives excitation at time . If

, then  jumps down to LRB and one oscillators is in the silent phase and the
other oscillator is in the active phase. As previously noted, desynchronous solutions typi-
cally result from this type of trajectory. However, if the time delay satisfies

, then  hops from LRB to URB when it receives excitation and both
oscillators are on URB. The evolution of the system can then readily be calculated. Region
II is thus defined for time delays . Typical trajectories for a pair of oscilla-
tors in this region are shown in Fig. 5B. The initial time difference is bounded by

, where  is given by

(4.14)

This is the time of travel from  to  on the lower left branch. With zero
time delay, the y-distance between the two oscillators remains the same before and after
the jump up, but the time difference between them changes. If the ratio of the initial time
difference on LLB to the time difference after the jump (on URB) is less than one, then
there is compression [Somers and Kopell, 1993], and oscillators synchronize at a geomet-
ric rate. With time delay, the y-distance between the two oscillators changes before they
are both on URB. From Figure 43B, one can see that  travels upward on LRB, while

 travels downward on LLB until receiving excitation. Depending on the initial condi-
tions, the y-distance between the two oscillators can shrink, or increase. When the y-dis-
tance decreases, the time difference decreases by a factor greater than the compression
ratio alone. When the y-distance increases, the time difference is less than or equal to the
time delay. In Appendix B, we derive the time difference between the two oscillators after
one period, and show that it decreases.

The initial conditions of region III of Figure 42 are bounded by
. In region III,  receives excitation, hops to ULB,

and jumps up to URB before  jumps down to LLB. Typical trajectories for a pair of
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Figure 43.  Plots of trajectories in  and  space for various classes of initial conditions.
All trajectories are numerically calculated using parameters listed in the captions of
Figure 40 and Figure 41 with a time delay of  and . The thin solid
curve represents the trajectory of , which is always the first oscillator to jump up in
(A), (B), (C), and (D).  is also the first oscillator to jump down in (E) and (F). The thick
dashed curve represents the trajectory for . (A) This graph displays typical trajectories
for a pair of oscillators whose initial time difference is in region I of Figure 42. (B) Tra-
jectories for a pair of oscillators whose initial time difference is in region II. (C) Trajecto-
ries for region III. (D) Trajectories for region IV. In (E) and (F) we display the two classes
of trajectories arising when two oscillators jump down from the active phase to the silent
phase of the limit cycle. (E) This graph displays the trajectories region II of Figure 42. (F)
This graph displays the trajectories analogous to region III of Figure 42.
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oscillators in region III are shown in Figure 43C. For this class of trajectories, it is shown
in Appendix B that after one cycle, the time difference between the two oscillators
decreases.

Region IV of Figure 42 is bounded by . If the
initial separation of the oscillators is larger than the upper bound, then the oscillators can-
not be on the limit cycle and on the lower left branch during the time , and we do not
examine initial time differences beyond this range. In region IV,  receives excitation
and hops to ULB. However,  does not receive excitation long enough to reach

 and hops back to LLB after  has traversed LRB. Typical trajectories for a
pair of oscillators in region IV are shown in Figure 43D. In Appendix B we show that the
time difference between the two oscillators decreases if the coupling strength is suffi-
ciently large, i.e. satisfies condition (B35). We also show that if that condition is met, then
the oscillators whose initial conditions are in region IV do not map into region V, but
instead map to regions I, II, or III. If condition (B35) is not satisfied then desynchronous
solutions can occur for some initial conditions.

The analysis of regions II-IV of Figure 42 requires that we calculate the change in the
time difference between the two oscillators when they jump down from the active to the
silent phase as well. We do this in Appendix B. The cases examined are analogous to
regions II and III and are called region IIR and IIIR. In Figure 43E we display trajectories
for a pair of oscillators in region IIR. The leading oscillator in this region jumps down and
the other oscillator is able to jump down from URB to LLB when it no longer receives
excitation. In region IIIR the leading oscillator jumps down and the other oscillator hops
from URB to LRB when it no longer receives excitation and then jumps to LLB. Typical
trajectories for a pair of oscillators in region IIIR are shown in Figure 43F. We assume that
LRB is the fastest branch in the system. This places a limit on the size of αR, and also lim-
its the number of trajectories that can arise from the right branches. The resulting restric-
tion on αR is given in (B14). Both restrictions, (B35) and (B14), on the coupling strength
are summarized to

(4.15)

where the values of  are given by

(4.16)
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For the parameters listed in the Figure 45 caption, for example, the coupling strength must
be within the following values  according to (4.15). Note that in the case
of zero time delay, the conditions in (4.15) must still be satisfied in order for loose syn-
chrony (in this case perfect synchrony) to occur.

Within the bounds specified in (4.15), and given initial conditions in regions II-IV of
Figure 42, the time difference between the two oscillators will always decrease. As the
system evolves, the time difference will decrease until it becomes less than the time delay.
The oscillators will then be loosely synchronous.

Note that the diagram obtained in Figure 42 is not completely generic for all parameter
values. One can modify parameters, , and , so that the value of
changes. This is the value that controls the height of the thick line in Figure 42. By shift-
ing this line up or down one can change the relative sizes of the regions or even remove
region IV. But, since we have assumed that  the value of  cannot be
altered so that regions II or III are removed, i.e. . Thus regions II and III
always exist. If  is made larger, then region IV becomes larger, but no new regions are
created in this manner.

4.3.3 Desynchronous Solutions

If αR is larger than the upper bound in (4.15), numerical simulations indicate that loose
synchrony is still possible. If αR is less than the lower bound in (4.15), then our analysis
shows that neutrally stable desynchronous solutions of period less than PT arise for some
initial conditions in region IV of Figure 42. The period is less than the period of the
loosely synchronous solution in part because the oscillators traverse LRB, instead of the
longer URB. This desynchronous solution is analogous to a case of antiphase behavior as
discussed by Kopell and Somers [Kopell and Somers, 1995]. In [Kopell and
Somers, 1995] it was stated that antiphase solutions can arise given a coupling strength
between relaxation oscillators that is not too large, with limit cycles such that the time
spent on the active and silent phases are sufficiently unequal. Our results for region IV are
in agreement with these statements. Region IV exists only when the time spent on the
silent phase is sufficiently larger than the time spent on the active phase, i.e.

, and desynchronous solutions can arise in this region only if the
coupling strength is below the lower bound of (4.15). Because the speed of an oscillator is
identical on both upper and lower cubics, these desynchronous solutions are neutrally sta-
ble, that is, any small perturbation moves the oscillators into another nearby desynchro-
nous solution. This possibility is also noted in [Kopell and Somers, 1995]. The range of
possible desynchronous solutions does not cover the entire area of region IV. We do not
delve further into these particular desynchronous solutions.

In regions I, II, and III of Figure 42,  always receives excitation before jumping
down, and both oscillators are on URB for some amount of time. This situation does not
occur in region V and this is the reason why loosely synchronous solutions exhibited in
regions I, II, and III, generally disappear in region V. In this region, with time delays larger
than ,  traverses LRB and jumps down to LLB before receiving excitation.
Meanwhile,  receives excitation and jumps up to URB. One oscillator is in the silent
phase, and the other oscillator is in the active phase, or the oscillators are on the opposite
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sides of the limit cycle. From these initial conditions, numerical simulations indicate that
desynchronous solutions typically arise. They can quickly become perfectly antiphase,
with one oscillator receiving excitation and traveling upward along URB, while the other
oscillator is not receiving excitation and is traveling downward along LLB. After a time
equal to the time delay, the oscillator on the active phase ceases to receive excitation and
jumps down to LLB, while the oscillator on the silent phase begins to receive excitation,
and jumps up to URB. This solution has period . The behavior just described is one of
many desynchronous solutions that can exist in region V dependent on the location of the
knees and the coupling strength. We have obtained some analytic results for a few small
convex areas within region V. Our results are not shown here because they do not cover a
significant portion of region V. Also, the derivations are quite lengthy. The areas we have
examined analytically in region V have desynchronous or antiphase solutions of period
less than PT. Numerical simulations suggest that region V consists mostly of solutions in
which the oscillators are nearly antiphase and have a period less than PT. In Figure 44 we
display an example of antiphase behavior in region V. The period of oscillation measured
in this figure is approximately .

4.3.4 Time Delays in Other Relaxation Oscillators

For the oscillator model we use, the speed of an oscillator depends only on its y-value,
or in other words, the speed of an oscillator is the same no matter which cubic it is on. This
condition allows for exact solutions, but is not very general. As noted in Kopell and Som-
ers [Kopell and Somers, 1995], different speeds of motion along different cubics can give
rise to different behaviors. We have tested this scenario by using the Morris-Lecar equa-
tions [Morris and Lecar, 1981] and other relaxation oscillators that exhibit different speeds
along different cubics, and our results from numerical simulations indicate that the pre-
dominant behavior of loose synchrony is still observed. A pair of oscillators quickly con-
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Figure 44. A plot of antiphase behavior arising in region V of Figure 42. The parameter
values used are listed in the captions of Figure 40 and Figure 41 with , ,
and .
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verges to a solution in which the time difference between the two oscillators is less than or
equal to the time delay. However, the loosely synchronous solutions are no longer neu-
trally stable. We observe several possible stable solutions for two oscillators, stable syn-
chronous solutions, and a stable solution such that the oscillators whose time difference is
equal to the time delay. There may be other possible states as well. We have not yet per-
formed an analysis of these systems. For all tested systems, we observe that loose syn-
chrony persists under analogous conditions to those given in Section 4.3.2.

We find that for initial conditions analogous to region IV of Figure 42, several desyn-
chronous solutions can exist for small coupling strengths. These solutions are analogous
to those described by Kopell and Somers [Kopell and Somers, 1995], in their analysis of a
pair of relaxation oscillators without time delay coupling.

For time delays larger than half the amount of time spent on the fastest branch of the
system, we find equivalent behaviors to those observed in region V of Figure 42. The
oscillators frequently exhibit nearly antiphase relations with periods of approximately ,
thus conforming to earlier results when the speed of motion is the same for the upper and
lower cubics.

In summary, we have analyzed a pair of relaxation oscillators in the singular limit,
with initial conditions such that the oscillators are on the silent phase of the limit cycle
during the time , and with time delays of less than . Given the appropriate upper
and lower bounds on the coupling strength, as specified in (4.15), loosely synchronous
solutions arise for regions I-IV of Figure 42. For coupling strengths less than the lower
bound in (4.15) and initial conditions such that the time difference between the two oscil-
lators is in region IV, desynchronous solutions can occur. Extensive numerical simulations
in region V indicate that loosely synchronous solutions occur, as do antiphase and desyn-
chronous solutions with periods less than PT. In numerical studies with Morris-Lecar
oscillators and other relaxation oscillators, in which the speed along different cubics is not
identical, we find similar results.

4.4 Networks of Oscillators

4.4.1 Relationship with Pairs of Oscillators

Analysis of more than two locally coupled oscillators quickly becomes infeasible
because the number of possible initial configurations and their resultant possible trajecto-
ries increases dramatically with the number of oscillators. The rest of the Chapter is based
on numerical simulations of oscillator networks. The connection strengths are normalized
so that the sum of the weights is the same for every oscillator [Wang, 1995]. For example,
in a chain of oscillators, an oscillator at one end receives input from only one oscillator.
This connection weight is twice the amount of the connection weight to an oscillator in the
center of the chain, which receives input from its two nearest neighbors. Initially, oscilla-
tors are randomly placed on the lower left branch of the limit cycle so that the time differ-
ence between every pair of oscillators is in regions I-III of Figure 42. These simulations
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reveal that the behavior of a network has similarities to that of two oscillators. The most
pertinent similarity is that after the network has settled into a stable periodic solution, any
two neighboring oscillators i and j have a time difference as follows,

(4.17)

In Figure 45 we demonstrate this behavior by displaying the x-values of a chain of 50
oscillators with nearest neighbor coupling and . We use the term loosely syn-
chronous to describe networks of oscillators in which condition (4.17) is met because each
oscillator is still loosely synchronized with its neighbors. In Figure 45 it appears that the
network has stabilized by the  or  cycle. In our numerical simulation, we call a net-
work stable if the changes in time difference between neighboring oscillators remains
below a threshold for more than two periods. This threshold is set to . With this
measure, the network in Figure 45 meets our criteria of stability by the  cycle.

We have also examined networks in which the connection weights are not normalized,
thus the two oscillators at the ends of the chain receive only half as much input as the other
oscillators. We find that loose synchrony is achieved so long as the coupling strength to
the end oscillators are still within the bounds specified in (4.15). Also, in tests where 10%
variation is added to the coupling strengths and with no normalization, we find that loose
synchrony can still be achieved. The oscillators quickly attain solutions such that they are
within region I or II with respect to their neighbors, and are thus able to jump when they
receive excitation. If the conditions in (4.15) are not satisfied, then desynchronous solu-
tions can arise. We also note that similar behaviors hold in networks of relaxation oscilla-
tors in which the speed of motion is different for different cubics. Loose synchrony is
quickly achieved, but, as in the case for two oscillators, loose synchrony is no longer neu-
trally stable.

We find through extensive simulations that two dimensional locally coupled networks
also display loose synchrony. In these simulations, all oscillators are randomly distributed
on the lower left branch so that the time difference between every pair of oscillators is
within regions I-III of Figure 42. After the network has achieved stability, using the same
criteria of stability mentioned previously, the time differences between any oscillator and
its nearest neighbors are always less than or equal to the time delay. Thus two dimensional
networks also exhibit loose synchrony, similar to a pair of oscillators or a chain. In
Figure 46 we display an example of loose synchrony in a  network of oscillators.
We have combined the x-values of all 100 oscillators in the figure to facilitate the compar-
ison between phases. The network in Figure 46 meets our criteria of stability by the third
cycle.

In region V of Figure 42, a pair of oscillators typically exhibits antiphase behavior of
high frequency. This behavior can also been seen in networks of oscillators. In Figure 47
we display an example of antiphase behavior in a chain of 15 oscillators. The oscillators
are randomly placed on the lower left branch of the limit cycle so that the time difference
between every pair of oscillators is in region V with . In this simulation oscilla-
tors quickly achieve nearly antiphase relations with their neighbors and the period of each
oscillator approaches .
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Figure 45. Loose synchrony in a chain of relaxation oscillators. The temporal activities of
50 oscillators with nearest neighbor coupling are shown. Numerical calculations indicate
that this network achieves stability by the  cycle and that all neighboring oscillators
satisfy the condition . The parameter values used are ,
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For small values of the coupling strength, with initial conditions in region IV of
Figure 42, a pair of oscillators can exhibit desynchronous solutions. These conditions can
also cause desynchronous solutions in one dimensional networks. In (4.15) we display an
example of desynchronous behavior arising from region IV in a chain of 15 oscillators.
The initial conditions are chosen so that the time difference between every pair of oscilla-
tors is randomly distributed in regions I-IV. In Figure 48 several oscillators initially begin

0 50 100 150 200 250 300 350 400 450 500

t

x

Figure 46. Loose synchrony in a two dimensional grid of oscillators. This figure displays
the temporal activities of every oscillator from a  network. Each oscillator is cou-
pled with its four nearest neighbors. The network achieves stability by the third cycle, and
for all neighboring oscillators i and j, . The parameter values used are
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Figure 47. Antiphase behavior in a chain of relaxation oscillators. The temporal activities
of 15 oscillators in a one dimensional chain with nearest neighbor connections are shown.
Neighboring oscillators exhibit antiphase relationships and approach a period of approxi-
mately . The parameter values are listed in the caption of Figure 45 with .2τ τ 0.08T=
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with desynchronous relationships, but become loosely synchronous through interactions
with their neighbors. Oscillators 12 and 13, however, remain in a desynchronous relation-
ship, and exhibit the same period of oscillation as the loosely synchronous solutions. This
behavior corresponds to fractured synchrony as described in Kopell and Somers [Kopell
and Somers, 1995]. The correspondence, however, is not exact. Time delays were not
studied in [Kopell and Somers, 1995]. A one dimensional ring of relaxation oscillators in
their system exhibited two distinct groups of oscillators. Each group achieved perfect syn-
chrony and was approximately antiphase with the other group. In our simulation, two
groups of oscillators exist in a one dimensional chain of oscillators. Each group exhibits
loose synchrony, and an approximately antiphase relationship exists between the two
oscillators on the single border between the two groups.

For time delays and initial conditions in region V of Figure 42, there is not a clear rela-
tion between pairs of oscillators and networks of oscillators. In pairs of oscillators region
V consists mostly of antiphase relations. For networks of oscillators loosely synchronous,
antiphase, and other solutions arise dependent on the initial conditions and the coupling
strength. For the rest of the Chapter we will focus on the initial conditions and time delays
which lead to loose synchrony between neighboring oscillators.

time
0 250 500

5

10

15

Figure 48. Desynchronous solutions in a chain of relaxation oscillators. If the coupling
strength is below the lower bound specified in (4.15), desynchronous solutions can arise.
In this simulation, , which is below the lower bound specified in (4.15), and all
other parameters are as listed in the caption of Figure 44. Oscillators 12 and 13 had initial
conditions such that they are able to remain in a desynchronous relationship. All other
neighboring oscillators are loosely synchronous.

αR 1=



98

4.4.2 The Maximum Time Difference

Although simulations indicate that neighboring oscillators are loosely synchronous,
loose synchrony does not indicate the degree of global synchrony in an entire network.
Obviously, a measure of global synchrony is important, and there are many ways of deter-
mining synchrony in an oscillatory system, see Pinsky and Rinzel [Pinsky and
Rinzel, 1995] for examples. We could convert positions of oscillators on the limit cycle
into phase variables, , but due to the large amplitude variations during the hops and
jumps, defining a phase is problematic. One could also base a measure on Euclidean dis-
tance, and find the average separation between oscillators. However, during the jumps,
much distance is covered in a short time. A measure based on Euclidean distance can vary
during a single cycle. We instead examine the maximum time difference between any two
oscillators in the network. The maximum time difference is defined as follows. Let
denote the time at which the  oscillator, , jumps up during the  period. Let

 and

(4.18)

Thus,  is the maximum time difference between any two oscillators during the
period. Each period of an oscillator can be delineated by the time it jumps up. The initial
conditions we use, with the time difference between every pair of oscillators in regions I-
III of Figure 42, allow for this simple definition of the period (see Figure 45). This mea-
sure offers direct comparison with other pertinent quantities such as the period of oscilla-
tion, and the amount of time spent on the active and silent phases. Also, the maximum
time difference becomes a constant when the oscillator network achieves stability.

4.4.3 LEGION with Time Delay Coupling

We first describe LEGION and then, based on numerical simulations, describe how the
dynamics of LEGION changes when time delays are included in the interaction between
oscillators. The architecture of LEGION is a two dimensional array of locally coupled
relaxation oscillators. In addition, each of the oscillators is coupled with a unit called a
Global Inhibitor (GI). Desynchronization is accomplished by GI. Oscillators receiving
stimulus become oscillatory and those that do not remain inactive. The connections
weights between oscillators are dynamic. The connections between stimulated neighbor-
ing oscillators increase to a constant, while connections with unstimulated oscillators
decrease to zero. Thus, only stimulated neighboring oscillators are connected. Let us
assume that all the oscillators are on the silent phase of the limit cycle. When one oscilla-
tor jumps up to the active phase, GI becomes active on the fast time scale and sends inhi-
bition to all oscillators. This inhibition serves to lower the x-nullcline of every oscillator.
The x-nullclines of unexcited oscillators are lowered so that they intersect their y-
nullclines and the oscillators are attracted to the newly created fixed points. The inhibition
from GI, however, is not enough to prevent oscillators receiving excitation from jumping
up to the active phase. Thus the oscillator that has jumped up to the active phase, can
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recruit its stimulated neighboring oscillators. These oscillators jump up to the active phase
and recruit their stimulated neighbors and so on. Since each jump decreases the distance
between coupled oscillators, a group of stimulated neighboring oscillators quickly syn-
chronizes. Following [Terman and Wang, 1995], we refer to a group of stimulated and
connected oscillators as a block. A block will jump up to the active phase, while other
blocks continue to travel along the silent phase, approaching the attracting fixed points.
This mechanism is called selective gating [Terman and Wang, 1995]. When a block of
oscillators jumps down, GI quickly releases its inhibition to the network on a fast time
scale. The x-nullclines of all oscillators will then rise so that the attracting fixed points dis-
appear. Other blocks can then jump up to the active phase and the aforementioned process
repeats.

Assuming a block of oscillators is perfectly synchronous, the number of blocks that
can be desynchronized is related to the ratio of the time an oscillator block spends on the
active and silent phases [Terman and Wang, 1995]. If, however, a block of oscillators is
not perfectly synchronous, the amount of time a block spends in the active phase
increases. The amount of time a block spends in the active phase is thus an important mea-
sure for the network.

In Figure 49 we present the output of a network equivalent to LEGION, with the inclu-
sion of time delays between oscillators. Even though all oscillators receive stimulation, we
set both the connection weights between oscillators 20 and 21, and between those of oscil-
lators 40 and 41, to zero in order to create three groups of oscillators. The network is able
to group and segregate the three blocks, but the individual blocks no longer attain perfect
synchrony; loose synchrony is achieved within each block. Neighboring oscillators are
loosely synchronous according to (4.17). Because perfect synchrony is no longer
achieved, the amount of time that a block of oscillators spends on the active phase is no
longer simply determined by that of a single oscillator. The additional amount of time a
block spends on the active phase, in comparison with the time a perfectly synchronous
block spends on the active phase, is given by the maximum time difference within a block
of oscillators. If the maximum time difference for a block is near , then the other
blocks on the silent phase of the limit cycle become stuck at the attracting fixed points and
further segregating them becomes problematic. If, however, the maximum time difference
is still relatively small in comparison with , then other blocks of oscillators can be
separated, and the number of distinct blocks LEGION can segregate does not decrease
drastically.

4.5 Maximum Time Difference in Oscillator Networks

4.5.1 One and Two Dimensional Networks

We examine the maximum time difference for one dimensional networks of oscilla-
tors. Since the times at which the oscillators jump up are intrinsically determined by the
initial conditions of the network, we cannot determine analytically the value that  will
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Figure 49. An example of LEGION dynamics with time delays in the coupling between
oscillators. The temporal activity is displayed for 60 oscillators and GI. The activity of GI
is displayed beneath the oscillators. The following parameter values are used: ,
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take. Of course, in a chain of n oscillators, the maximum possible value of  is given by
, but in simulations, we rarely see values of even half of this. We are thus led to

examine the distribution of  over a number of trials.
In Figure 50A and Figure 50B we display histograms of  for networks of size 50

and 100 oscillators. The oscillators are placed on LLB so that the initial time difference
between every pair of oscillators is randomly distributed in regions I-III of Figure 42. The
largest value  can have is 21 in the dimensionless units of Figure 50A and Figure 50B.
After the network has achieved stability, most of the trials have values of  ( ) that
are less than 21. A small percentage (4%) of the trials resulted in  increasing signifi-
cantly larger than , in some cases almost doubling. Other histograms generated with dif-
ferent parameter values display similar distributions. By similar we mean that there is a
marked tendency for a majority of the trials to remain within the maximum time differ-
ence of the initial bounds, or . In addition, there is a small but noticeable peak on
the tail of the distribution in Figure 50A and Figure 50B. This suggests that there are a few
initial conditions which result in large values of the maximum time difference, but we do
not know what initial configurations cause this.

ϒk

n 1–( ) τ
ϒk

ϒk

ϒ1

0

50

100

150

200

250

0 50 100
maximum difference

fr
eq

. o
f 

oc
cu

rr
en

ce

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50
maximum difference

fr
eq

. o
f 

oc
cu

rr
en

ce

Figure 50. The histograms of  for one dimensional networks. The histograms  are
based on simulations whose initial conditions were restricted to the lower left branch of
the limit cycle so that the time difference between any two oscillators were in regions I-
III of Figure 42 The horizontal axis represents the maximum difference attained, and the
vertical axis represent the number of times it was attained. The data was taken after the
system had evolved for 11 cycles. The average time needed to achieve stability was
approximately 3 cycles. (A) and (B) are the results for 50 and 100 oscillators respectively.
The data for  in (A) and (B) are based on 2250 and 2160 simulations respectively. The
parameters used are given in the caption of Figure 45.
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We also find in other simulations that the distribution  is sensitive to initial condi-
tions. For initial conditions such that 10% of the oscillators are randomly distributed on
URB, the distribution  becomes much broader and the average maximum time differ-
ence almost doubles (data not shown).

Because the oscillators are constrained to be within a certain time difference of one
another, but are otherwise not constrained whether or not they fire at time τ ahead of their
neighbors, or at time τ behind their numbers, the firing times of the oscillators in the chain
appear like the steps in a random walk. The time measure we use, the maximum time dif-
ference between any two oscillators in the chain, is equivalent to the finding the range of a
random walk. Daniels [Daniels, 1941] solved for the range of a random walk using Ber-
noulli trials, and Feller [Feller, 1951] later generalized this to the range of a random walk
with steps that are independently distributed with a Gaussian distribution. Both yield sim-
ilar results for the average value and variance of the range. The average value of the range
increases as  and the standard deviation also increases as , where n is the number
of steps in the random walk. Our data for the maximum time difference as a function of n
is not extensive enough to accurately determine whether or not the maximum time differ-
ence in a chain of oscillators increases with , where n is the number of oscillators. We
speculate that the initial conditions of the system are too constrained to allow  to
increase indefinitely, and that there is some finite maximum value for .

We now discuss our simulations of two dimensional networks, in which oscillators are
coupled with their four nearest neighbors. The initial conditions are as before, with every
oscillator randomly positioned on LLB so that the initial time difference between every
pair of oscillators is in regions I-III of Figure 42. Our simulations indicate that after the
network achieves stability, neighboring oscillators have time differences that are less than
or equal to the time delay. In other words, the network achieves loose synchrony. As
before, the behavior of the maximum time difference is unknown. In Figure 46A and
Figure 46B we display histograms of  for networks of size  and , respec-
tively. Because the coupling is between the four nearest neighbors, the maximum possible
difference is given by , where  is the length of one side of a square. As in the
histograms for chains of oscillators, the histograms are skewed towards smaller values of
the maximum time difference.

We note that, although the network sizes are not large, the above simulations are com-
putationally expensive. Each of the histograms shown in Figure 50 and Figure 51 requires
a large number of data points. To collect the data we made use of several hundred high-
performance workstations, located in various computer laboratories in The Ohio State
University Department of Computer and Information Science.

4.5.2 Bounding the Maximum Time Difference

As noted previously,  can increase as the network evolves. Numerical simulations
indicate that in most cases  decreases as k increases, but for some initial conditions
increases with k. We want to know if there is some range of initial conditions along LLB
such that  does not increase with time. This would be useful in determining the amount
of time a block of oscillators spends in the active phase, and thus would play an important
role in determining network parameters. If there were such a constraint, then one could
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always begin the oscillators within this range and know for certain that  will not
increase as the system evolves, in spite of coupling delays between neighboring oscilla-
tors.

Specifically, we explore whether there exists some range of initial conditions, which
we call , such that if  oscillators are randomly distributed within , then,

(4.19)

Let  be a range of initial conditions on the lower left branch defined as ,
so that  is the time it takes to traverse . If , then the time difference
between every pair of oscillators in the network satisfies  and the inter-
action term does not cause any oscillators to jump up or down. Since the interaction does
not change the time difference between any oscillators, the maximum time difference does
not change, or . We conjecture a larger range,

(4.20)

where

(4.21)
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Figure 51. The histograms of  for two dimensional networks. These histograms are
based on simulations with initial conditions as described in the caption of Figure 50. The
data was taken during the 11th cycle. The average time needed to achieve stability was
approximately 3 cycles. (A) and (B) are the results for  and  oscillator net-
works respectively. The data for  in (A) and (B) are based on 2530 and 1320 simula-
tions respectively. The parameter values used are the same as in the caption of Figure 45.
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The value of  originates from analysis of two oscillators. It is the time difference result-
ing in perfect synchronization for a pair of oscillators. Simulations of oscillator networks,
with random initial conditions in the range , support this conjecture. In Figure 52 we
plot values of  (thick solid line) for 1980 trials of a chain of 75 oscillators ran-
domly positioned so that the initial time difference between every pair of oscillators is
within . The values of  have been plotted in order from largest to smallest for
simplicity. By far, the majority of trials yield a negative result for , indicating that
the value of  decreases from the first to second period. Approximately 4% of the trials
did, however, yield positive values for . The largest positive change had a value of
0.1905. The numerical method used was an adaptive Runge-Kutta method modified from
[Press et al., 1992] for time delay differential equations. The resulting average step size of
the method was 0.1305. Errors in computing the  are on the order of the average step
size. The small percentage of trials that resulted in small positive values of  are
very likely to have resulted from numerical inaccuracy. In Figure 52,  is given by
the thin solid line. Note that there is less of a change from the second to third cycle
because the network achieves stability quickly. The average number of cycles needed to
achieve stability is 4, so the values of  should be near zero. In Figure 52 the dotted
line represents , and although near zero, it has noticeable deviations. The devia-
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Figure 52. A plot of the evolution of the maximum time difference for 1980 trials. The tri-
als are arranged in order from largest to smallest to emphasize that most of the trials
resulted in a decrease in . The thick line is a plot of  and  is indicated
by the thin line. The network is almost stable by the third cycle and the change in
is not nearly as great as for . The dotted line displays . The parameters
used are the same as in the caption of Figure 42 with the exceptions that  and
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tions from zero are again on the order of the average step size. This provides further evi-
dence that numerical errors cause the deviations seen in both  and . We
have tested this result with networks of 25, 50, and 100 oscillators as well, and display
only one graph because the others are extremely similar and little additional information is
revealed. We have also tested this algorithm with a fourth order Runge-Kutta algorithm
with fixed step size. Similar results were obtained. Approximately 5% of the trials resulted
in small positive increases in . Using this numerical algorithm, the maximum
increase was , with step-size . We attribute these small increases to the fact
that our conjecture is based on the singular limit , while in simulations, the value
used was .

In summary, our extensive simulations support our conjecture that  is a range of
initial conditions which satisfies condition (4.19). Further examination of this conjecture
also lends support. For ranges larger than , a significant percentage of trials result in

. For ranges smaller than  there are specific initial conditions in which
(4.19) is violated. But these conditions do not cause an increase when the range becomes
as large as . We note that parameters can be chosen so that the range  is a significant
percentage of the period.

4.6 Concluding Remarks

We have presented analysis describing the dynamics of a pair of relaxation oscillators
with time delay coupling. We have proven that loosely synchronous solutions exist depen-
dent on the initial conditions, the time delay, and the strength of the coupling. We have
provided explicit statements regarding appropriate initial conditions, time delays, and cou-
pling strengths which result in loose synchrony. Analysis and numerical simulations indi-
cate that there is a critical time delay, , beyond which antiphase solutions of period
less than PT commonly arise. Although the analysis for multiple oscillators has not been
carried out, numerical simulations indicate that locally coupled networks of oscillators
also display similar behaviors as seen in a pair of oscillators. In particular, loose syn-
chrony exists between neighboring oscillators.

The behaviors analyzed and simulated in this Chapter are in terms of a specific set of
relaxations oscillators. However, the behaviors we examined should also exist in other
relaxation oscillators. In preliminary investigations of locally coupled networks of Morris-
Lecar oscillators [Morris and Lecar, 1981], Bonhoeffer-van der Pol oscillators
[Fitzhugh, 1961], and other relaxation type oscillators, we find that loose synchrony is
quickly attained for time delays less than the time spent on the fastest branch of the sys-
tem. Both the Morris-Lecar and Bonhoeffer-van der Pol are related to the class of excit-
able-oscillatory systems including the Hodgkin-Huxley model of neuronal activity
[Hodgkin and Huxley, 1952], and some of the behaviors seen here may carry over to this
more complex model. Furthermore, by appropriate adjustment of parameters, relaxation
oscillators can be made to vary from sinusoidal type oscillators, to integrate-and-fire type
oscillators. Our work here might have relations to the behaviors of time delays in other
types of oscillator networks. Preliminary investigations of integrate-and-fire oscillator
with time delay coupling indicates that similar behavior occurs in that the time difference
between oscillators is at most τ.
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To characterize the degree of synchrony in the network as a whole, we have introduced
a measure of synchrony, the maximum time difference between any two oscillators in the
network. The maximum time difference of a network depends on the initial conditions of
the oscillators. In order to study the maximum time difference, we have given histograms
of this measure using random initial conditions for several networks. Our results indicate
that the maximum time difference typically decreases as the system evolves, and rarely
reaches its maximum possible value, . This observation holds even for small net-
works, where the initial time difference between oscillators can be greater than .
But our results indicate that some initial conditions exist which cause relatively large
increases in the maximum time difference. In an effort to bound the maximum time differ-
ence we have postulated a range of initial conditions in which the maximum time differ-
ence does not increase. This range arises naturally from the analysis of a pair of oscillators
and our extensive numerical experiments support this conjecture.

Below a certain connection strength, a pair of oscillators can exhibit neutrally stable
desynchronous solutions. This result is in agreement with the results of [Kopell and
Somers, 1995]. With this result we found an analogous behavior to that of fractured syn-
chrony described in [Somers and Kopell, 1995]. Above the critical time delay, a pair of
oscillators typically displays antiphase behavior with a frequency that can be significantly
higher than the frequency of the synchronous solution. In networks of oscillators, with

, antiphase, loosely synchronous, and other more complex behaviors are seen in
numerical simulations.

We have tested a network equivalent to LEGION with time delays in the coupling
between neighboring oscillators, and found that groups of oscillators can be desynchro-
nized. However, the number of groups that can be segmented by LEGION decreases when
time delays are introduced. This is because oscillator groups are no longer perfectly syn-
chronous. The ability of LEGION to segment oscillator groups is related to the maximum
time difference within each group. With our knowledge of a range of initial conditions in
which the maximum time difference does not increase, we can choose appropriate param-
eters and initial conditions so that the properties of oscillatory correlation in LEGION are
maintained.

Because relaxation oscillators capture some basic neuronal properties and time delays
are inevitable in neuronal signal transmission, our results should have implications to
understanding oscillations in the nervous system. Our study suggests that in the presence
of time delays local connections alone may be incapable of supporting precise synchroni-
zation over large neuronal populations. This may explain why synchrony is not seen
across distances of more than 7 mm in the cat visual cortex, where lateral connections
within the cortex are assumed to give rise to the observed synchronization [Singer and
Gray, 1995]. Also, measurements of synchrony in neural activities indicate that synchrony
is not perfect [Singer and Gray, 1995]. This imperfect synchronization might indicate the
existence of loose synchrony because lateral connections always have time delays.
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