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Abstract 

A heterogeneous network of workstations (NOW) in- 
troduces a new performance factor into distributed com- 
puting: a large variation of the computing power of the 
different workstations. This unique factor makes tradi- 
tional performance models/metrics for homogeneous com- 
puting measurement and evaluation not suitable for het- 
erogeneous computing. In this paper, we present models 
which quantify the heterogeneity oj’ networks and charac- 
terize the performance effects. The models consider effects 
of both the heterogeneity and time-sharing in a nondedi- 
cated environment. Speedup, eficiency and scalability are 
defined. These models are general enough to cover per- 
formance evaluation of both homogeneous and heteroge- 
neous computations in dedicated and nondedicated NOW 
systems. To validate and support performance modeling 
results, we conducted a collection oj experimental measure- 
ments for evaluating computing performance and scalabil- 
ity of a group of application programs on a heterogeneous 
NOW. 

1 Introduction 

A network of workstations (NOW’) is highly cost effec- 
tive, and widely available. Network computing utilizes a 
large number of idle cycles to run parallel jobs. A hetero- 
geneous NOW introduces a new performance factor into 
distributed computing: a large variation of the computing 
power of the different workstations. This unique factor 
makes traditional performance mo,dels/metrics for homo- 
geneous computing performance measurement and evalu- 
ation not suitable for heterogeneous computing. We will 
study and address this performance issue in this paper. 

*This work is supported in part by the National Science 
Foundation under research grants CCR9102854 and CCR- 
9400719, and under instrumentation grant DUE-9250265, by 
the U.S. Air Force under research agreement FD-204092-64157, 
and by the Air Force Office of Scientific Research under grant 
AFOSR-95-l-0:215. 

In practice, people are more interested in two perfor- 
mance results in scientific computing: the execution times 
when an application program size is fixed, and when it is 
scaled. In both cases, the system size is scaled. The fixed- 
size performance studies how fast the application prob- 
lem of a given size can be processed by increasing the size 
of the system, while the scaling performance (scalability) 
measures the ability of a parallel system to improve perfor- 
mance as the size of the application problem and the size of 
the system increase. In a homogeneous computing environ- 
ment, metrics for fixed-size performance are the definitions 
of speedup and the efficiency from Amdahl’s law. There 
are also several performance metrics for parallel computing 
scalability measurements, such as the latency metric [9]. 
All these metrics evaluate parallel performance by com- 
paring sequential computation on one processor node as a 
reference base. In contrast, such an identical reference base 
does not exist in a heterogeneous computing environment. 

Homogeneous computing is considered as a special case 
of heterogeneous computing. Thus heterogeneous comput- 
ing performance models/metrics should be general enough 
to cover performance evaluation of both types. Several dis- 
cussions about heterogeneous program speedup definitions 
have been published, e.g. [3, 4, 5, 61. The definitions in 
[3, 61 combine the computing features of both types, where 
the speedup of a heterogeneous computation is defined as 
the ratio of the time of a program running on the fastest 
machine to the time of the program running across the 
heterogeneous network. This definition is suitable for gen- 
eral heterogeneous computing and also is consistent with 
the standard speedup definition on a homogeneous system. 
However, network heterogeneity and its effects have not 
been quantitatively modeled and analyzed. In addition, 
other related performance definitions, such as superlinear 
speedup, efficiency and scalability, need to be formally de- 
fined for heterogeneous network computing. 

Different heterogeneous systems serve different comput- 
ing purposes. For example, the heterogeneous systems de- 
scribed in [5] exploit different types of parallelisms from 
different types of multicomputers connected by a network. 
Our work focuses on performance issues of a heteroge- 
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neous NOW. The concepts may also be extended to eval- 
uate other types of heterogeneous systems. In this pa- 
per, we present models to quantify the heterogeneity of 
workstations and characterize the performance. Speedup, 
efficiency and scalability of heterogeneous computing are 
defined. To validate and support performance modeling 
results, we conducted experimental measurements for eval- 
uating parallel computing performance and scalability of a 
group of scientific application programs on a heterogeneous 
NOW. 

In practice, a heterogeneous NOW system is often a 
nondedicated system. Hence, performance metrics for het- 
erogeneous computing should consider the effects of both 
heterogeneity and time-sharing. The organization of this 
paper is as follows. Section 2 presents basic considerations 
of heterogeneous computing. Heterogeneous performance 
evaluation models/metrics are introduced in Section 3. 
Section 4 describes our heterogeneous NOW environment. 
In Section 5, we report comprehensive measurement results 
for heterogeneous computing performance and scalability 
evaluation. Finally, we summerize the paper in Section 6. 

2 Heterogeneous computing models 

2.1 Heterogeneous network model 

A heterogeneous network (HN) can be abstracted as a 
connected graph H N( M, C), where 

0 A4 = {Ml, A42, . . . . J4,) is set of heterogeneous work- 
stations (m is the number of workstations). The com- 
putation capacity of each workstation is determined 
by the power of its CPU, I/O and memory access 
speed. 

l C  is a standard interconnection network for work- 
stations, such as an Ethernet or an ATM network, 
where the communication links between any pair of 
the workstations have the same bandwidth. 

Based on the above definition, if a NOW consists of a 
set of identical workstations, the system is homogeneous. 
Moreover, a heterogeneous network can be divided into 
two classes: a dedicated system where each workstation is 
dedicated to execute tasks of a parallel job, and a nonded- 
icated system where each workstation executes its normal 
routines (also called owner workload), and only the idle 
CPU cycles are used to execute tasks of the parallel job. 
The term of ozuner utilization of a workstation is used to 
represent the owner workload rate. Our program execu- 
tion model assumes that each workstation may execute at 
most one task of the parallel job. This assumption is con- 
sistent with the programming principle in writing a PVM 
program. 

2.2 Heterogeneous programming model 

A parallel program, denoted as A(I), where I represents 
its input-parameter, is assumed to have m  tasks Al(I), 

A2(1),...,A,(I). Task A,(I) (1 5 i 5 m) is assigned 
and executed on workstation M,. The size of program 
A(I) is denoted as 1 A(I which can be defined as the 
number of required operations to solve A(I) [9]. Thus, 

140 = X2, IAt(U. It will simplify notation signifi- 
cantly if we assume the remainder of this paper that the 
program parameters are included for each case. Thus, 
when we write A, we really mean A(Z). 

Let S,(A) be the speed of workstation A4, to solve A 
dedicatedly. We add a practical constraint to character- 
ize our target heterogeneous network system: the speed 
S,(A) is a constant for a given application program A. 
Because most operations of many application programs 
are performed consistently on a class of workstations with 
different speeds, such as the Sun workstations. We will 
show experimentally from our case studies on a heteroge- 
neous NOW that the computation speed remains constant 
in each workstation. The unit of the speed is the aver- 
age number of operations of different types per second for 
executing a program. 

In order to avoid complicated measurements of the 
speed, we define a power weight Wz(A) for running pro- 
gram A on workstation W, as follows: 

W,(A) = St (A) 
max5n,,{S,(A)} i = l”“‘m (1) 

Formula (1) indicates that the power weight of a worksta- 
tion refers to its computing speed relative to the fastest 
workstation in a system. The value of the power weight 
is less or equal to 1. Since the power weight is a relative 
ratio, it can also be represented by measured execution 
time. If we define the speed of the fastest workstation in 
the system as one basic operation per time unit, the power 
weight of each workstation denotes a relative speed. If 
T(A, A.J,) gives the execution time for executing program 
A on workstation MZ, the power weight can be calculated 
by the measured execution times as follows: 

3 Performance models/metrics 

3.1 Fixed-sized applications 

3.1.1 Speedup 

Speedup is used to quantify the performance gain from 
a parallel computation of a fixed-size application over its 
computation on a single machine in a heterogeneous net- 
work system. The speedup of a heterogeneous computa- 
tion is defined as follows. 

Definition 1 The speedup for executing program A, de- 
noted by SP(A) on a dedicated or a nondedicated hetero- 
geneous network HN = {MI, Mz, . . ., Mm} is 

SP(A) = min;2,1{T(A, Mj)> 
T(A, HN) ’ (1) 
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where T(A, HN) is the total execution time for A on HN, 
and T(A, MJ is the execution time for A on workstation 
M  ‘- 3 3 - 1, . . ..m. 

Definition 1 is also used in [3, 61 for a dedicated heteroge- 
neous system. 

The network heterogeneity can be quantified by vari- 
ance of computing powers in a network system. This quan- 
titative expression should be formed carefully because the 
heterogeneity of a network not only reflects the variance 
of computing powers but also the dynamic system effects 
caused by the changes of critical system components, such 
as the fastest workstation and slowest workstation. The 
variance of a set of sample data, dl, dz, . . . . d,, can be ei- 
ther measured by standard deviation, 

or by mean absolute deviation, 

Cm= lci- d,I 
3 1 v --, mean = 

m  

where d = I?“‘=, d3/ m  is the average of the sample date 
set. Both methods treat every data observation evenly and 
use the average value of the data :set as the base reference 
for comparisons to calculate the variance. If the disparity 
among the workstation power weights is not significant, 
either deviation method could be a reasonable measure of 
the heterogeneity. When the disparity is large, for exam- 
ple, a small number of workstatilons are much faster or 
slower than the majority of the workstations, the hetero- 
geneity is considered high. Unfortunately, the high hetero- 
geneity in this case could not be well expressed by (2) or 
(3). Let’s take a NOW of 100 nodes as an example, where 
the fastest workstation has the power weight of 1, and the 
rest of 99 workstations have the identical power weight of 
0.5. The speed of the fastest workstation is then doubled, 
which makes the power weight of the fastest workstation 
still 1, but 0.25 for the rest of the 99 workstations. Us- 
ing the standard deviation or the mean absolute deviation 
to calculate the variance of the power weights in both the 
initial network configuration and the final configuration, 
we obtain less than 1% change between the two variances 
of the power weights. However, t.he speedup of a hetero- 
geneous computation would decrense nearly 50% assuming 
the computation distributions keep unchanged. This is be- 
cause the sequential execution on the fastest workstation 
decreases 50% and the distributed heterogeneous comput- 
ing time would keep roughly the same. Thus, the standard 
deviation or the mean absolute deviation could not reason- 
ably and precisely capture the critical system change. 

Another method of calculating the variance is to set 
the speed of the slowest workstation as the base reference 
for comparisons. This does not match our principle of us- 
ing the speed of the fastest workstation in the network as 
the base reference for performance evaluation, such as the 

speedup. Thus, the most suitable way to quantify the het- 
erogeneity is to use the power weight of the fastest worksta- 

tion as the comparison reference. Using the power weight 
of the fastest workstation (=l), we define the network het- 
erogeneity as follows. 

Definition 2 The network heterogeneity is defined as: 

H = cyI& - W(A)) 
m  

Applying Definition 2 to the previous example, we ob- 
tain H = 0.5 for the initial network configuration, and 
H = 0.75 for the final configuration. The heterogeneity 
increases 50% after the speed of the fastest workstation is 
doubled. 

Using a single number to present a complex perfor- 
mance factor, such as the heterogeneity in (4), is direct 
and simple to understand, but, it has its limits. For a given 
heterogeneity, multiple systems with different workstation 
combinations could be formed. Each system may have a 
different power distribution although the heterogeneity is 
the same. However, the heterogeneity presented in (4) does 
reflect an average balance of the power distributions. 

To further observte load balance effects, we define the 
average parallelism degree of an application program, de- 
noted as Pdegr which is the average number of workstations 
actively executing in parallel in the whole execution phase 
of the program. This is measured by accumulating the 
percentage of the active computing time for the parallel 
program in each worlkstation: 

where T3QCt is the active computing time on each work- 
station (j = 1, . . . . rm), and T(A, HN) is the total parallel 
computing time across the network. Figure 1 presents an 
example to explain the definition of P&g, where T(A, HN) 
in each workstation iE: divided into two major parts: the ac- 
tive computing time for the parallel job and the idle time. 
The idle time is also used for the owner workload comput- 
ing. Again, to simplify the notation, when we write S;, IV;, 

SP and P&s, we really mean S,(A), WE(A), SP(A) and 
Pdes(A). We present the following heterogeneous speedup 
property. 

Property 1 The speedup of a fixed-size application A on 
a dedicated/nondedicated NOW is: 

SF’ = P&g X (1 - H), (6) 

where Pdeg is the parallelism degree, and H is the network 
heterogeneity dejinea! in (4). 

Proof: The execution time for A on workstation M;(l 5 
i 5 m) is 

T(A M  ) = !!!! , * s, ’ (7) 
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T(A,HN) 

Pl P2 P3 P4 P5 P6 P7 P8 Workstation number 

g&g ,_ act 
Actwe tune for the parallel job ( Ti , i = 1, ..- , m). 

El Idle t ime and the owner computing time. 

Figure 1: Parallelism degree is measured by accumu- 

lating the percentage of the active comput ing t ime for 

the parallel program in each workstation. 

where JAJ is the size of A, and S, is the speed of each 
workstation. W e  use parallelism degree P&s and the speed 
of each workstation S; (; =  1, . . ..m). to define an  average 
speed of a  heterogeneous NOW: 

2 = Pdeg x (sl + & + ’ ’ ’ + s,) 

m  (8) 

Using the average network speed, S, parallel execution 
t ime across the network for solving A can be  expressed 
as 

T(A, HN) =  k! =  mlAl 
S &eg c,“=, s, 

(9) 

By Definition 1, (7) and (9), the speedup becomes 

SP = 
min~==,{Y} 

SJ Pdeg c3ml so 

=  m  X max~==,{S,} 
=  Pdes X (1-H). 

End of Proof. 
For a  given program structure, the program’s paral- 

lelism degree, P&g, is determined by the network hetero- 
geneity, H. Al though the alternative form of the speedup 
in (6) is in its high level evaluation, it provides several 
observations for understanding and characterizing perfor- 
mance of a  heterogeneous NOW: 

o  For a  given heterogeneous NOW, The speedup of a  
parallel computat ion increases if the parallelism de- 
gree P&g increases. This observation follows homo- 
geneous comput ing performance principles. 

l The speedup decreases if the heterogeneity H in- 
creases assuming the parallelism degree keeps un- 
changed or decreases. 

o  The speedup increases if the heterogeneity H de- 
creases, assuming the parallelism degree keeps un- 
changed or increases. 

l The heterogeneity also introduces some uncertain 
speedup performance predictions which are applica- 
tion dependent.  For example, the speedup could ei- 
ther increase or decrease if the parallelism degree of a  
program increases from increasing the heterogeneity. 

3.1.2 Efficiency 

Efficiency is a  measure of the t ime percentage for which 
a  machine is usefully employed in parallel computing. In 
homogeneous computing, it is simply def ined as the ratio 
of speedup to the number  of processors. In heterogeneous 
computing, the efficiency is more complex. A unique fea- 
ture in a  heterogeneous system is that unit t imes in differ- 
ent types of machines are represented by different comput- 
ing powers. Thus, to directly use the efficiency definition 
from homogeneous computat ions for heterogeneous com- 
putations would not precisely characterize how different 
types of machines are effectively used in the network. It is 
necessary to average available cycle t imes using the def ined 
power weight. For an  application A =  {AI, AZ,. . . , A,} 
in a  heterogeneous network HN = {MI, Mz, , M,}, the 
effective execution t ime of A, (1 <_ j 5  m) on  worksta- 
tion MJ is T,ff(A,, M,)=IAjl/S,, where S, is the speed 
of M,. Let Tpwner be  the t ime of machine M3  executing 
the owner workload, and let overhead(j) be  the overhead 
latency t ime on  workstation A4,. For detai led descriptions 
of obtaining the overhead latency, readers may refer to [9] 
and Section 3.2 in this paper. W e  define the efficiency by 
using the effective and available comput ing times which are 
directly related to the heterogeneity of a  network system. 

Definition 3  The eficiency of parallel comput ing of ap- 
plication A on  a  nondedicated heterogeneous N O W  is de- 
f ined as the ratio of the total effective comput ing t ime to 
the total available cycle t ime in the system: 

C,“=,(w, x  IA,l/S,) 
E = C,“=, (T(A, HN) - T~“~T)W, ’ (10) 

where IA,l/S, represents the CPU busy t ime needed to 
execute A, on  machine A4,. A practical form to represent 
the total effective comput ing t ime is x,“==,{T(A, HN) - 

TYner - overhead(j)}W,. In order to further give the re- 
lationship among  speedup, efficiency and system workload, 
we define 

where IA\/ maxJ?,{S,} and min~!r{T(A, M3)} represents 
the fastest execution t ime of A on  a  single workstation in a  
dedicated system and a  nondedicated system, respectively. 
Formula (11) quantif ies the effect of workload in a  nonded- 
icated system to the single machine execution t ime for A. 
In addition, AA 5  1. By Definition 1  and Definition 3, 
the relationship among  speedup, efficiency and system 

workload (or owner utilization, def ined as Ui =  G 

(1 5  i <  m)) are derived: 

28  

Proceedings of the 7th IEEE Symposium on Parallel and Distributeed Processing (SPDP ’95) 
1063-6374/95 $10.00 © 1995 IEEE 



Property 2 The relationship between the eficiency and 
the speedup for application program A in a nondedicated 
heterogeneous NOW system can be expressed as: 

Proof: By (lo), 

= 
IAllmax,“,~{S3) 

T(A, HN) c,“=, W, .- c,“=, T,“W, 

= 
SP x (IAl/max~~{S3)) 

‘min,“=,{T(A, n/r,)> x c,“=,(l - uj)W, 

SP = 
CI"_,(1-u3)wj 

AA 
SPXAA 

ZZ 
C,“=,Cl-WK 

End of Proof. 
Besides describing the relationship between the effi- 

ciency and the speedup, Property 2 includes both the 
power weight and the owner untilization of each machine to 
characterize the effects of heterogeneity and time-sharing. 

In formula (12), C,z 1 (1 - U,) W, represents an average 
amount of available time units in a heterogeneous NOW 
system, which decreases as the owner workload increases. 
The efficiency of heterogeneous computing equals to 1 if 
and only if 

sp = Cl”=lCl - U3)W3 
AA 

-. (13) 
The superlinear speedup appears when 
sp > ~JYl=l(l-u~)wj. 

A" 
Formula (112) is a general form of parallel computing 

efficiency which considers effects of both heterogeneity and 
time-sharing. For a dedicated heterogeneous computing 
system, the relationship in formula (12) is simplified as 
follows under the condition of U, = 0 (1 5 j 5 m) and 
AA = 1: 

Formula (14) indicates that if the speedup is larger than 
ET=1 W,, the system computing power, the computation 
presents a superlinear speedup in a dedicated heteroge- 
neous NOW system. Furthermore, substituting U, = 0 
and W, = 1 for a dedicated homogeneous system, the defi- 
nition of speedup and efficiency returns to the conventional 
form: 

E=SP 
m 

3.2 Scalability evaluakion 

Scalability measures the ability of a parallel machine 
to improve performance as there are increases in the size 
of the application problem and in the size of the system 
involved. In a heterogeneous network system, the system 
size can not simply be described by the number of machines 
as it can in a homogeneous system, because machines have 
different computing power. We give a practical definition 
of scalability as follows. 

Definition 4 ScalabAty is a property which exhibits per- 
formance linearly pro‘portional’ to the computing power of 
the employed heterogeneous network system. 

Definition 4 indicat.es that the scalability of an applica- 
tion in a nondedicated system can be measured only if the 
owner utilization of each machine does not change over the 
computation time. In our following discussion we assume 
that each machine in .a heterogeneous network system has 
a constant owner utilization. Here, we extend the latency 
based scalability metric proposed in [9] for heterogeneous 
computing scalability evaluation. 

The execution time running program A on a hetero- 
geneous network HN, can be divided into three distinct 
parts on each workstation M,, (i = 1, . . . . m): 

Te~(Ai, M,): the effective time to compute task A; on 
M, excluding the CPU idle time units and the time 
units spent on work which is not needed in a single 
machine, such as synchronization time, communica- 
tion time, and task creation time. 

T?‘““’ : the computing time for the owner workload, 
which includes all the CPU busy and idle times for 
the same duty. 
overhead(i): overhead latency, which includes all 
communication time, memory access delay in the het- 
erogeneous computation, and load unbalanced idle 
time. Formally, for i = 1, . . . . m, it is expressed as 

overhead(i) = ;“(-A, HN) - TC”wner - Te~(A;, MC). 

We quantify average overhead latency by using the power 
weights as follows: 

L,,,(A, H,Y) = 2: overhead(j) W,. 
3=1 

(15) 

In order to capture the changes in the overhead cost of 
ii% parallel computation as a system increases its comput- 
ing power, we introduce average latency per computational 
power unit. 

IDefinition 5 For a parallel program A, the average la- 
tency per computational power unit (simplijied as average 
latency unit) in a heterogeneous network system HN is 
defined as 

L@(I) HN) = Lave’:A(l), H.N) C,“=, overhead(j) W, 
! 

(16) 
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By Definition 5, the scalability is defined as follows. 

Definition 6 For a given program A(I), 
let L,(A(II), HNl) be the average unit latency for execut- 
ing the program of size IA( on heterogeneous network 
HN1, and let L,(A(I2), HN2) be the average unit latency 
for executing the program of size IA( on heterogeneous 
network HN2 with larger computing power than HN1. If 
the problem size is scaled from IA( to IA(l the sys- 
tem size is scaledfrom HN1 to HN2, and efficiency is kept 
a constant e E [0, 11, the scalability is defined as 

In practice, the value of (17) is less than or equal to 1. A 
large scalability value of (17) means small increments in 
latencies inherent in the program and the architecture for 
efficient utilization of an increasing number of processors, 
and hence the parallel system is considered highly scal- 
able. On the other hand, a small scalability value means 
large increments in latency and therefore a poorly scalable 
system. For a constant efficiency, the relationship among 
scalability, problem size and system computing power is 
described by the following property. 

Property 3 Let W ’ and W2 be the total computingpow- 
ers of heterogeneous system HN1 and HN2 respectively, 
and S’ and S2 be the speeds of the fastest workstations on 
HN1 and HNz respectively. If the average unit overhead 
size is measured with respect to the fastest workstation, 
the scalability defined in (17) has the following alternative 
f orm: 

wkere cJ = (l+ HN2Lave;;;2)rHN2)~SZ 
~lA(i,)l/14Wij, IA(I1)l and 

IA( are the problem sizes of A, IT&$Frl and IT~~~~R2erl 
are the owner workload sizes on HN1 and HN2 respec- 
tively, and L,,,(A(Iz), HN2) is the average overhead la- 
tency of A(Iz) executing on HN2. 

Proof: Let ei and ez be the efficiencies of A(I1) and A(Iz) 
executing on HN1 and HNZ, respectively. By the effi- 
ciency definition, we have 

e1 = IA( + L,,,,(A($%) x S’ + IT;;WNnle’/ ’ (=) 

e2 = JA(Iz)J + L,,,(A($%) x S2 + JT;;“,“z”/’ (“) 

Substitute ei = ez into equations (18) and (19), we have 

L~(A(II),HNI) = IA( x s2 
Lzw(A(12), HNz) IA( x 9 x o (20) 

TOweer-Towner 
where g = (l + NN 2 L,,,;;I,),HN2) xSz 

, xlA(WW), Combining 

(20) with (17), Property 3 is obtained. 

End of Proof. 
The above scalability property indicates that the scala- 

bility of a computation of two problem sizes using two het- 
erogeneous NOW systems is reversely proportional to the 
scaled problem size (IA(Izl), and positively proportional 
to the scaled system size (W”). The owner workload also 
negatively affect the scalability of the program running on 
a heterogeneous NOW. 

In practice, the measurement of scalability is depen- 
dent on scaling methods. The system size can be scaled in 
two directions: by increasing the number of workstations 
(physical scaling), and by upgrading workstation powers 
(power scaling). In physical scaling, a parallel job tends 
to increase average overhead latency due to more work- 
stations involved in communications and synchronizations. 
In power scaling, communication complexity remains con- 
stant, but the computation and communication ratio in- 
creases, which would reduce the computation efficiency. 
How to balance the two scaling methods to achieve op- 
timal performance for a parallel job is a rather complex 
issue. 

4 Experimental environment 

4.1 A heterogeneous network system 

Our heterogeneous network system consists of three 
SPARC lo-30 workstations, five SPARC 5-70 workstations 
and five SPARCclassic workstations, connected by an Eth- 
ernet of 1OMbps bandwidth. The network has maximal 
throughput of lOOOKB/s and minimal latency on the or- 
der of 2 milliseconds. 

4.2 Application programs 

We select five programs from three application areas. 
Programs Kernel EP (EP) [l], matrix multiplication (MM) 
and Cholesky factorization (Cholesky) [2] are selected from 
numerical applications, edge detection (ED) [8] from im- 
age processing, and merge sorting (MS) from basic data 
structure applications. Each algorithm is parallelized and 
implemented by PVM [7] on the heterogeneous worksta- 
tion network. 

4.3 The power weight and workload 

The computing power weight defined in Section 2 pro- 
vides an average performance reference to reflect the het- 
erogeneity of network systems. The power weight a corn- 
bination measurement of a program and a NOW system. 
We have looked into the effects of memory size and cache 
size of the NOW on the execution of the selected five ap- 
plications. 

In our experiments, the execution timing results of each 
application on the network system were measured by us- 
ing different problem sizes. The performance is directly 
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Table 1: Computing power weights of the three types 
of workstations for the five application programs. 

related to the cache size and memory size in each ma- 
chine. For ealch application, we divide the problem data 
domain into six subdomains so that data size in one sub- 
domain corresponds to a data memory size in one of the 

six memory regions: [0, 2KB], (2KB, 8KB], (8KB, 16KB], 
(16KB, 8MB], (16MB, 32MB] and (32MB, oo]. Here, 2KB, 
SKB and 16KB are the data cache sizes in SPARCclassic 
workstations, SPARC 5-70 workstations and SPARC lo- 
30 workstations. In addition, 16MB is the memory size for 
SPARCclassic and SPARC 5-70, and 32MB for SPARC 
10-30. Then, based on formula (2), the power weights can 
be measured for each type of workstation by the five ap- 
plications. All the experiments were repeated 10 times in 
a dedicated system. Table 2 gives the average comput- 
ing power weights of the heterogeneous workstations for 
the five applications when the data size in each applica- 
tion is less than 16MB, which is the memory limit of the 
SPARCclassic machines and the SPARC 5-70 machines. 
The standard deviations of multiple measurements are less 
than 0.05. 

We  have made the following three observations from 
these experiments: 

1. The computing power weights remained unchanged if 
the data size of an application was bounded in one of 
the six memory regions. 

2. As the data size increased beyond the cache size of 
any type of machines in the network, the computing 
power weights changed slightly. 

3. When the data size of an application is larger than 
the main memory size of a workstation, the execution 
t ime was sharply increased, which in turn causes a 
significant decrease in the computing power weight of 
the workstation. This is because the dominant com- 
putation times were used by the operating system to 
do context switch and page swapping between main 
memory and disks. Taking the M M  program as an 
example, when the matrix size is 1500 x 1500, the 
data size is 27MB which is larger than 16MB of the 
workstation and less than 32MB. When the M M  was 
executed on one SPARCclassic computer or SPARC 
5-70, the execution t ime is about 17 hours. But on 
SPARC 10-30, the execution t ime was only about 30 
minutes. So, the relative computing power weight of 
the SPARCclassic and SPARC 5-70 workstations to 

SPARC lo-30 is 0.03. VJhen the data size of M M  is 
further increased to exceed 32MB, the execution of 
M M  on the SPARC lo-30 also became unacceptable. 
In order to provide insight into system effects, we 
measured the execution t ime distributions of M M  on 
one dedicated SPARC 5-70 workstation using two dif- 
ferent matrix sizes: 512 x 512 and 1500 x 1500. The re- 
quired memory alllocation is 12 M B  for the 1000 x 1000 
matrix which is within lthe memory bound, and 27 
M B  for 512 x 512 which exceeds the memory bound. 
The execution t,ime distributions were sampled ev- 
ery 10 minutes and averaged. For the matrix of size 
1000 x 1000, 95% of CPIJ t ime was used for the mul- 
tiplication. But,, for the matrix of size 1500 x 1500, 
only 10% of CPU time was used for the multiplica- 
tion, 70% was us:ed by I/O, and 20% was used by the 
operating system to do context switches. Our exper- 
iments indicate that memory access is an important 
performance bottleneck for large memory-bound ap- 
plications. 

Based on our experimental results, we conclude that an 
,application program should be partitioned and mapped 
onto a heterogeneous network system in such a way that 
the memory requirement of a task does not exceed the 
memory bound of any machine in the system, in order to 
keep powers weight,s constant. Our experiments also val- 
idated the assumption given in Section 2 on the constant 
workstation speed for a given application program within 
the machine memory bound. In all our experiments, we 
.restricted the problem size so that the memory allocation 
of each task is less than 16MB. Hence, the power weights 
measured in Table 1 can be used to evaluate the relative 
(computing capacities among the three types of worksta- 
tions. 

In order to analyze the effects of owner workload, we 
simulate a uniformly distributed computation workload on 
each workstation in the network by using a system clock 
interrupt primitive. For a utilization u, lO(1 - u) seconds 
in every 10 seconds was used to compute the parallel task 
and 10~ seconds was used to simulate the computation of 
owner workload. The computation of the owner workload 
did not occupy any main memory. 

5 Performance evaluation 

5.1 Fixed-size program performance 

We fixed the problem size of each program and scaled 
the system computing power either by increasing the num- 
ber of workstations ‘(physical scaling), or by upgrading 
the workstations’ power (power scaling). Bounded by the 
Imemory limit of 16A4B, the size of the M M  program was 
fixed to a 1000 x 1000 matrix, the M S  program to 5 x lo5 
elements, the EF pro’gram to 1500 x 1500 image pixels, 
the Cholesky program to a 1000 x 1000 matrix, and the 
BP program to 221 it’erations. Using physical scaling, the 
number of workstations was scaled from 2 up to 12. The 
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Figure 2: Fixed-size performance for EF 

system initially had two SPARC 5-70 workstations. Then 
a  SPARCclassic was added one by one (5 total), three 
SPARC lo-30 workstations were added next, and finally 
two SPARC 5-70 workstations were added.  Using power 
scaling, the number  of processors was fixed to 8  in the sys- 
tem, where the combinat ion of workstations was changed 
in order to adjust the total comput ing power. The initial 
system combinat ion had three SPARC lo-30 workstations 
and five SPARCclassic workstations. The system power 
was scaled by replacing one slow SPARCclassic from a  
SPARC 5-70. This power scaling was done until each of 
the SPARCclassics was replaced by a  SPARC 5-70. 

Using the two system scaling methods, we measured 
the speedup and efficiency of each application in a  dedi- 
cated environment and a  nondedicated environment with 
an  owner workload utilization of 10%. The owner task in 
each workstation had preemptive priority over the hetero- 
geneous tasks. 

The performance results are shown in Figures 2  to 6. 
The performance results of each application are presented 
from the physical scaling only due to the limited space. 
The performance results in Figures 2  to 6  plot speedup 
and efficiency curves in a  dedicated environment and a  
nondedicated environment together. Carefully studying 
these curves, we obtain some interesting performance re- 
sults and implications which are described below. 

5.1.1 Comparat ive performance 

In comparing the speedup and efficiency curves in the ded- 
icated environment using the physical scaling, Kernel EP 
had an  increasing speedup curve up  to about 8  on  the 
12  workstations which had the comput ing power of 8.7. 
The decrease in the efficiency of Kernel EP was less than 
20%. In contrast, the speedups of the other four programs 
were all less than 4. The least efficiency among  them de- 
creased more than 20%. The reason for the performance 
difference mainly comes from the communicat ion pattern 

Figure 3: Fixed-size performance for Cholesky Factor- 

ization. 

Figure 4: Fixed-size performance for M M  

Figure 5: Fixed-size performance for MS. 
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Figure 6: Fixed-size performance for EP. 

differences. Only the Kernel EP program has a constant 
number of communication messages per process, which is 
independent of task sizes. Further checking the speedup 
curves of MM on the third row and of MS on the fourth 
row, we notice that MM reached its maximal speedup on 
8 workstations and MS reached its maximal speedup on 7 
workstations, which means that execution times reached 
a minimum. However, using power scaling, the speedup 
of each program always increased with the increase of the 
power because this scaling does not cause an increase in 
communications as does the physical scaling method. 

Analytical models in section 3 indicate that paral- 
lel computing performance on a heterogeneous NOW is 
mainly affected by the heterogeneity and the parallelism 
degree where the workload effects are included. The ex- 
periment results are consistent with the modeling results. 
For example, the EP program had the highest parallelism 
degree among the five programs, and it presented the high- 
est speedup and the efficiency. The parallelism degree is 
dynamically changed as the heterogeneity changes in the 
system. Using the physical scaling and power scaling meth- 
ods to scale the NOW system, we increased the comput- 
ing power of the system to a certain level. However, the 
resulted heterogeneity of each scaled system is different, 
which in turn causes the same program to present differ- 
ent parallelism degree. Based on our measurements, the 
parallelism degree of each program using the power scaling 
method is higher than the one using the physical scaling 
method. This is because the negative effect of increas- 
ing the communication complexity by the physical scaling 
method was more significant than the negative effect of in- 
creasing computation/communication ratio by the power 
scaling method in our case studies. 

5.1.2 Effects of system workload 

Comparing the speedup and efficiency curves in a dedi- 
cated environment with that in a nondedicated environ- 

ment of 10% owner workload, we notice that both have 
similar performance. In the case of Kernel EP, owner 
workload effects degraded the speedup and efficiency pro- 
portionally. In contrast, in the cases of the other four pro- 
grams, the speedup (~efficiency) curves in the dedicated en- 
vironment intersect the corresponding speedup (efficiency) 
curves in the owner workload environment. To study the 
reason behind this difference, we traced the five program 
executions. Our traces indicate that the owner workload in 
each workstation could overlap the communication times 
of the four programs so that the speedups and efficiencies 
could kept almost as same as that in the dedicated envi- 
ronment. Since communication is light for the Kernel EP 
program, there was little such overlapping of execution. 

Analytical results in section 3 also show some poten- 
tial performance uncertainty caused by the network hetero- 
geneity. We confirm this by the case studies. The workload 
affects each program differently by changing its parallelism 
degree differently. For example, the parallelism degree was 
reduced more for the EP program than the ones of other 
four programs when tlhe same owner workload distributions 
were introduced. 

5.2 Scalability performance 

The scalability defined in Section 3 measures the aver- 
age overhead latency unit increment when both the sizes 

of the problem and the system computing power are adap- 
tively scaled to keep the efficiency constant. In a hetero- 
geneous environment, the system computing power can be 
,adjusted by physical scaling and power scaling. Here, we 
only measured the scalabilities of the five programs us- 
ing physical scaling. The scalability of a heterogeneous 
computation is close1.y related to the scaling order of the 
employed machines. We used the same scaling order of 
workstations as that used in the measurements of fixed-size 
performance of the programs. By considering the memory 
bound of each workstation, we chose the constant comput- 
ing efficiency as 30%. For each program, the scalability 
Iresults were measured under two workload environments: 
dedicated and 10% owner workload. From the measure- 
ment results, the five programs are ranked by scalability 
#as follows: 

EP > EF :> MS > Cholesky > MM. 

‘This order is consistent with the communication complex- 
ity orders of the five programs. This shows that communi- 
cation latency is an important factor affecting the scalabil- 
ity of a program in a heterogeneous network. Comparing 
the scalabilities in the dedicated environment and the 10% 
owner workload environment for each program, we notice 
that the owner workload had the most significant effect to 
the scalability of the EP program (up to 11% reduction). 
This is because the omverhead latency in the EP program 
increased most significantly caused by the owner workload. 
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6 Summary 

In this paper, we model and characterize parallel com- 
puting performance of heterogeneous NOW by present- 
ing metrics and by conducting experiments. We focus on 
studying effects of network heterogeneity and owner work- 
load on speedup, efficiency and scalability. Here we sum- 
marize performance results and their implications: 

l The power weight is an important factor to quan- 
tify heterogeneity of a NOW system for defining its 
speedup, efficiency and scalability. Since the com- 

puting power is measured by average execution time 
of an application program, it does not only depend 
on a processor’s clock rate, but also depends on 
cache/memory sizes and their access times. The 
power weight concept may also be applied for general 
heterogeneous computing performance evaluation. 

l In practice, the memory bound of each workstation 
is an important limit for a program to scale. If the 
data allocation of a program partition is larger than 
the memory size in a workstation, the power weight 
of the workstation may become extremely small. The 
total execution time would sharply increase and the 
heterogeneous computation would be negatively effec- 
tive. 

l For a given heterogeneous NOW, parallel comput- 
ing performance is improved as the parallelism de- 
gree of the program increases. However, changes of 
the network heterogeneity by system scaling and dy- 
namic owner workload distributions would affect the 
performance differently. We have shown the perfor- 
mance variations through models and experimental 
case studies. 

l The presented models/metrics in this paper are 
general enough to cover performance evaluation of 
both homogeneous and heterogeneous computations 
in dedicated and nondedicated distributed environ- 
ment. 

l The scaling of a heterogeneous system can be done 
in three directions: physical scaling, power scaling 
or simultaneous physical and power scalings. Differ- 
ent scaling methods will set different computational 
power and different communication structures in the 
system on which scalability of an application program 
will be different. 

l In general, execution performance of a program, such 
as speedup and efficiency, will degrade proportionally 
with the increase of owner workload in each worksta- 
tion. However, if the communication in a program 
can be overlapped with the workload, the negative 
workload effect to a parallel job could be reduced. 

Since the heterogeneous computing scalability issue in- 
volves multi-dimensional factors and effects, we are fur- 
ther studying the complex scaling behaviors. We are also 
applying the models for practical performance predictions 

of parallel computing on nondedicated heterogeneous net- 
works of workstations [lo]. 
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