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APPENDIX A

RELAXATION OSCILLATORS

A1 Introduction

Relaxation oscillators are a generic type of oscillators. They are continuous but highly
nonlinear and are typically thought to represent a class of oscillators different from the
familiar harmonic, or sinusoidal oscillators. A reader unfamiliar with concepts such as
nullclines, limit cycles, sinusoidal oscillators, and relaxation oscillators may find this
Appendix useful. We also graphically describe the transition from sinusoidal to relaxation
type oscillations. In Section A2 we describe four types of trajectories that arise in a pair of
coupled oscillators.

The relaxation oscillators we examine are the Terman-Wang oscillators [Terman and
Wang, 1995] that are based on the Morris-Lecar model of neural behavior [Morris and
Lecar, 1981]. The relaxation oscillator used here is the same as that used in Chapter 3. All
but one of the parameters have been fixed for simplicity,

(A.1.a)

(A.1.b)

This is a pair of coupled first order nonlinear differential equations. A starting point for
understanding this system is to examine its nullclines, which are shown in Figure 64. The
cubic shaped curve represents the x-nullcline, or the curve along which . This is
given by , or . We will frequently refer to the cubic as
consisting of three different “branches”; the middle branch, which passes through the
point (0,0) and connects the two local extrema, and the left and right branches, which
extend from the local extrema to  and  respectively. The y-nullcline, , is
given by . This hyperbolic tangent results in a sigmoid shaped
curve, but because the argument of the hyperbolic tangent is multiplied by 10, the function
looks more like a step function. The nullclines divide the x-y plane into four portions.
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Above the x-nullcline, the x-velocity is negative, thus all values of x in that region of the
plane will result in a negative x-velocity (as indicated by the arrows in Figure 64). Below
the x-nullcline, the x-velocity is positive, thus motion is in the positive x-direction. Analo-
gous statements can be made for the y-nullcline. From these qualitative directions of
motion one can see how a periodic trajectory might arise. However, there are several fur-
ther requirements needed for oscillatory behavior to exist and one can find the details in
[Minorsky, 1962].

The parameter ε describes the two different time scales that define relaxation oscilla-
tors. If ε is of O(1), then the oscillators is said to be in the sinusoidal regime because it can
have a nearly uniform speed of motion along its limit cycle. For small ε, the oscillator
begins to exhibit two distinct time scales, or it has two different speeds of motion along
disparate portions of its limit cycle. As one varies ε, the equations change smoothly from
sinusoidal oscillators to relaxation oscillators. Figure 65A displays the limit cycle for ε = 1
for (A.1) and one can see that it does appear qualitatively sinusoidal, as do the temporal
evolution of both variables in Figure 65B. In Figure 66A, B, and C we display limit cycles
and temporal evolution of the variables for progressively smaller values of ε (ε = 0.33, ε =
0.1, ε = 0.01). As ε becomes smaller, the velocity in the y-direction becomes smaller, and
comparatively, motion in the x-direction becomes faster. In Figure 66C, ε = 0.01 and
motion from the left branch to the right branch (and vice-versa) occurs quickly. Motion
along the cubic (in the y-direction) is dominated by the slow parameter and occurs approx-
imately 100 times slower than motion between the branches.

The term relaxation oscillator was first coined by van der Pol in 1926 [van der
Pol, 1926]. The transition from a sinusoidal oscillator (as one might classify the limit
cycle shown in Figure 65) to a relaxation oscillator (the limit cycle in Figure 66C) is

dx/dt < 0
dy/dt > 0

dx/dt < 0
dy/dt < 0

-15

-10

-5

0

5

10

15

20

25

-4 -2 0 2 4

dx/dt > 0
dy/dt < 0

dx/dt > 0
dy/dt > 0

x

y

x-nullcline
y-nullcline

Figure 64. A diagram showing the qualitative direction of motion for system (A.1). The
two curves represent the x- and y-nullclines.
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smooth, and not clearly defined to our knowledge, but the distinction is an important qual-
itative one. Study still continues in understanding the differences between sinusoidal and
relaxation oscillators.

When  an oscillator is said to be in the singular limit and the relative speed of
motion in the x-direction is infinitely fast in comparison with the speed of motion along
the outer branches. The transition between the left and right branches thus occurs instanta-
neously, with no change in the y-variable. In the singular limit, and if the form of (A.1) is
sufficiently simple, the speed of motion can be found analytically for y-variable and the
speed of motion for the x-variable can be ignored, since it is instantaneous during the
jumps. For small values of ε, a perturbation analysis can be performed [Bender and
Orszag, 1978].

A2 A Pair of Relaxation Oscillators

A pair of coupled relaxation oscillators is defined as follows,

(A.2.a)

(A.2.b)

(A.2.c)

(A.2.d)

(A.2.e)

x

Figure 65. (A) The limit (thick curve) cycle for (A.1) with . The x- and y-
nullclines are the thinner curves. (B) The temporal evolution of the x-variable and the y-
variable.
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A

Figure 66. Three different limit cycles and their respective plots as a function of time are
shown for three different values of ε. (A) ε = 0.33. (Β) ε = 0.1. (C) ε = 0.01.
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The value  is the coupling strength and the interaction term is a sigmoid that mimics
excitatory synaptic coupling. The value of  modifies the steepness of this sigmoid and
we use . Increasing the value of  results in a raise of the x-nullcline, .
For small values of ε, motion in the x-direction occurs quickly and an oscillator is said to
“jump” between the left and right branches of the cubic. When an oscillator jumps up
from the left to the right branch, it crosses the threshold of the interaction term, , and
sends “excitation” to the other oscillator. Thus the interaction is either on or off depending
on the positions of the oscillator. When an oscillator receives excitation, its x-nullcline
rises by an amount αR. This excited oscillator then exhibits dynamics based on its modi-
fied phase space. The three pertinent nullclines for this system are pictured in Figure 67.
The pertinent values of the x-nullclines are the y-values of their local extrema, which are
denoted by the lower left knee (LLK) and the lower right knee (LRK) for the unexcited x-
nullcline, and the upper left knee (ULK) and the upper right knee (URK) for the excited
nullcline. The values of the extrema for the x-nullclines given in (A.2) are

αR
κ
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Figure 67. A plot of the nullclines and the synchronous limit cycle of a relaxation oscilla-
tor defined in (A.2). The dotted cubics are the excited and unexcited x-nullclines, and the
dash-dot curve is the y-nullcline. The thick solid curve represents the synchronous limit
cycle for a pair of oscillators, which is the result of numerical calculation. The parameters
used are αR = 2, θ = -0.5, κ = 5000, , , , and .λ 8= γ 12= ε 0.005= β 1000=

LLK LLKx LLKy,( ) 1– 2–,( )= =

LRK LRKx LRKy,( ) 1 2,( )= =

ULK LLKx LLKy αR+,( )=

URK LLKx LLKy αR+,( )=



140

A basic description of the behavior of (A.2) now follows. Let the oscillators be
denoted by  and . Let both oscillators begin on the lower left branch (LLB), with

. We assume that the time an oscillator spends travelling along LLB is longer than
the time an oscillator spends on the upper right branch (URB). Because the motion is
counter-clockwise along the limit cycle,  leads . The leading oscillator, , will
reach  first, and jump up to the lower right branch (LRB). Since  has crossed the
threshold, , of the interaction term,  will now receive excitation. There are three main
classes of trajectories that arise dependent on the position of  on LLB. If  is below

 it will jump up to URB. When  crosses the interaction threshold,  will
hop from LRB to URB. This trajectory is shown in Figure 68A and Figure 68B. This leads
to a contraction in the time difference between the two oscillators. It can be shown that the
time difference between the two oscillators on the left branch is greater than the time dif-
ference between the oscillators after they have jumped to the right branch. Therefore, the
interaction has caused to time difference between the oscillator to shrink. Somers and
Kopell [Somers and Kopell, 1993] refer to this as a compression. This compression occurs
twice during each period, once for the jump up and again during the jump down, and leads
to a geometric decrease in the time difference between the two oscillators.

If, however,  is above  when  jumps up,  will hop to the upper left
branch (ULB). Its motion will continue along ULB until it reaches , at which
time it will jump up to URB. This case is shown in Figure 68C and Figure 68D. It can be
shown that this trajectory also results in a decrease in the time difference between the two
oscillators.

There is a third class of trajectories that is shown in Figure 68E and Figure 68F. Here,
 is above  so that  jumps up and traverses LRB before  reaches ULK.
 hops from LLB to ULB and then back to LLB while  traverses LRB. For this class

of trajectories the time difference between the oscillators decreases only if the coupling
strength is above a critical value. Figure 68F indicates that the oscillators become syn-
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Figure 68. The trajectories of the three cases that lead to synchrony in a pair of coupled
oscillators. In (A), (B), and (C) the first oscillator to jump is given by the dotted line and
the second is denoted by the solid line. (A), (B) and (C) display the evolution of the sys-
tem in x-y space. (D),(E), and (F) display the x-activities of both oscillators as a function
of time. The parameters used are the same as in Figure 67.
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chronous. Figure 69A displays a trajectory for initial conditions similar to Figure 68D, but
with a coupling strength less than the critical coupling strength. A desynchronous solution
results.
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Figure 69. An example of a desynchronous solution that arises because the coupling
strength is not large enough. The first oscillator to jump is given by the dotted line and the
second is denoted by the solid line. (A) displays the evolution of the system in x-y space,
and (B) displays the x-activities of both oscillators as a function of time. The coupling
strength used was  with the other parameters as in Figure 67.αR 0.8=
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