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Abstract—As the Moore’s Law is ending, and increasingly high
demand of software development continues in the human society,
we are facing two serious challenges in the computing field.
First, the general-purpose computing ecosystem that has been
developed for more than 50 years will have to be changed by
including many diverse devices for various specialties in high
performance. Second, human-based software development is not
sustainable to respond the requests from all the fields in the
society. We envision that we will enter a time of developing high
quality software by machines, and we name this as Software-
defined Software (SDS). In this paper, we will elaborate our
vision, the goals and its roadmap.

I. INTRODUCTION: TWO CRISES OF FUTURE SOFTWARE

PRODUCTION

Software production (i.e. programming) has started after

the birth of modern electronic computers, both of which

have created a large and powerful CPU-based computing

ecosystem. However, the real driving force behind this ecosys-

tem, the Moore’s Law [1] along with the Dennard Scaling

Law [2], are ending due to the physical limit [3]. We are

entering an era with a dramatic change to evolve into a

new computing ecosystem where a variety of highly parallel,

highly customized hardware accelerators co-exist with general-

purpose processors, such as vector instruction hardware (e.g.,

Intel AVX) and NVIDIA GPUs. Unfortunately, the traditional

programming approach in the CPU-based ecosystem are facing

two fundamental challenges in the post Moore’s law era.

• The crisis of machine’s and application’s complexities:
Developing software for high performance in computing

and data processing on advanced hardware require in-

creasingly sophisticated programming and optimization

efforts in order to deliver highly optimized code, which is

based on a deep human understanding of both underlying

hardware architecture and application domain knowledge.

• The crisis of human resources: The human-based pro-

gramming approach is not sustainable due to the shrink-

ing of the talented software developers’ pool. Highly

skilled programmers are rare and hard to be massively

educated and trained. A parallel-programming expert

typically needs 5-7 years of Ph.D. training, which is

individual-based in low production, and cannot be in

batch mode for a high production. In other words, one

expert’s knowledge, skills and experiences cannot be

automatically inherited by others.

The problems of low performance in machine execution and

low production of software development in human resources

have been hidden in the CPU-dominated computing era for two

reasons. First, the Moore’s Law can automatically improve the

execution performance by increasing the number of transistors

in CPU chips to enhance the capabilities of on-chip caches and

computing power. Thus, execution performance continues to

be improved without major software modifications. Second,

the development of CPU-dominated computing ecosystem for

many years has created multilayer abstractions in a deep

software stack, e.g. from IAS, to LLVM, to JAVA/C, and

to JavaScript/Python. This software stack promotes software

productivity by connecting programmers at different layers to

co-work together.

However, in the post Moore’s Law era, the accelerator-

oriented computing environment cannot afford such a multi-

layer software stack, which instead requires sophisticated

programming to directly interact with heterogeneous hardware

devices [4]. Although recent research efforts have been made

on developing an intermediate representation (IR) for code

generation, such as Weld [5], we strongly argue to fundamen-

tally address the two above mentioned crises by making the
machines to develop software automatically. In this vision

paper, we call this approach as Software-Defined Software
(SDS).

II. THE SDS APPROACH

Motivated by recent advances of machine learning, which

show its significant capabilities in solving image/voice/video

recognition, natural language processing, recommendation

systems, and in other domains, we propose the SDS approach

in the programming area. The machine learning-based ap-

proach has shown promising problem cases that could only

be solved by humans in the past. Furthermore, regarding

playing the ancient Chinese Go game, which is believed that

top professional players are usually human genius, the recent

invention of DeepMind Alpha Go program [6] and the ultimate

Alpha Zero program [7], has shown that machines can not

only beat humans, but also given a strong evidence that self-

learning machines can reinvent and enhance human expert’s

knowledge by a huge speedup (from thousand years to a few

days). Thus, we ask a question: Can a machine do the job of
software production? and even better than humans?

In this vision paper, we boldly believe the answer is YES.

On one hand, the machine learning research domains have

accumulated intensive experiences of solving various difficult

problems defined by humans, with a number of new learning
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frameworks and models, such as Deep Learning [8], Deep

Reinforcement Learning [9], and Transfer Learning [10], [11].

On the other hand, recent automatic programming research

work, including DeepMind’s Neural Programmer-Interpreters

[12] and Microsoft’s DeepCoder [13], have opened the door

of using neural networks to generate computer programs,

although it is still at a very primordial stage.

A. The Core of SDS: Automatic Programming by Deep Neural
Networks

Like traditional software development by humans, the SDS

approach also needs to consider three factors: requirement,
environment, and deployment. First, what are the software

requirements (e.g., functionality, performance)? Second, under

what environment will be the software developed (e.g, hard-

ware platforms, software layers, programming languages)?

Finally, how to deploy the software (e.g, integrating with other

tools, end users, input/output)? Therefore, to make a machine

write a program, the user has to tell the machine all the

three factors. However, the telling can be either in traditional

software requirement descriptions (e.g., UML) or by natural

language interactions, considering the significant capability of

AI for natural language processing and speech recognition.

The core of SDS is automatic programming for a given

requirement and environment. We define three levels of au-

tomatic programming using the following example. Consider-

ing to sort four numbers [4,2,3,1] into the ascending order

[1,2,3,4] using the C programming language. We here do

not focus on how the machine understands the requirements.

Instead, we focus on how the machine will finish this specific

programming task.

Level 1: Programming with Building Blocks: The ma-

chine can assemble a program on the basis of a set of available

standard library functions or primitives. In this case, the

machine understands that the task is to sort an array. Therefore,

it decides to choose the standard C library qsort function,

and write the following program. We here ignore the compare

function for qsort.

int numbers = [4,3,2,1];
qsort(numbers, 4, sizeof(int), a_cmp_func);

Level 2: Programming from Scratch: The machine can

write its own library function or building blocks without

replying on an available function pool. In this case, the

machine understands that the requirements can be divided into

two steps. First, it should write a sort function. Then it should

use the sort function to sort the input numbers. The machine

will determine which sort algorithm should use, or a human

hint is given to specify the sort algorithm. In this way, the

machine will generate the code as follows.

void machine_sort(int* input)
{
...
}

int numbers = [4,3,2,1];
machine_sort(numbers);

Level 3: Application-Specific Programming: The machine

can write a very specific program for the requirements. For

this sort example, there is no need to first create a general-

purpose sort function and use it to process the input data.

The machine can exploit its neural network models to execute

the sort, in a way that cannot be explicitly expressed as a

sort program. By removing the function calls caused by an

independent sort function, the machine can generate specific

code directly serving the application.

B. Human-defined Software vs Software-defined Software

The major differences between Human-defined Software

(HDS) and Software-defined Software (SDS) are not only

the quality of generated software, but the changes in the

fundamental way of how software should be composed and

utilized. We summarize three dramatic differences as follows.

1) Difference 1: Write a Program vs Be the Program:
Although a person can write a program, he/she cannot be

the program. Even if the human knows exactly how the sort

program works, he/she cannot do the job of the sort program.

However, a program that can write a program can make its own

copy as the program it writes. This unique advantage makes

it possible to achieve quickly re-programming and dynamic

optimization, which are thought as challenging programming

issues for human developers due to the long-latency and

iterative programming based on observations and feedbacks

from program executions.

2) Difference 2: Explicit Algorithm Design vs Implicit Algo-
rithm Design: A key feature of a machine-generated program

is that it may not use explicit and specific algorithms to execute

a task. Instead, the program is based on a combination of

multiple neural network models that are trained for mixed

functionalities. This opens the door of self-growing software

by re-training the underlying Deep Neural Network (DNN)

models instead of current reduction-based software structure.

A recent example of using a neural network model to replacing

a general-purpose B-tree-like index is proposed in [14], which

exploits implicit indexing on top of the underlying datasets.

3) Difference 3: Pre-programming vs On-demand Field
Programming: Compared to the nature of pre-programming

by human software development, another significant capability

of SDS is that it makes field programming possible in an

on-demand way. For example, a self-driving car could meet

an unexpected situation that is out of the scope of any pre-

defined rules or algorithms. For human-defined software, any

exception handling mechanism can only handle well-defined

exceptions. However, unexpected exceptions or runtime op-

timization opportunities can only be handled by software

automatically and timely.

III. THE SDS GOAL: MAKING MACHINES SERVING FOR

HUMANS

We envision the SDS approach will pave the way for

machines to execute software production in the following three
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ways, namely programming, optimization, and debugging. In

each way, the machine can either be a totally independent

worker or just an assistant to human software developers.

A. Programming

Programming is the core task of software production. Ac-

cording to the capability levels we defined in the above section,

a set of programming work is highly possible that machines

can do for humans. According to the three levels we illustrated

in the above section, we present typical scenarios of each

level’s capability.

The Level 1 programming is best suitable for two jobs. One

is for application-level script programming that focuses on

assembling a set of available script commands or well-defined

primitives to satisfy a special application, such as Linux

Bash Programming or HTML/JavaScript/CSS programming.

Another workplace is for back-end compiler optimizations for

code generations, which can work either at the level of LLVM

or the underlying instruction sets. The commonplace of these

two cases is that their core task is to search a solution based on

the combinational possibilities on a set of basic instructions,

which has been successfully proven that a machine can do

much better than humans, as shown by Alpha Go.

The Level 2 programming is beyond assembling in a way

that it can not only pick up existing building blocks (e.g.,

an instruction or a library function) but also creates new

ones adaptively according to the programming requirements.

We believe that the most possible and useful scenarios for

this level programming is to write library functions or prim-

itives for a new programming language/framework based on

self-learning from both implementation examples from other

language/frameworks and new language/framework features.

For example, if a new language called NL is designed,

implementing its standard library (e.g., string functions) is a

tedious programming task for human developers. However, it

is totally possible if a Level 2 programming machine does

the job after it has understood (1) how those functions are

implemented in the C library and (2) how the new language

NL is different from the C language.

The Level 3 programming is best suitable for applications

that have well-defined behaviors but do not imply a clear way

of how to do it, for example typical AI-related applications in-

cluding image/voice recognition, natural language processing,

and language translations. In this case, automatic programming

provides a possibility of end-to-end programming that directly

serve the end-user requirements without a clear reduction

of how each step is implemented. Specifically, when the

software requirements are based on multiple functionalities

(e.g., both voice recognition and voice synthesis), a Level 3

programming capability may provide the only solution that

combines separate DNNs for the final requirements.

B. Optimization

Another useful possibility for automatic programming is

that it can be used to optimize human-defined software. We

believe there are two possibilities for the machine-generated

optimizations. The first one is automatic parallelization for a

given sequential program written by a human programmer.

For example, a human can simply write a quick sort program,

which can be further automatically transformed into parallel

programs executed on a variety of parallel hardware, such as

Intel AVX instructions, GPU, or clusters. The second one is

automatic optimization for a given architecture-independent

program that can be optimized and re-implemented to be an

architecture-dependent program with the considerations of all

possible optimization opportunities, such as exploiting local-

ity, prefetching to-be-used data, and best utilizing hardware

devices.

Optimization can also happen in a dynamic runtime way

considering the feasibility of software-defined software that

can make on-demand decisions during program executions.

Such dynamic program re-optimizations are critically impor-

tant for database query execution, datacenter optimizations,

graph computations, where unexpected scenarios can happen

without prior knowledge. Recently, there are several studies

proposed to use machine learning and deep learning-based

methods to optimize system parameter configurations [15],

[16]; and significant performance improvements have been

reported. This also illustrates the automatic programming can

optimize human-defined software with great potential.

C. Debugging

Beside programming and optimizations, debugging is an-

other important machine function for the approach of SDS. A

well-trained machine can do the debugging job by detecting

possible anomalies from executing traces of a set of given test

cases. We believe two levels of debugging work are possible

for automatic programming machines. First, a machine can

work as a regular software tester, who designs test cases

against target programs. By understanding the software re-

quirements, regardless how they are defined, e.g., by special

instructions (e.g., UML) or by natural languages, a machine

can automatically design test cases and behave like a human

software tester.

The second level is that a machine can work beyond simple

software tests but be able to discover hidden software bugs

based on its capability of detecting anomalies. For example,

the data race problem for parallel programming is notoriously

hard to solve, but it is totally possible for a machine to detect

the problem if its underlying DNN models are well-trained

by a set of experiences and knowledges on a collection of

data race problems. Simply speaking, because a machine can

have a huge memory and a fairly faster computation speed, it

can certainly discover more software bugs than human testers,

if the machine can understand how humans do the job of

debugging.

IV. THE SDS ROADMAP: WHAT HUMANS CAN DO FOR

MACHINES?

After we have described the SDS approach and its possible

usage for software development, we are in a position to answer

the ultimate question: How can we make it happen? In this
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section, we provide a R&D roadmap to turn the SDS approach

into a reality in the near future, which essentially solves the

problem of ”what humans can do for machines”.

A. Building Learning Models with Logics

Unlike simple pattern recognitions in image/voice domains

which are clearly suitable for deep learning-based approaches,

automatic programming is believed to be much harder, which

requires reasoning and optimizations based on logics and

mathematics proving. Therefore, we believe the first critical

step for automatic programming is to combine the neural

network based deep learning approach with the logic reasoning

based formal approach into a unified framework that shrinks

the possible search space for a programming requirement. In

this direction, a research problem is how to embed a Z3 [17]

or Coq [18]-like tool into a deep learning framework for the

purpose of avoiding unnecessary search in a large space.

B. Building Learning Materials/curriculum

As we know, a supervised learning-based approach for

a specific purpose must be based on some materials to be

learned, which formed the ground truth knowledge. For ex-

ample, ImageNet [19] is the key for the success of image

recognition efforts based on its labelled data sets. However,

there is no such a golden standard for automatic programming.

To teach a machine efficiently learn how to write a program,

even with the possibility of using reinforcement learning,

humans should provide a clearly-defined example program set

to be the curriculum for the learning programs. We believe

different domains, such as GPU programming, distributed

programming, and Web programming, must have their own

specific curriculum. It is unclear and yet an open question

whether it is possible to have a general-purpose program set

that can be used for various programming tasks.

C. Building Software Frameworks for Machines

The foundation for automatic programming is that there

exist a set of available building blocks that can either be

basic units for a machine to use to assemble a program or

learning examples to write similar blocks. However, current

computing frameworks (e.g., Hadoop or Spark) or program-

ming languages (e.g. C or Java) are designed for human

developers which lack machine-understandable definitions for

each function or primitive. For example, the C library function

qsort can only be understood by a human programmer for

its semantic meaning. To make automatic programming really

happen, it is our human’s job to define clear specifications for

machines.

D. Building Security/Trust Specification/Mechanisms

For a machine-generated program, the ultimate question

is ”Can we trust it”? It is easier if the program can be

clearly expressed into a human-readable program, while much

harder, if possible, when the program is expressed by a deep

neural network model where the program behavior is hidden

inside the model structure and weights of neural connections.

Humans must design the security and trust specifications and

corresponding enforcement mechanisms before deploying any

software-defined software into real-world applications. The

problem can be more complicated by the possibility that

the check program is also generated by another program,

which poses challenges for humans to design an architecture

with defense walls that determine whether we should allow

machine-generated programs to pass.

V. RESEARCH DIRECTIONS FOR SDS

Besides the abovementioned tasks, in this section we present

four research directions for academic researchers, which we

believe are necessary, even not sufficient efforts to implement

the SDS approach.

A. On Machine Learning Techniques

The recent rising of deep learning techniques is a key

turning point in the development of program synthesis [20].

As the core enabling techniques for SDS, automatic pro-

gramming, if really evolving from science fiction into reality,

must be fundamentally relied on the research advancements

of machine learning and neural network techniques. However,

unlike the convincing successes in object recognition and game

playing, it is still unclear how to organize and train deep

neural networks to do the job of programming, which seems

beyond the scope of a single task, for example game Go

and ImageNet classification. Therefore, the most important

research directions for SDS is to enhance machine learning

in various aspects. One aspect is to build unified models

for different tasks, as shown in [21], which would be a key

requirement for general-purpose programming. Another aspect

is to further develop novel neural network structures and

abstractions towards a deeper understanding and simulations

of how human brains do various recognition and intellectual

jobs, for example the recent Capsule network model in [22].

B. On Human-Computer Interaction

We are aware of that the most important question for

programming or software production is What instead of How?

Understanding the user intent correctly plays a more impor-

tant role than finding a way of how to generate a program

according to given requirements. As conventional software

engineering wisdom [23] says, ”The hardest single part of
building a software system is deciding precisely what to
build.”, the SDS approach must solve the problem of how

to allow machines understand human intents correctly and

efficiently. Therefore, we estimate that, in the near future, it is

very important to continue our current research on objective

recognition tasks (including images, videos, and voices) in

order to deliver a trustful human-computer interaction for the

SDS-based software production. Another trend is to combine

human-computer interaction and programming into a unified

effort as shown by recent research work (e.g., [24]) that

aims to translate natural language into computer programs.

Without solving the HCI problem, it is still human being’s

responsibility to write software specifications in a formal or
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visual way, which essentially can be understood as yet another
way of programming, even not using a typical programming

language (e.g., C or Java).

C. On Domain-specific Automatic Programming

Since no one has pointed out a clear path of achieving the

goal of general-purpose automatic programming, we have to

start from domain-specific automatic programming in order to

building the SDS approach. There are two important natures

of domain-specific programming: One is the clearly-defined

requirement and the other is the feasibility of result verifica-

tion. One of the state-of-the-art program synthesis technique

is to implement Program by Example (PbE), as shown by

DeepCoder [13], RobustFill [25], and NGDS [26]. However,

it is unclear whether and how such a specific automatic

programming approach can be applied to general programming

without clearly-defined input/output examples.

Another recently focused research topic is to apply

deep learning techniques into requirement-fixed programming,

which aims to exploit neural networks to solve certain specific

difficult problems, which can traditionally rely on well expe-

rienced and highly skilled human programmers. A represen-

tative example is occurring in the database domain where a

number of automatic programming and optimizing techniques

are rising, including data indexing [14], query optimization

[27], and relational join order enumeration [28]. Although it

is hard to estimate how these efforts can contribute to the final

goal of SDS, we believe that they can at least be helpful for

examining the capabilities and limitations of various machine

learning models and algorithms when applied into program

synthesis.

D. Basic Infrastructure: Hardware, Software, and Language

The final research direction is about a necessary condition

for making SDS happen, which is to build efficient hard-

ware/software infrastructures so that a lot of machine learning

applications can be easily and efficiently developed, which

could finally provide the foundation on which software-defined

software can be produced. An example is the Internet/WWW

ecosystem where we humans rely on. The rising of such an

ecosystem heavily relies on the massive availability of micro-

processors (X86 and ARM), operating systems (Windows and

Linux), and high-level programming languages (JavaScript and

Python). Therefore, although we don’t know how to certainly

make SDS happen, we know that it is a critically necessary

requirement to build the underlying hardware, software, and

language environment to support diverse AI applications.

For hardware, the ending of Moore’s Law triggers a high-

demand of building customized chips for specific applications

[29]. For software, TensorFlow [30] can provide an OS-like

functionality between hardware and applications. However, the

development of such hardware and software cannot remove

the requirement for developing user-friendly language to build

deep learning applications with both flexibility and high per-

formance, as shown in recent efforts [31] [32]. We believe

that combined efforts on building efficient AI infrastructures

are important research topics for the SDS approach.

VI. A VISIONARY CONCLUSION

The number of world-class Go masters is much smaller than

the number of highly skilled programmers in the world due to

a very different intellectual level requirement. If machines can

play the roles of highly intelligent Go masters, we believe that

they can also become top programmers to deliver best quality

code interacting with all kinds of hardware devices. This is

the way of Software-defined Software (SDS), and our future

way.
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