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Abstract In-memory key-value stores play a critical role in
many data-intensive applications to provide high-throughput
and low latency data accesses. In-memory key-value stores
have several unique properties that include (1) data-intensive
operations demanding high memory bandwidth for fast data
accesses, (2) high data parallelism and simple computing
operations demanding many slim parallel computing units,
and (3) a large working set. However, our experiments
show that homogeneous multicore CPU systems are increas-
ingly mismatched to the special properties of key-value
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stores because they do not provide massive data parallelism
and high memory bandwidth; the powerful but the limited
number of computing cores does not satisfy the demand
of the unique data processing task; and the cache hierar-
chy may not well benefit to the large working set. In this
paper, we present the design and implementation of Mega-
KV, a distributed in-memory key-value store system on a
heterogeneous CPU–GPU cluster. Effectively utilizing the
high memory bandwidth and latency hiding capability of
GPUs, Mega-KV provides fast data accesses and signifi-
cantly boosts overall performance and energy efficiency over
the homogeneousCPUarchitectures.Mega-KVshows excel-
lent scalability and processes up to 623-million key-value
operations per second on a cluster installed with eight CPUs
and eight GPUs, while delivering an efficiency of up to 299-
thousand operations per Watt (KOPS/W).

Keywords Key-value store · GPU · Heterogeneous
systems · Distributed systems · Energy efficiency

1 Introduction

The decreasing prices and the increasing memory densities
of DRAM have made it cost-effective to build commodity
servers with terabytes of DRAM [50]. In-memory key-
value store (IMKV) is a typical NoSQL data store that
keeps data in memory for fast accesses to achieve high
performance and high throughput. Representative systems
include widely deployed open-source systems such as Mem-
cached [3], Redis [5], RAMCloud [43], and recently devel-
oped high-performance prototypes, such as Masstree [39]
and MICA [36].

As a critical component in many Internet service sys-
tems, such as Facebook [42], YouTube, and Twitter, an
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IMKV system is a distributed system which is deployed
on a server cluster to provide key-value caching service to
web servers. With the ever-increasing user populations and
online activities of Internet applications, the scale of data
in these systems is experiencing explosive growth. There-
fore, a high-performance and high scalability IMKV system
is highly demanded. Moreover, because a large number of
servers would be involved in deploying a distributed IMKV
system, energy efficiency is also a major consideration in its
design and implementation.

An IMKV is a highly data-intensive system. Upon receiv-
ing a query from the network interface, it needs to locate
and retrieve the object from memory through an index data
structure,which generally involves severalmemory accesses.
Each memory access generally takes 50–100ns, while the
average time budget for processing one query is only 10ns
for a 100-million operations per second (MOPS) system.
However, memory access overhead is not able to be easily
alleviated which significantly limits the throughput of IMKV
systems. Themain reasons are threefold. First, an IMKV sys-
tem has a large working set [7]. As a result, the CPU cache
would not help much to reduce the memory access latency
due to its small capacity. Second, the supported number of
concurrent memory accesses is small and depends on the
CPU instruction window size and the number of Miss Status
Holding Registers (MSHRs). For instance, the Intel X5550
CPU only supports 4–6 cache misses [19]. As a result, it is
hard to utilize the inter-thread parallelism to overlapmemory
accesses on theCPU.Third, due to the strict data dependency,
the IMKV thread is unable to proceed without the data from
the memory, making the intra-thread parallelism unable to
be utilized either.

In summary, IMKVs in data processing systems have three
unique properties: (1) data-intensive operations demanding
high memory bandwidth for fast data accesses, (2) high data
parallelism and simple computing demanding many slim
parallel computing units, and (3) a large working set. Unfor-
tunately, we will later show that homogeneous multicore
CPU systems are poorly matched to the unique properties
of key-value stores because they do not provide massive
data parallelism and high memory bandwidth; the power-
ful but the limited number of computing cores mismatches
the demand of the special data processing [15]; and the CPU
cache hierarchy does not benefit the large working set. Key-
value stores demand simple but many computing units for
massive data parallel operations supported by high memory
bandwidth. These unique properties of IMKVs exactlymatch
the capability of graphics processing units (GPUs).

In this paper, we propose Mega-KV, a distributed IMKV
system on a heterogeneous CPU–GPU cluster. On each
machine of the cluster, Mega-KV utilizes GPUs as the
accelerator to offload and accelerate index operations. By
effectively utilizing the high memory bandwidth and latency

hiding capability of GPUs, the cluster shows high scalability
and achieves significantly high throughput and high energy
efficiency. Our technical contributions are fivefold:

1. We have identified that the index operations are one of
the major overheads in IMKV processing, but are poorly
matched to conventional multicore architectures. The
best choice to break this bottleneck is to shift the task
to a special architecture serving high data parallelism on
high memory bandwidth.

2. We have designed an efficient IMKV called Mega-KV
which offloads the index data structure and the corre-
sponding operations to GPUs. With a GPU-optimized
hash table and a set of algorithms, Mega-KV best utilizes
the unique GPU hardware capability to achieve unprece-
dented performance.

3. We have designed a periodical scheduling mechanism to
achieve predictable latency with GPU processing. Dif-
ferent scheduling policies are applied on different index
operations to minimize the response latency and maxi-
mize the throughput.

4. Wehaveproposed a real-timepowermanagement scheme
for enhancing the energy efficiency of Mega-KV. By
dynamically adjusting the frequency of the CPU and the
GPU, Mega-KV is capable of achieving an efficiency of
up to 299 KOPS/W.

5. We design and evaluate Mega-KV on a heterogeneous
CPU–GPU cluster.Mega-KV shows near-linear scalabil-
ity and achieves up to 623 MOPS throughput with eight
commodity CPUs and GPUs.

The roadmap of this paper is as follows. Section 2
introduces the background and motivation of this research.
Section 3 outlines the overall structure of Mega-KV. Sec-
tions 4 and 5 describe the GPU-optimized cuckoo hash table
and the scheduling policy, respectively. Section 6 describes
the energy management scheme of Mega-KV. Section 7
shows performance evaluations, Sect. 9 introduces related
work, and Sect. 10 concludes the paper.

2 Background and motivation

2.1 An analysis of key-value store processing

In-memory key-value store system is generally implemented
as a distributed system, where the key-value objects are parti-
tioned among the IMKV nodes with consistent hashing [29].
As each IMKV node performs same operations and works
independently with each other, we analyze and evaluate the
query processing on a single IMKV node in this section.
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2.1.1 Workflow of a key-value store system

A typical in-memory key-value store system generally pro-
vides three basic queries that serve as the interface to clients:
(1) GET(key): retrieve the value associated with the key. (2)
SET/ADD/REPLACE(key, value): store the key-value item.
(3) DELETE(key): delete the key-value item.

Queries are first processed in the TCP/IP stack and then
parsed to extract the semantic information. If a GET query is
received, the key is looked up in the index data structure to
locate its value, which will be sent to the requesting client.
For a SET query, a key-value item is allocated, or evicted
if the system does not have enough memory space, to store
the new one. For a DELETE query, the key-value item is
removed from both the main memory and the index data
structure. There are four major operations in the workflow of
a key-value store system: (1)Network processing, including
network I/O and protocol parsing. (2) Memory manage-
ment, including memory allocation and item eviction. (3)
Index operations, including Search, Insert, and Delete. (4)
Read key-value item in memory: only for GET queries.

In recent works, a set of techniques have been proposed to
improve the performance of CPU-based IMKVs, such as fast
network processing [2,7,19], and accelerate concurrent data
accesses [14,39]. In the following section, we will show that
the performance gap between CPU and memory has become
the major factor that limits key-value store performance on
the multicore architecture.

2.1.2 Bottlenecks of memory accesses in a CPU-based
key-value store

We have made the following observations on running IMKV
on a single CPU node.More experimental setup can be found
in Sect. 8.

Index operations are the major bottleneck of IMKV Mem-
ory accesses in a key-value store system consist of twomajor
parts: (1) accessing the index data structure and (2) accessing
the stored key-value item. To gain an understanding of the
impact of the two parts of memory accesses in an in-memory
key-value store system, we have conducted experiments by
measuring the execution time of a GET query of MICA [36].
MICA is a CPU-based in-memory key-value store with the
highest known throughput. In the evaluation, MICA adopts
lossy index data structure and runs in EREW mode with a
uniform key distribution. The following four data sets are
used as the workloads: (1) 8-byte key and 8-byte value; (2)
16-byte key and 64-byte value; (3) 32-byte key and 512-byte
value; (4) 128-byte key and 1024-byte value. This evalua-
tion is conducted on a single IMKV node equipped with two
Intel Xeon E5-2650v2 CPU and 8×8 GBmemory. As shown
in Fig. 1, index operations take about 75% of the processing
time with the 8-byte key-value workload (data set 1) and take

Fig. 1 Execution time breakdown of a GET query in a CPU-based
key-value store system

around 70 and 65% of the time for data sets 2 and 3, respec-
tively. For data set 4, the value size increases to 1024 bytes,
and the index operation time portion decreases, but still takes
about 50% of the processing time.

With techniques includingDPDK [2] andMultiget [3], the
amortized packet I/O and parsing cost for a key can be as low
as only 7ns. MICA needs one or more memory accesses for
its lossless index data structure. The key comparison in the
index operationmay also load the value stored next to the key.
That is why the proportion of the accessing value is smaller
although they both take one memory access for the data set
1. The CPI (cycles per instruction) of a CPU-intensive task
is generally considered to be less than 0.75. For example, the
CPI of Linpack on an Intel processor is about 0.42–0.59 [33].
We have measured that the CPI of MICA with the data set 1
is 5.3, denoting that a key-value store is memory intensive,
and the CPU-memory gap has become the major factor that
limits its performance.

Random memory accesses dominate the performance of
index operations We have analyzed other popular key-value
store systems, and all of them show the same pattern. The
huge overhead of accessing index data structure and key-
value items is incurred by memory accesses. The index data
structure commonly uses a hash table or a tree, which needs
one or more memory accesses to locate an item. With a huge
working set, the index data structure may take hundreds of
megabytes or even several gigabytes of memory space. Con-
sequently, it cannot be kept in a CPU cache whose capacity
is only tens of megabytes, and each access to the index
data structure may result in a cache miss. To locate a value,
it generally takes one or more random memory accesses.
Each memory access fetches a fixed-size data block into a
cache line in the CPU cache. For instance, with n items, each
lookup in Masstree [39] needs log4 n − 1 random memory
accesses, and a cuckoo hash table [44] with k hash func-
tions would require (k + 1)/2 random memory accesses per
index lookup in expectation. The ideal case for a linked list
hash table with load factor 1 is that items are evenly dis-
tributed in the hash table and each lookup requires only one
memory access. However, the expected worst-case cost is
O(lg n/ lg lg n) [11]. On the other hand, accessing the key-
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Fig. 2 Sequential memory access time

value item is the next step, which consists of sequential
memory accesses. For instance, a 1-KB key-value item needs
16 sequential memory accesses with a cache line size of 64
bytes. However, sequential memory accesses are much faster
than random memory accesses, because the processor can
recognize the sequential pattern and prefetch the following
cache lines.

TheCPUnode has prohibitively high cost of randommem-
ory accessesWe have conducted another experiment to show
the performance of sequential memory accesses. We start
from accessing one cache line (64 bytes) and continue to
increase the number of cache lines to read, up to 16 cache
lines (1024 bytes). Figure 2 shows the time of 1–16 sequen-
tial memory accesses. A random memory access takes about
76ns in our machine, while 16 sequential memory accesses
take 231ns, only about three times higher than one access. In
conclusion, the randommemory accesses involved in access-
ing the index data structure may result in a huge overhead in
an in-memory key-value store system.

Memory access overhead cannot be easily alleviated for
the following three technical reasons. (1) Memory access
latency hiding capability for a multicore system is limited
by its CPU instruction window size and the number of
Miss Status Holding Registers (MSHRs). For example, an
Intel X5550 CPU is capable of handling only 4–6 cache
misses [19]. Therefore, it is hard to utilize the inter-thread
parallelism. (2) As a thread cannot proceed without the
information being fetched from the memory, the intra-thread
parallelism cannot be explored either. (3) The working set of
an IMKV system is very large [7]. Therefore, the CPU cache
with a limited capacity is helpless in reducing the memory
access latency. With a huge amount of CPU time being spent
onwaiting formemory to return the requested data, bothCPU
and memory bandwidth are underutilized. Since accessing
the key-value item is inevitable, the only way to significantly
improve the performance of an in-memory key-value store
system is to find a way to accelerate the random memory
accesses in the index operations.

2.2 Opportunities and challenges by GPUs

2.2.1 Advantages of GPUs for key-value stores

CPUs are general-purpose processors that feature large cache
size and high single-core processing capability. In contrast

to CPUs, GPUs devote most of their die areas to large array
of Arithmetic Logic Units (ALUs) and execute code in an
Single Instruction, Multiple Data (SIMD) fashion. With the
massive array of ALUs, GPUs offer an order of magnitude
higher computational throughput than CPUs for applications
with ample parallelism. A key-value store system has the
inherent massive parallelismwhere a large volume of queries
can be batched and processed simultaneously.

GPUs are capable of offering much higher data access-
ing throughput than CPUs due to the following two features.
First, GPUs have very high memory bandwidth. NVIDIA
Tesla K40c, for example, provides 288 GB/s memory band-
width,while themost recent IntelXeonE7-8890v4processor
has 85 GB/s memory bandwidth. Second, GPUs effectively
hide memory access latency by warp switching. Warp (or
wavefront called in OpenCL), the basic scheduling unit in
NVIDIA GPUs, can benefit zero-overhead scheduling by
the GPU hardware. When one warp is blocked by mem-
ory accesses, other warps whose next instruction has its
operands ready are eligible to be scheduled for execution.
With enough threads, memory stalls can be minimized or
even eliminated [49].

2.2.2 Challenges of using GPUs in key-value stores

GPUs have great capabilities to accelerate data-intensive
applications. However, they have limitations and may incur
extra overhead if utilized in an improper way.

Challenge 1: limited memory capacity and data trans-
fer overhead The capacity of GPUmemory is much smaller
than that for main memory [51]. For example, the memory
size of a server-class NVIDIA Tesla K40 GPU is only 12
GB, while that of a data center server can be hundreds of
gigabytes. Since a key-value store system generally needs to
store tens of or hundreds of gigabytes key-value items, it is
impossible to store all the data in the GPUmemory. With the
low PCIe bandwidth, it is nontrivial to use GPUs in building
a high-performance IMKV.

Challenge 2: trade-offs between throughput and latency
To achieve high throughput, GPUs need data batching to
improve resource utilization. A small batch size for a GPU
will result in low throughput, while a large batch size will
lead to a high latency. However, a key-value store system
is expected to offer a response latency of less than 1 mil-
lisecond. Therefore, trade-offs have to be made between
throughput and latency, and optimizations are needed to
match IMKV workloads.

Challenge 3: specific data structure and algorithm
optimization on GPUsApplications onGPUs require awell-
organized data structure and efficient GPU-specific parallel
algorithms. However, IMKV needs to process various-sized
key-value pairs, whichmakes it hard to well utilize the SIMD
vector units and the device memory bandwidth. Further-
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Fig. 3 Key-value store in Web service systems

more, as there are no global synchronization mechanisms
for all threads in a GPU kernel, a big challenge is posed
for algorithm design and implementation, such as the Insert
operation.

Challenge 4: reducing energy consumption Energy
efficiency is a major consideration in the design and imple-
mentation of IMKV systems on heterogeneous architectures.
The workload of IMKVs changes radically during a day. In
Facebook, for instance, the request rate of IMKVs at 16:00
can be two times higher than that at 8:00 [7]. If both CPUs
and GPUs keep running at the highest frequency to meet the
highest throughput, therewill be a significantwaste of energy
in most time of a day.

3 Mega-KV: an overview

3.1 Mega-KV as a distributed system

Mega-KV is designed as a distributed in-memory key-
value store system, which works in the same way as the
general IMKV systems such as Memcached. As an exam-
ple, Fig. 3 illustrates the role Mega-KV plays in Web service
systems. A Web service system consists of Web servers,
in-memory key-value stores, and databases. In this sce-
nario, Mega-KV speeds up Web applications and alleviates
database load by caching objects and data in the DRAM of
each Mega-KV node, working in exactly the same way as
Memcached.

In the system, the key-value space is partitioned among the
Mega-KV nodes, where consistent hashing [29] is utilized
by Web servers to decide the Mega-KV node that queries
should be sent to. EachMega-KV node works independently
on processing queries to its assigned key-value objects. With
consistent hashing, when a new node is added into the system
or a node goes down due to power failure, only K/n keys
need to be remapped, where K is the number of key-value
objects and n is the number of IMKV nodes.

The workflow of the entire system is as follows. If a Web
server wants to get the value of key k1, it first sends GET(k1)
to the corresponding Mega-KV node. If the node has cached
the key-value object, it sends the value back to the client, or it
responses with a message, denoting that the requested value
is not found. If the object is not cached in the node, the Web
server fetches the value from the database (denote as v1);
then, it sends a SET(k1, v1) to the corresponding Mega-KV
node for future reuse.

3.2 Major design choices

On each node, Mega-KV enhances the throughput by adopt-
ing GPUs for acceleration. To address the memory access
overhead, Mega-KV offloads the index data structure and its
corresponding operations to GPUs.

Decoupling index data structure from key-value items
Due to the limited GPU device memory size, the number of
key-value items that can be stored in theGPUmemory is very
small. Furthermore, transferring data between GPUmemory
and host memory is considered to be the major bottleneck
for GPU execution.Mega-KV decouples index data structure
fromkey-value items and stores it in theGPUmemory. In this
way, the expensive index operations such as Search, Insert,
andDelete can be offloaded toGPUs, significantlymitigating
the load of CPUs.

GPU-optimized cuckoo hash table as the index data
structure Mega-KV uses a GPU-optimized cuckoo hash
table [44] as its index data structure. According to GPUs’
hardware characteristics, the cuckoo hash table data struc-
ture is designed with aligned and fixed-size cells and buckets
for higher parallelism and less memory accesses. Since keys
and values have variable lengths, keys are compressed into
32-bit key signatures, and the location of the key-value item
in main memory is indicated by a 32-bit location ID. The key
signature and location ID serve as the input and output of the
GPU-based index operations, respectively.

Periodic GPU scheduling for bounded latency A key-
value store system has a stringent latency requirement for
queries. For a guaranteed query processing time, Mega-KV
launches GPU kernels in predefined time intervals. At each
scheduled time point, jobs accumulated in the previous batch
are launched for GPU processing. GET queries need fast
responses for quality of services, while SET and DELETE
queries have a less strict requirement. Therefore, Mega-KV
applies different scheduling policies on different types of
queries for higher throughput and lower latency.

Improving energy efficiency with dynamic frequency
scaling As there can be a performance disparity between the
CPU and the GPU, Mega-KV improves its energy efficiency
by reducing the energy consumption of the underutilized pro-
cessor without degrading the overall throughput. To achieve
this goal, Mega-KV adjusts the core frequency and the mem-
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Fig. 4 Workflow of Mega-KV system

ory frequency of the underutilized processor, so that the
processor has the lowest energy consumptionwhilematching
the throughput of the other processor.

3.3 The workflow of Mega-KV

Figure 4 shows theworkflow ofMega-KV in a single node
with CPU–GPU architectures. Mega-KV divides query pro-
cessing into three stages: preprocessing, GPU processing,
and post-processing, which are handled by three kinds of
threads, respectively. Receiver threads are in charge of the
preprocessing stage, which consists of packet parsing, mem-
ory allocation and eviction, and someextrawork for batching.
Receivers batch Search, Insert, and Delete jobs separately
into three buffers. The batched input is 32-bit key signatures
which are calculated by performing a signature algorithm on
the keys. Scheduler , as the central commander, is a thread
that is in charge of periodic scheduling. It launches the GPU
kernel after a fixed time interval to process the query opera-
tions batched in the previous time window. Sender threads
handle the post-processing stage, including locating the key-
value items with the indexes received from the GPU and
sending responses to clients. Mega-KV uses slab memory
management where each slab object is assigned with a 32-
bit location ID, and please refer to our previous paper [58]
for details. After the key-value item location IDs for all the
Search jobs are returned, Sender threads convert the location
IDs to object pointers through the slab subsystem. Because
the overhead from packet I/O, query parsing, and the mem-
ory management is still high, several Receiver and Sender
threads are launched in pairs to form pipelines, while there
is only one Scheduler per GPU.

In the following sections, we will describe the data struc-
ture and the algorithm of the GPU-optimized hash table and

introduce the scheduling policy and the energy management
scheme adopted by Mega-KV.

4 GPU-optimized cuckoo hash table

4.1 Data structure

For the IMKV workload characteristics and GPU architec-
ture features, the GPU-based hash table forMega-KV should
take the following major design considerations for high effi-
ciency. First, to utilize the massive number of cores, the hash
table should avoid heavy synchronizationoperations between
GPU threads. Second, since the GPUmemory capacity is rel-
atively small, the hash table data structure should be designed
as compact as possible for indexing more key-value items.
Third, as GET operations are latency sensitive and the num-
ber of key-value objects in an IMKV system can be quite
large, the lookup performance of the hash table should be
fixed and minimized.

CPU-based IMKV systems generally employ two gen-
eral classes of index data structures, i.e., trees [39] and hash
tables that resolve conflicts with chaining [3,36]. The time
complexity of a lookup in trees [39] is O(log n). Moreover,
after a number of Insert and Delete operations, the tree needs
to be balanced to maintain its lookup performance. The over-
head of balancing is extremely huge, which is unacceptable
for IMKVs that demand predictable low latency. For hash
tables with chaining to resolve conflicts, their lookup perfor-
mance varies and depends on many factors, such as the load
factor of the hash table and the stored position in the conflict
data structure. Most importantly, the worst-case lookup per-
formance is O(n). Therefore, they are not competent to be
implemented as the index data structure of Mega-KV.

Mega-KV adopts cuckoo hashing [44], which features a
high load factor and a constant lookup time. Among different
hashing methods, cuckoo hashing is reported to achieve the
highest lookup performance with high load factors (90%) for
general key distributions [48]. This matches the workload
characteristic of IMKV systems. The basic idea of cuckoo
hashing is to use multiple hash functions to provide each key
with multiple locations instead of one. When a bucket is full,
existing keys are relocated to make room for the new key.

There are two parameters affecting the load factor of a
cuckoo hash table and the eviction times for insertion: the
number of hash functions and the number of cells in a bucket.
Increasing either of them can lead to a high load factor [12].
Since the GPUmemory size is limited and the randommem-
ory access overhead of a cuckoo eviction is high, we use a
small number of hash functions (two) and a large number of
cells per bucket in our hash table design.

The various-sized keys and values not only impose a huge
overhead on data transfer, but also make it hard for GPU
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Fig. 5 GPU cuckoo hash table data structure

threads to locate their data. In our hash table design, a 32-bit
key signature is used to identify a key, and a 32-bit location
ID is used to reference the location of an item in the main
memory. As there are several items conflict in one bucket in
the cuckoo hash table, a Search operation has to access every
key-value object in the hash bucket to compare their keys,
which overhead is extremely huge. The signature, which can
be considered as another hash, represents the key. It avoids
accessing keys stored in the hostmemorywhenmultiple keys
conflict in the same bucket. As shown in Fig. 5, a hash bucket
contains N cells, each of which stores a key signature and
the location of the corresponding key-value item. The key
signatures and locations are packed separately for coalesced
memory access. Each key is hashed onto two buckets, where
a 32-bit hash value is used as the index of one bucket, and
the index of the other bucket is calculated by performing
an XOR operation on the signature and the hash value. The
compactness of the key signatures and locations also lead to
a small hash table size.

The overhead of generating key signatures and hash values
is small with the built-in SSE instructions of Intel x86 CPU,
such as AES, CRC, or XOR. In a 2-GB hash table with eight
cells (one cell has one key signature and its location) per
bucket, there will be 225 buckets with 25 bits for hashing.
With 32 bits for signature, the hash table can hold up to
231/8 = 228 elements, with a collision rate of as low as
1/225+32 = 1/257.

4.2 Hash table operations

To achieve high performance for hash table operations, we
propose to form multiple threads as a processing unit for
cooperative processing. With a bucket of N cells, N threads
can form a processing unit to check all the cells in the bucket
to find an empty one simultaneously. The threads forming
a processing unit are selected within one warp; thus, they
perform the operations simultaneously. After the processing
unit performs the corresponding operations, the data are no
longer needed and can be evicted from the cache. Based on
this approach, this section describes the specific hash table
operations optimized for GPU execution.

SearchASearch operation checks all 2×N candidate key
signatures in the two buckets and writes the corresponding
location into the output buffer. When searching for a key, the
threads in the processing unit compare the signatures in the
bucket in parallel. After that, the threads use the built-in vote
function __ballot() to inform each other with the information
of the corresponding cells. With the __ballot() result, all the
threads in the processing unit know if there is a match in the
current bucket and its position. If none of the threads find
a match, they will do the same process on the alternative
bucket. If there is a match, the corresponding thread will
write the location ID to the output buffer.

Insert For Insert operation, the processing unit firstly tries
to find if there are same signatures in the two buckets, i.e.,
conflicts. If there are conflicts, the conflicting location is
replaced with the new one, or the processing unit will try
to find an empty cell in the two buckets. With __ballot(),
all threads will know the positions of all the empty cells.
If either of the two buckets has an empty cell, the thread
that is in charge of the corresponding cell tries to insert the
key-value pair. There may be write–write conflicts if multi-
ple processing units are trying to insert an item in the same
position. After the insertion, __synchronize() is performed
to make sure all memory transactions have been done within
the thread block for checking whether the insertion is suc-
cessful. If the signature is not inserted, the processing unit
will try again. There will be at least one successful insertion
for the conflict in a cell.

If neither bucket has empty cells, a randomly selected
cell from one candidate bucket is relocated to its alternative
location. Displacing the key may also require kicking out
another existing key, which will repeat until a vacant cell
is found, or until a maximum number of displacements is
reached.

To alleviate the write–write conflict, instead of always try-
ing to insert into the first available cell in a bucket, a preferred
cell is assigned for each key. We use the highest bits of a sig-
nature to index its preferred cell. For instance, 3 bits can
be used to indicate the preferred cell in a bucket with eight
cells. If multiple available cells in a bucket are found, the
cell left nearest to the preferred cell is chosen for insertion.
There will be no extra communication between the threads
in a processing unit, since each of them knows whether its
cell is chosen with the __ballot() result.

For simplicity in system design, we limit that there can-
not have two same signatures in one hash bucket. The Insert
operation will evict the conflicted item by replacing the loca-
tion ID. As a caching system, Mega-KV works in the same
way of Memcached. The conflict key-value object in the
host memory will be evicted by the eviction process after
it is not accessed for a period of time. Moreover, the possi-
bility of two keys having the same signature is only 1/257

(32 bits signature and 25 bits hash bucket index), which is
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Fig. 6 Processing time of Search operation with 60-K jobs and 7
CUDA streams

extremely low. Therefore, this mechanism works in practical
systems.

Delete Delete operation is almost the same with Search.
When both the signature and location ID are matched, the
corresponding thread clears the signature to zero to mark the
cell as available.

4.3 Hash table optimization and performance

In this section, we use a NVIDIA Tesla K40c GPU in evalu-
ating the hash table performance.

4.3.1 The choice of processing unit and bucket size

To evaluate the effectiveness of processing unit, Fig. 6
shows the GPU execution time for Search operation with a
different number of cells in one bucket and a different number
of threads in a processing unit. Since a memory transaction
is 32 bytes in the noncaching mode of NVIDIA GPUs, the
bucket size is set as multiples of 32 bytes to efficiently uti-
lize memory bandwidth. As shown in the figure, decreasing
the number of cells and increasing the number of threads in
processing unit lead to a reduced execution time. We choose
eight cells for each bucket, which allows a higher load factor.
Correspondingly, eight threads form a processing unit.

4.3.2 Optimization for Insert

An Insert operation needs tomake surewhether the key-value
index has been successfully inserted, and a __synchronize()
operation is performedafter the insertion.However, this oper-
ation can only synchronize threads within a thread block,
but cannot synchronize threads in different thread blocks. A
naive approach to implementing Insert operation is to launch
only one thread block. However, a thread block can only exe-
cute on one streaming multiprocessor, leading to resource
underutilization and low performance.

We divide the hash table into several logical partitions.
According to the hash value, key signatures are batched into

Fig. 7 Speedups for Insert with multiple blocks

(a) (b)

(d)(c)

(e) (f)

Fig. 8 GPU hash table performance

different buffers with each buffer belonging to a logical par-
tition exclusively. For the alternative bucket in cuckoo hash,
a mask is used to make it still locate in the same partition.
With each thread block processing one input buffer and one
logical partition exclusively, throughput of Insert operation
is boosted by utilizing more streaming processors. Figure 7
shows the performance improvement with multiple insert
blocks.As can be seen in the figure, an average of 1.2 speedup
is achieved with two blocks, and the throughput becomes
1.3–1.8 times higher with 16 blocks.

4.3.3 Hash table performance

Figure 8 shows the throughput and processing latency
for hash table operations with different input batch sizes.
Comparing with 1 CUDA stream, a 24–60% performance
improvement is achieved with 7 CUDA streams, which
effectively overlaps kernel execution with data transfer. Our
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hash table implementation shows the peak performance for
Search, Insert, and Delete operations with large batch sizes
are 303.7, 210.3, and 196.5 MOPS, respectively. For a small
batch, the performance of 7 streams is lower than that of 1
stream. This is because GPU resources are underutilized for
a small batch, which is partitioned into smaller ones with
multiple CUDA streams.

With a large batch size, there is supposed to be more con-
flict for Insert and Delete operations. As shown in Fig. 8,
the performance will not degrade with a large number of
Insert/Delete operations in a batch. There are two main tech-
niques in alleviating the conflicts in Mega-KV. First, when
multiple keys are hashed to the same bucket, they have
preferred slots to perform the operation. This significantly
reduces the possibility of conflicting. Second, even if multi-
ple operations conflict on the same slot, there will be at least
one operation successfully performs the Insert operation in
each round. Therefore, with the highly optimized hash table
operations, the overhead of conflict is low.

4.4 The order of operations

The possibility of conflicting operations on the same key
within such a microsecond scale time interval is very small,
and there is no need to guarantee their orders. This is because,
in multicore-based key-value store systems, the operations
may be processed by different threads, which may have
context switching and compete for a lock to perform the
operations. Moreover, the workload of each thread is dif-
ferent and the delays of packets transferred in the network
also vary over a large range. For example, TCP processing
may take up to thousands of milliseconds [26], and queries
may wait for tens of milliseconds to be scheduled in a data
processing system [42]. Therefore, the order of operations
within only hundreds of microseconds can be ignored, and
the order of operations within one GPU batch is not guar-
anteed in Mega-KV. For the conflicts on accessing the same
item among the CPU threads, a set of optimistic concurrency
control mechanisms are proposed in the implementation of
Mega-KV (Sect. 7.4).

4.5 The index size and GPU capacity

In Mega-KV, the index data structure should fit in the GPU
memory. As the GPU memory capacity is relatively small
comparing with the host memory, we have addressed this
limitation in two aspects. (1) With the consideration on the
limited GPU memory capacity, our highly optimized GPU
index data structure is designed to index a high volume of
memory space. Each entry in the hash table is compressed
to be extremely compact, which only contains 64 bits, i.e., a
32-bit signature and a 32-bit location ID. In the workloads
in Facebook, values close to 500 B take up nearly 80% of

the entire cache’s allocation for values [7]. With the keys
and other information stored, a key-value object generally
takes more than 600 B. Therefore, for the 12 GB memory
of the K40c GPU in our evaluation, the index data structure
is able to index nearly 1-TB objects stored in the host mem-
ory. We believe such a huge data volume is large enough for
a single in-memory key-value store server. (2) In-memory
key-value store system is a distributed system, which is able
to achieve near-linear scalability with consistent hashing.
Thus, we adopt a scale-out approach to support large index.
When the key-value objects stored in a single node exceed
the capacity of the host memory or their index exceeds the
GPU memory capacity, parts of the key-value objects can
be moved to other nodes. Therefore, Mega-KV is also able
to address the capacity issue with scaling out. To conclude,
the above two techniques effectively address the limitation
of GPU memory capacity, making it not a concern in our
system design and implementation.

5 Scheduling policy

In this section, we study the GPU scheduling policy to bal-
ance between throughput and latency.

5.1 Periodical scheduling

To achieve a bounded latency for GPU processing, we
propose a periodical schedulingmechanism based on the fol-
lowing three observations. First, themajority of the hash table
operations are Search in a typical workload, while Insert and
Delete operations account for a small fraction. For example,
a 30:1 GET/SET ratio is reported in Facebook Memcached
workload [7]. Second, the processing time for Insert and
Delete operations increases very slowly when the batch size
is small. Third, SET queries have less strict latency require-
ment than GET queries.

In our scheduling policy, different scheduling cycles are
applied onSearch, Insert, andDelete operations, respectively.
Search operations are launched for GPU processing after a
query batch time C . Insert and Delete operations, however,
are processed for every n · C . We define the GPU execution
time for Search operations batched in C as TS. In Mega-
KV, we assume that GPUs are capable of handling the input
queries, and we can get TS < C . Figure 9 shows an example
with n = 2. In the example, Search operations accumulated
in the last time interval C are processed in the next time
interval, while Insert and Delete operations are launched for
execution every 2 · C . We define the sum of TS and the time
for Insert and Delete operations batched in n · C as Tmax.
To guarantee that Search operations that have been batched
in a time interval C can be processed within the next time
interval, the following rule should be satisfied:
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Fig. 9 Periodical delayed scheduling

Fig. 10 Fitting lines of the performance of Search and Insert/Delete
operation (95% GET, 5% SET)

TS + Tmax ≤ 2 · C (1)

With the time for reading values and sending responses, a
maximum response time of 3 · C is expected for the GET
queries.

5.2 Lower bound of scheduling cycle

Figure 10 shows the fitting lines for the relation of processing
time and batch size for Search and Insert &Delete operations
onNVIDIATeslaK40c. Theworkload has 95%GET and 5%
SETquerieswith a uniformdistribution. Both lines are drawn
with the same horizontal axis, which is the batch size for
Insert.With an Insert batch size of x , the corresponding batch
size for Search is 19x . As shown in the figure, the processing
time of Search operations increases more quickly than that
of Insert/Delete operations with the growth of the batch size,
which also proves that Insert and Delete operations are fit to
be batched for a longer time in read heavy IMKV systems.

Since the processing time TS of Search operation almost
increases linearly with the increase in the batch size xS, we
define it as TS = kS · xS + bS, where kS = 5.9 × 10−3 and
bS = 22.1. Similarly, for the Insert/Delete operations, we
define its relation between batch size xI and processing time
TI as TI = kI ·xI+bI, where kI = 6.2×10−3 and bI = 144.5.
With afixed input speedV , the relations between the batching
time t and the processing time are TS = kS · pS · V · t + bS
and TI = kI · pI · V · t + bI, where pS is the proportion of

Search operations, and pI = 1− pS is the proportion of Insert
operations, which are 95 and 5% in the figure, respectively.

The maximum processing time Tmax = (kS · pS · V ·C +
bS)+ (kI · (1− pS) ·V ·C · n+ bI). To satisfy the inequation
TS + Tmax ≤ 2 · C , we get

C ≥ 2 · bS + bI
2 − 2 · kS · pS · V − n · kI · (1 − pS) · V , (2)

where V < 2/(2 · kS · pS +n · kI · (1− pS)) and n ≥ 2. From
the formula, we learn that an increasing n leads to a larger
lower bound of C . Therefore, with the same input speed, we
get the minimum C with n = 2.

Without the delayed scheduling, C should follow C ≥
Tmax, and we get C ≥ (bS + bI)/(1 − kS · pS · V − kI ·
(1 − pS) · V ), where V < 1/(kS · pS + kI · (1 − pS)). With
the delayed scheduling, the lower bound of scheduling cycle
C is reduced by an average of 43.4%. The delayed schedul-
ing policy not only offers a reduced overall latency, but also
makes the system capable of achieving a higher throughput
with the same latency.

6 Energy management scheme

Energy efficiency is critical for IMKV systems, as the energy
consumption cost plays an important role in the total own-
ership cost in production systems. As Mega-KV adopts a
pipelined execution model, the CPU and the GPU in the sys-
tem are in charge of different pipeline stages and perform
different operations in the query processing. The perfor-
mance of the CPU and the GPU that can be achieved depends
on the hardware architecture and the workload that is being
processed by the system. Therefore, the throughput of the
CPU and the GPU may not match with each other. However,
as the overall system throughput depends on the pipeline
stage with the lowest throughput, the processor with higher
throughputwould be underutilized. Thiswill inevitably result
in a low energy efficiency.

We propose an energy management scheme to improve
the energy efficiency of Mega-KV. The first priority of the
scheme is to meet the current throughput requirement. After
that, our scheme sets the core and memory frequency to
achieve the lowest energy consumption. Our energymanage-
ment scheme is consisted of two steps. Firstly, we identify
which processor is underutilized in the system. Secondly, we
adopt Dynamic Voltage and Frequency Scaling (DVFS) to
reduce its energy consumption without degrading the over-
all throughput. DVFS is a technique for reducing the energy
consumption of processors by adjusting the voltage and fre-
quency at runtime.

Step 1 We measure and compare the throughput of the
CPU and the GPU. Because the throughput of the GPU is
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Table 1 Available frequencies of NVIDIA K40c GPU

Memory (MHz) 3004 324

Core (MHz) 875 810 745 666 324

related to theGET:SET ratio of theworkload and the schedul-
ing cycle, its maximum throughput can be estimated with
the same method as Eq. 2. The CPU performance, however,
only depends on the workload, because system configura-
tions such as scheduling cycle have little impact on it. We
measure the CPU performance in real time. Given a system
latency requirement, the maximum GPU throughput and the
CPU throughput can be known to identify which processor
is the bottleneck and which is underutilized.

Step 2 We reduce the energy consumption of the pro-
cessors without compromising the overall throughput. In
Particular, we have the following two cases:

1. If theCPU throughput is higher than theGPU throughput,
we adjust the CPU frequency gradually with CPUFreq
[1]. Our mechanism tries to decrease the CPU frequency
by 100 MHz each time until the following condition is
met.

TC − TG > µ · TG, (3)

where TC is the CPU throughput, TG is the GPU through-
put, and µ is a parameter as the threshold of the through-
put difference. In the implementation of Mega-KV, we
set µ to 0.1 as a balance between improving the energy
efficiency and guaranteeing the overall throughput.

2. If the GPU throughput is higher than the CPU through-
put, we decrease the GPU frequency to reduce energy
consumption. Current GPUs are able to set both the core
frequency and its device memory frequency. However,
different with CPUs, only specific core and memory fre-
quency combinations are allowed to be set in GPUs.
For instance, we list the five available combinations for
NVIDIA K40c GPU in Table 1.
We estimate the GPU performance for all frequency
combinations with the same method in Sect. 5 and get
the parameters of Eq. 2 for each frequency configura-
tion (shown in Table 2). With a scheduling cycle, we
are able to calculate the maximum throughput for n fre-
quency configurations as T = {T1, T2, ..., Tn}. To reduce
energy consumption without compromising the overall
throughput, we choose the frequency configuration with
min{T |T > TC , T ∈ T}, where TC is the CPU through-
put.

When the workload changes in the runtime, the current
frequency setting policy may result in a suboptimal overall

Fig. 11 Framework of Mega-KV system

throughput. To dynamically adapt to the changing work-
load, the energy management scheme periodically measures
the CPU performance at runtime. Because the CPU perfor-
mance is sensitive to the workload, a variation in the CPU
performance (5% in Mega-KV) means that the workload is
experiencing a change. If this happens, we set both the CPU
and the GPU to their highest frequencies and then perform
the above two steps again to adjust the energy consumption
while delivering the highest throughput. In Mega-KV, we set
the cycle of measuring the CPU performance as 10 seconds.

In the implementation, we use NVIDIA Management
Library (NVML) [4] to set the core frequency and the mem-
ory frequency of the GPU. Functions nvmlDeviceGetSup-
portedMemoryClocks and nvmlDeviceGetSupportedGraph-
icsClocks are used to get the available frequency combina-
tions in the GPU, and function nvmlDeviceSetApplication-
sClocks is used to set the frequencies.

7 System implementation and optimization

To build a high-performance key-value store that is capable
of processing hundreds of millions of queries per second, the
overheads from data copy operations, memory management,
and locks should be addressed. In this section, we illustrate
the framework of Mega-KV and the major techniques used
in alleviating the overheads.

7.1 Zero-copy pipelining

Data copy is known to be a big overhead in a high-speed
networking system, which may limit the overall system per-
formance. To avoid the expensive memory copy operations
between pipeline stages, each pipeline is assigned with three
buffers, and data between the stages are transferred by pass-
ing the buffers. Figure 11 shows the zero-copy pipelining
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Table 2 Performance
parameters for each frequency
combination

M. 3004 324

C. 875 810 745 666 324

kS 5.9 × 10−3 6.4 × 10−3 6.9 × 10−3 7.8 × 10−3 1.5 × 10−2

bS 22.1 18.0 23.2 25.3 176.9

kI 6.2 × 10−3 6.9 × 10−3 7.6 × 10−3 9.2 × 10−3 3.6 × 10−2

bI 144.5 147.5 152.3 154.0 282.5

framework of Mega-KV. At any time, each Receiver works
on one buffer to batch incoming queries. When GPU kernel
launching time arrives, Scheduler uses an available buffer to
swap the one that Receiver is working on. In a system con-
figured with N Receivers, N CUDA streams are launched
to process the buffer of each Receiver. After the GPU ker-
nel completes execution, Scheduler handles the buffer to
Sender for post-processing. Sender marks its buffer as avail-
able after it completes the post-processing. The framework
is similar with our previously built real-time SRTP reverse
proxy [57]. With this technique, the overhead of data trans-
ferring between pipeline stages is significantly mitigated.

7.2 Memory management

Slab memory management Mega-KV uses slab allocation.
The location ID of an item, which is 32 bits, is used in the
hash table to reference where the item is located in the main
memory. Through the slab data structure, a mapping is made
between the location ID and the corresponding item, where
the highest bits in the location ID are used to indicate which
slab it belongs to, and the rest of the bits stand for the offset.

CLOCK eviction Each slab adopts a bitmap-based
CLOCK eviction mechanism where the item offset in a
bitmap is the samewith its offset in the slab. Awalker pointer
traverses the bitmap and performs the CLOCK algorithm for
eviction. By tightly associating location IDwith the slab and
bitmap data structures, both locating an item and updating
the CLOCK bitmap can be performed with extremely low
overhead.

If there is a conflict when inserting an item in the hash
table, the conflicting location ID is replacedwith the new one
(Sect. 4.2), and the conflicting item stored in main memory
should be evicted for memory reuse. With the CLOCK evic-
tion mechanism, the conflicting items in the main memory
will be evicted after it is not accessed for a period. Therefore,
no further actions need to be performed on the conflicting
items. This alsoworks for the items that are randomly evicted
when a maximum number of displacements are reached in
cuckoo hash insertion.

Batched lock With a shared memory design among all
threads, synchronization is needed formemory allocation and
eviction. Since acquiring a lock in the critical path of query
processing has a huge impact on the overall performance,

batched allocation and eviction are adopted to mitigate its
overhead. Each allocation or eviction will return a memory
chunk, containing a list of fixed-size items. Correspondingly,
each Receiver thread maintains a local slab list for storing
the allocated and evicted items. By amortizing the lock over-
head across hundreds of items, the performance of memory
management subsystem is dramatically improved.

7.3 APIs: get and getk

The same as Memcached, Mega-KV has two APIs for GET:
get and getk. When a get query is received, Mega-KV is
responsible for making sure that the value sent to the client
matches the key. Therefore, before sending a found value
to clients, its key stored in the main memory is compared
to confirm the match. If the keys are the same, the value is
sent to the client, or NOT_FOUND is sent to notify that the
key-value item is not stored in Mega-KV.

A getk query asks a key-value store to send the key with
the value to the client, where the client is capable ofmatching
the keywith its value. Therefore,Mega-KVdoes not compare
the keys to confirm the match and requires its client to do the
job. Our design choice is mainly based on two factors: (1)
the false positive rate/conflict rate is very low, and (2) the key
comparison cost is comparatively high. Therefore, avoiding
the key comparison operation for each query will lead to a
higher performance.

7.4 Optimistic concurrent accesses

To avoid adopting locks in the critical path of query pro-
cessing, the following optimistic concurrent accesses mech-
anisms are applied in Mega-KV.

Eviction An item cannot be evicted under the following
two situations. First, an free slab item that has not been allo-
cated should not be evicted. Second, if an item is deleted and
recycled to a free list, it should not be evicted. To handle the
two situations, we assign a status tag to each item. Items in
the free lists are marked as free, and the allocated slab items
are marked as using. The eviction process checks the item’s
status and will only evict items with a status tag of using.

Reading versus writing An item may be evicted when
other threads are reading the value. Under such a scenario,
the thread checks the status tag of the item after finishing
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reading its value. If the status tag is not using any more, the
item has already been evicted. Since the value read may be
wrong, a NOT_FOUND response will be sent to the client.

Buffer swapping Receiver does not know when Sched-
uler swaps its buffer. Therefore, a query may not be success-
fully batched in the buffer if the buffer is swapped during the
batching process. To address this issue without using locks,
we record the buffer IDbefore a query is added into the buffer,
and check if the buffer has been swapped after the insertion.
If the buffer has been swapped during the process, Receiver
is not sure whether the query has been successfully inserted,
and the query is added into the new buffer again.

For Search operation, if the buffer has been swapped, the
total number of queries in the buffer is not increased so that
the new query, whether or not it has been added into the
buffer, will not be processed by the Sender . For Insert oper-
ation, the object can be inserted twice, as the latter one will
overwrite the former one. Therefore, the correctness will not
be affected, and so does the Delete operation.

8 Experiments

In this section, we evaluate the performance and latency of
Mega-KV under a variety of workloads and configurations.

8.1 Experimental methodology

Hardware We conduct the experiments on a cluster with
four CPU–GPU servers as Mega-KV nodes and four CPU
servers as clients. Each Mega-KV server is equipped with
two Intel Xeon E5-2650v2 octa-core processors running at
2.6GHz.Each processor has an integratedmemory controller
installed with 8×8 GB 1600MHz DDR3 memory and sup-
ports a maximum of 59.7 GB/s memory bandwidth. Each
socket is installed with a NVIDIA Tesla K40c GPU. Tesla
K40c has 15 streaming multiprocessors and a total of 2880
cores. The device memory on each GPU is 12 GB GDDR5,
and the maximum data transfer rates between main mem-
ory and device memory are 10.3 GB/s (host to device) and
10.3 GB/s (device to host). The operating system is 64-bit
Ubuntu Server 14.04 with Linux kernel version 3.13.0-35.
Each socket is installedwith an IntelXL710 dual port 40GbE
card, and the open-source DPDK [2] is used as the driver for
high-speed I/O.

In the time we buy the server, the price of the Intel Xeon
E5-2650 v2 CPU is $1162. We have evaluated Mega-KV
with the NVIDIA GTX 780 GPUs ($500) in our previous
work [58]. As the consumer-class GTX GPUs do not sup-
port NVML library to adjust the GPU frequency, we use the
server-class NVIDIA Tesla K40c to enable our energy man-
agement scheme. The price of NVIDIA Tesla K40c GPU
is $2150 when we bought it. In the following experiments,

we will report the performance evaluated with the NVIDIA
Tesla K40c GPU.

Workloads We use four data sets in the evaluation: (a) 8-
byte key and 8-byte value; (b) 16-byte key and 64-byte value;
(c) 32-byte key and 512-byte value; and (d) 128-byte key and
1024-byte value. In the following experiments, workload a
is evaluated by feeding queries via network. To allow a high
query speed via network transmission, clients batch requests
and Mega-KV batches responses in an Ethernet frame as
much as possible.

Both uniform and skewed workloads are used in the eval-
uation. The uniform workload uses the same key popularity
for all queries. The key popularity in the skewed workload
follows a Zipf distribution of skewness 0.99, which is the
same with YCSB workload [10]. Our clients use approxima-
tion Zipf distribution generation described in [17] for fast
workload generation.

Cluster configurationWeform the eight servers as a clus-
ter to evaluate the throughput of Mega-KV as a distributed
system. Since Mega-KV can support very high throughput,
supporting the network traffic between clients and IMKV
nodes needs a switch supporting hundreds of gigabits traffic,
which is prohibitively high cost. We cannot afford such high
cost switches as in major data centers. Instead, we use half
of the servers to simulate the generation of traffic from the
switch and the other half of the servers serving the requests.
We simulate the environment with the following method.
In the evaluation of each workload, we generate 10-billion
key-value queries and partition them into four parts with
consistent hashing. In this way, the queries stored in each par-
tition are to be sent to the correspondingMega-KV node. We
store the partitions on the four clients and connect the clients
to their corresponding Mega-KV nodes to feed the queries.

For all the workloads, the working set size of each Mega-
KV node is 64 GB, and a 2-GB GPU hash table is used to
index the key-value objects on each GPU. To perform GET
operations, the key-value objects in the Mega-KV nodes are
preloaded in the evaluation. The hit ratio of GET queries
is higher than 99.9%. The experiments for small key-value
objects are performedwith network processing,whereMega-
KV receives requests from clients and sends back responses
through the NIC ports. For the large key-value objects work-
loads where the network becomes the bottleneck in the
evaluation, key-value objects are stored locally to evaluate
the performance of Mega-KV.

Single node configuration in Mega-KV For the octa-
core CPU on each socket, one physical core is assigned with
a Scheduler thread. Each Scheduler controls all the other
threads on the socket and launches kernels to its local GPU.
Since Receiver is compute intensive while Sender is mem-
ory intensive, we enable hyper-threading in the machine and
assign each of the left seven physical cores with oneReceiver
and one Sender thread, forming a pipeline on the same physi-
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cal core. Therefore, there are seven pipelines in our systemon
each socket. The AES instruction from the SSE instruction
set is used in calculating key signature and hash value.

Data sharding is adopted for the NUMA system. By par-
titioning data across the sockets, each GPU will only index
the key-value items located in its local socket. This avoids
remote memory accesses, which are considered to be a big
overhead. In this way, Mega-KV achieves good scalability
with multiple CPUs and GPUs.

APIs: get and getk The same as Memcached, Mega-KV
supports two APIs for GET: get and getk. When a get query
is received, Mega-KV is responsible for making sure that the
value sent to the client matches the key. Therefore, before
sending a found value to clients, its key stored in the main
memory is compared to confirm thematch. A getk query asks
a key-value store to send the key with the value to the client,
and the client is implemented to be capable of matching the
keywith its value. Therefore,Mega-KVdoes not compare the
keys to confirm the match and requires its client to do the job.

Comparison with a CPU-based IMKV system We take
the open-source in-memory key-value storeMICA[36] as the
state-of-the-art system for comparison. MICA is one of the
fastest CPU-based implementations. MICA partitions key-
value objects among multiple cores and uses client-assisted
information to directly directing queries to their correspond-
ing cores with a NIC feature called Receive-Side Scaling
(RSS).MICA adopts a circular log to store key-value objects.
Its index data structure is a hash table where items are also
compressed into fixed length and stored sequentially, where
each hash item includes a tag and the key-value object offset
in the log. The tag is like the signature in Mega-KV, which is
used for reducing extra memory accesses in the index opera-
tions. Moreover, it aggressively adopts prefetch instructions
to prefetch data such as the key-value objects. According to
MICA’s experiment configuration, the hyper-threading is dis-
abled. We have tried to enable hyper-threading in MICA, but
the performance drops, as also reported in [35]. We modify
the microbench in MICA for the evaluation, which includes
loading different size key-value items from local memory
and writing values to packet buffers. All the experiments are
performed in its EREW mode with MICA’s lossy index data
structure. On the same hardware platformwithMega-KV, the
performance of MICA is measured and shown in Sect. 2.1.2.

8.2 Theoretical maximum system throughput of a single
node

As discussed in Sect. 5, the system throughput V is closely
related to the scheduling cycle C . Since our system needs
to guarantee that the GPU processing time for each batch is
less than the scheduling cycle C , the theoretical maximum
throughput should be known in advance before the evalua-
tion.

Fig. 12 Theoretical maximum speed for one NVIDIA Tesla K40c
GPU

The major mission of the periodical scheduling policy is
to satisfy the inequation (1) TS + Tmax ≤ 2 · C . With the
delayed scheduling, we get

V ≤ 2 · C − 2 · bS − bI
2 · kS · pS · C + 2 · kI · (1 − pS) · C (4)

where C > (2 · bS + bI)/2. Without the delayed scheduling,
V and C form the relation 0 ≥ V ≥ (C − bS − bI)/(kS · pS ·
C + kI · (1− pS) ·C), where C > bS + bI. For the 95% GET
workload, we get C > 94.4 with the delayed scheduling and
C > 166.6 without the delayed scheduling.

With the same parameters kS, bS, kI, and bI listed in
Sect. 5.2, Fig. 12 demonstrates the relation between the
allowedmaximum throughput and the scheduling cycleC for
the workload with 95% GET and 5% SET. The theoretical
maximum throughput of a single Mega-KV node increases
with the increasing of the scheduling cycle and will reach an
upper bound with a large enough scheduling cycle, which is
the maximum GPU throughput. Compared with scheduling
all operations with the same scheduling cycle, system perfor-
mance is improved by 17.8–68.4% with delayed Insert and
Delete scheduling. It is worth noting that for C ≤ 166.6µs,
the system cannot work without the delayed scheduling. This
is because the total GPU execution and data transfer over-
head for Search, Insert, and Delete kernels is higher than
the scheduling cycle when the batch size is small. With the
delayed scheduling, the scheduling cycle C is required to be
greater than 94.4µs.

8.3 Throughput of a single Mega-KV node

Figure 13 compares the throughput of Mega-KV and MICA
in a single node for all the workloads. For comparison, we
measure the performance of CPU-based MICA as the base-
line.Mega-KVoutperformsMICA for all theworkloads. The
throughput of Mega-KV is 1.3–2.9 times as high as MICA
for the 95% GET 5% SET workloads and is 1.3–2.6 times as
high as MICA for the 100% GET workloads. The through-
put improvement in Mega-KV over MICA is achieved for
two main reasons. First, the random memory accesses in
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Fig. 13 Single node throughput comparison between Mega-KV and MICA

Table 3 Single node loading
throughput of Mega-KV (100%
SET)

Workload 8B k, 8B v 16B k, 64B v 32B k, 512B v 128B k, 1024B v

Thr.(MOPS) 171 149 55 32

index operations are offloaded to GPUs. Second, network
processing and memory accessing are effectively overlapped
with hyper-threading on each CPU core, which significantly
improves the CPU utilization.

As depicted in the figure, the throughput improvement
achieved by Mega-KV for skewed workloads is higher than
that of the uniform workloads. This is because Mega-KV
adopts a shared memory design where each CPU core is able
to process queries for the entire key-value space cached in
it. In contrast, MICA partitions the key-value space among
CPU cores, where each core can only access its own parti-
tion exclusively. As a result, MICA’s system design suffers
load imbalance with the skewed workloads, and Mega-KV
achieves higher throughput improvement by overcoming this
drawback.

Table 3 shows the loading performance of Mega-KV on
a single node, i.e., 100% SET queries. We can see from the
table that the performance is high and varies with different
key-value sizes. The hash table operations in the GPUs are
not the bottleneck of the system. Instead, for write-dominant
workloads, the main overhead is from the LRU eviction and
writing key-value objects in the preprocessing stage. There-
fore, the performance is highly relevant with the key-value
size.

Without the GPUs, the price of the hardware in the eval-
uation is $4837 when the server is purchased in 2014. With
the consumer-class NVIDIA GTX 780 GPUs ($500 each)
used in our VLDB’15 paper [58], the price–performance
ratio of Mega-KV is 7.7–198.3% higher than that of MICA.
The NVIDIA Tesla K40c GPUs are used here as it sup-
ports the NVIDIAManagement Library (NVML) for energy
management. The GPUs have compatible performance, but
the Tesla K40c GPU is designed to be small and without
active cooling system (fan). Moreover, Tesla GPUs have
many advanced features including ECC (error checking and
correction) memory and setting core/memory clocks. Cor-

respondingly, the price of the GPU is higher ($2150 when
we bought it). With Tesla K40c GPUs, the price of hard-
ware for Mega-KV is 88.9% higher than that of MICA. The
price–performance ratio ofMega-KVwithTeslaK40c is 0.3–
52.2% higher than that of MICA with getk queries for all
workloads besides the 16B key workload with uniform 95%
GET queries. With get queries, the price–performance ratio
of Mega-KV is higher thanMICA for 32B key and 128B key
workloads (up to 39.5%) and is 10.0–30.7% lower for 8B
key and 16B key workloads.

8.4 Throughput of the Mega-KV cluster

Figure 14 shows the throughput of Mega-KV cluster for both
getk query and get query. As shown in the figure, the through-
put for small key-value sizes workloads is higher than that
for large key-value sizes, and Mega-KV achieves the high-
est throughput for the data set with 8-byte key and 8-byte
value.With the getk query,Mega-KV achieves themaximum
throughput of 605 MOPS for the 95% GET 5% SET work-
load and 623 MOPS for the 100% GET workload. With the
get query, the throughput of Mega-KV is 480 MOPS (95%
GET and 5% SET) and 496 MOPS (100% GET). In a real-
world scenario where a mix of get and getk queries are sent
by clients, the throughput of Mega-KV should lie between
get and getk’s throughput.

In the pipeline of Mega-KV, we find that the through-
put of GPUs is much higher than that of CPUs. After the
expensive index operations are offloaded to GPUs, the mem-
ory accesses to key-value objects become the major factor
that limits the system performance. As a result, the key
comparison operation involved in the get query processing
degrades system throughput by 20–30% with the small size
key-value workload. This is because adding extra overhead
(key comparison) to the bottleneck pipeline stage would cor-
respondingly degrade the overall throughput. With a larger
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Fig. 14 Throughput of the Mega-KV cluster

key-value size, however, the overhead of accessing the large
values in thememory becomes dramatically higher, and thus,
the ratio of key comparison cost is much smaller and even
neglectable.

For the uniform workload, the throughput is 0.8–24.4%
lower than the skewed workloads. The main reasons are
twofold. First, our system applies a shared memory design
within each NUMA node, and queries for a hot key
can be processed by multiple cores simultaneously. Thus,
the skewed workloads will not result in an imbalanced
load among the CPU cores. Second, as reading the key-
value objects in memory in the CPU is the major bot-
tleneck of Mega-KV, the most frequently visited key-
value objects in skewed workloads may be cached in the
CPU cache. Consequently, a higher throughput is achieved
by alleviating the CPU overhead in accessing the mem-
ory.

8.5 Scalability

In production systems, there are generally a set of IMKV
nodes to increase the caching capacity and the overall
throughput tomeet the demandof production systems.There-
fore, scalability is critical for IMKV systems. We evaluate
the scalability of the Mega-KV cluster in Fig. 15 with
getk queries. We use the upper end of error bars to show
the throughput when achieving linear scalability. Mega-KV
cluster achieves near-linear scalability for workloads with
uniform key distributions. This is because key-value stores
have the nature to scale out, where the main reasons are
twofold. (i) Each IMKV node stores a partition of the key-
value store objects in the system separately. (ii) There is little
communication and collaboration between different nodes;
thus, they work independently. With consistent hashing [29],
clients directly send queries to the corresponding IMKV
node. Therefore, for workloads with uniform key distribu-
tion, key-value store systems are easy to achieve near-linear
scalability.

For workloads with skewed key distribution, the overall
throughput can be severely influencedby the imbalanced load

(a) (b)

(d)(c)

Fig. 15 Scalability of the Mega-KV cluster

among nodes. This is a common issue for CPU-based IMKV
systems [34], such as Memcached [42]. Unlike CPU-based
IMKVs, the skewedworkloads lead to onlyminor load imbal-
ance in Mega-KV. As shown in the figure, the throughput of
Mega-KV is only around 7% lower than the ideal throughput.
The reasons are threefold. First, instead of partitioning key-
value objects among multiple CPU cores, Mega-KV adopts
a shared memory design in each node. With the RSS hard-
ware NIC feature, queries are distributed to CPU cores based
by hashing the packet header 5 tuples. As hot keys are gen-
erally from different clients, hot keys exert little impact on
the load of each CPU core. Second, in the GPU kernel, GPU
cores are evenly assigned with the same number of index
operations. Therefore, hot keys would also not influence the
throughput of the GPU. Third, the throughput of a Mega-KV
node is hundreds of times higher than that of a CPU-based
Memcached node. The number of key-value objects cached
by a Mega-KV node can be orders of magnitudes more than
a Memcached node. Therefore, there is a larger possibility
that each Mega-KV node contains similar number of hot and
not-hot keys.
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(a) (b)

Fig. 16 Throughput of the Mega-KV cluster with different scheduling
cycles (8B key and 8B value)

8.6 System throughput with different scheduling cycles

With our periodical scheduling policy in Sect. 5, we are able
to effectively control the scheduling cycle in Mega-KV to
achieve a controllable latency. Because of the nature of batch
processing in GPUs, a high throughput will compromise the
system latency. The reason is that although a larger batch
will lead to a higher throughput for more efficiently utilizing
the GPU and the PCIe bus, batching more queries gener-
ally demands more time. In this subsection, we evaluate the
maximum throughput that can be achieved inMega-KVwith
different scheduling cycles.

Figure 16 demonstrates the throughput of Mega-KV with
scheduling cycles of 120, 140, 160µs, and higher ones.
The workloads adopted in the evaluation are with 8-byte
key and 8-byte value. For 95% GET 5% SET workloads,
the throughput of Mega-KV cluster increases by increas-
ing the scheduling cycle. Under 160µs, the throughput of
the GPU is lower than that of the CPU. In the figure, the
overall system throughput with C = 120 and C = 140
also denotes the throughput of the GPU. Therefore, increas-
ing the scheduling cycle is capable of achieving a higher
overall system throughput by improving the GPU through-
put. The throughput of the CPU, however, is constant with
different scheduling cycles, and the throughput of the CPU
and the GPU becomes the same with the 160µs scheduling
cycle. As a result, the system throughput stops to increase
with higher scheduling cycles as the CPU has become the
bottleneck in the system. Therefore, the system through-
put with C = 160+ also shows the throughput of the
CPU.

For the 100%GETworkloads, however, the throughput of
the GPU is much higher than that for 95% GET workloads,
as it does not have to perform the small number of Insert and
Delete operations. And the throughput of the GPU is higher
than of the CPU even with a scheduling cycle of 120µs.
Therefore, the system throughput is limited by the CPU and
does not vary with the scheduling cycle.

Fig. 17 System latency (95% GET 5% SET, 8B key and 8B value,
skewed key distribution)

8.7 Response time distribution

Weevaluate systemprocessing latency bymeasuring the time
elapsed from sending a getk query to receiving its response.
The client keeps sending queries with a 95% GET and 5%
SET workload, and the client IP address is increased by 1
for each packet. By sample logging the IP addresses and the
sending/receiving time, the round trip latency can be calcu-
lated as the time elapsed between the queries and responses
with matched IP addresses.

The scheduling cycle has an impact on the both the sys-
temperformance and the processing latency. Figure 17 shows
the CDF (Cumulative Distribution Function) of query round
trip latency with different scheduling cycles. We fix the
scheduling cycle C as 120, 160, 200, 240, 280, and 320µs,
respectively and use the allowed maximum input speed for
each scheduling cycle. As can be seen from the figure that
the latency of query processing in Mega-KV can be adjusted
with the scheduling cycle. With a fixed scheduling cycle, the
round trip latency of query varies in a range. For instance,
the latency ranges from 300 microseconds to 700µs with
the scheduling cycle set as 200µs. This is because the
queries arrive in different periods in the batching. In the
evaluation, the round trip latency of queries is effectively
controlled within 3 · C , which demonstrates the effective-
ness of our GPU scheduling policy in achieving predictable
latency.

Figure 17 shows the latency of Mega-KV with 95% GET
5% SET workloads. We have also measured the latency of
100% GET workloads, which is almost the same with that
of the 95% GET workloads. Batching is the main factor that
affects the overall round trip latency. In all the three stages,
each query needs to wait for the previous queries in the same
batch to complete processing. In our evaluation, different
workloads only lead to atmost 20µs difference in the average
latency.
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Fig. 18 Energy efficiency of the Mega-KV cluster with the energy-
saving technique

The latency of Mega-KV is comparatively higher than
that of a fast CPU-based implementation. According to the
input query speed, the latency of CPU-based implementa-
tion MICA ranges from 24 to 52µs. The Mega-KV cluster
achieves a maximum throughput of 639 MOPS for the 95%
GET and 5% SET workload with C = 160 microseconds.
With this configuration, the average and 95th percentile
latencies of Mega-KV are about 280 and 410µs (Fig. 17).
However, in Facebook, the average and 95th percentile laten-
cies of Web servers in production getting keys are about
300 and 1200µs, respectively [42]. Therefore, although the
latency of Mega-KV is higher than that of a fast CPU-based
implementation, it is still capable of meeting the require-
ments of the current data processing systems.

8.8 Energy efficiency

In this subsection, we first measure the energy efficiency of
our Mega-KV cluster. Then, we compare it with two recent
IMKV systems that are designed for high energy efficiency.
Following the previous studies [24], we use the number of
queries processed per Watt as the metric for the energy effi-
ciency in the comparison.

8.8.1 Energy efficiency of Mega-KV cluster

Wemeasure the power consumption of our cluster to eval-
uate its energy efficiency. As shown in Fig. 18, Mega-KV
achieves an energy efficiency of up to 299 KOPS/W for the
small key-value data set. For the large key-value data sets,
the CPU spends more time in reading and processing key-
value objects. Therefore, the energy efficiency of Mega-KV
ranges from 59 KOPS/W to 76 KOPS/W for the data sets
with 128-byte key and 1024-byte value.

We show the improvement in energy efficiency brought by
our energy-saving technique in Fig. 19. Overall, our energy-
saving technique (introduced in Sect. 6) helps to save 10.2–
31.1% of the total power consumption. The improvement
decreases when the key-value size gets larger, but increases
for the workloads with 128-byte key. For all workloads with
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Fig. 19 Energy efficiency improvement with the energy-saving tech-
nique

key-value data sets a, b, and c, the memory frequency is set
to be 3003 MHz and the core frequency is set as 666 MHz,
and the GPU is able to meet all the throughput requirement
for these workloads. Without the energy-saving scheme, the
power consumption of the Tesla K40c GPU when executing
the kernels of index operations can be up to 150 Watts. With
the proposed scheme, power consumption drops to 135Watts
while preserving the throughput. The improvement in energy
efficiency for large key-value data sets is less than that for
small key-value data sets. The reasons are twofold. First, the
throughput of Mega-KV in processing large key-value data
sets is around three times lower. Second, the reduced power
consumption for the workloads is almost the same (around
120 Watts for the cluster).

For the 128-byte key and 1024-byte value data set, GPU’s
memory frequency and core frequency are both set to be 324
MHz by the energy-saving scheme. With this frequency set-
ting, the throughput of the index operations on oneGPU is 22
MOPS,which is enough formatching theCPU throughput for
theworkloads. The improved energy efficiency thus becomes
higher, as the energy consumption of a GPU is only 58Watts.
In summary, the energy-saving technique chooses two core
frequency settings for the GPUs, i.e., 666 and 324MHz,
which saves around 240 W and 736 W power in total for the
Mega-KV cluster, respectively. Most importantly, the over-
all system throughput is not compromised under the energy
management scheme.

8.8.2 Comparison with CPU-based IMKV systems

Figure 20 compares the energy efficiency of MICA and
Mega-KV. According to the workloads, the energy efficiency
of Mega-KV is 0.17–57.87% higher than that of MICA.
This has shown the effectiveness and efficiency of our sys-
tem design on heterogeneous hardware. The main reasons
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Fig. 20 Energy efficiency comparison with MICA

thatMega-KV achieves higher energy efficiency are twofold.
First, although GPUs have higher power consumption than
CPUs, a GPU contains thousands of cores and the power
consumption of each core is much lower. For instance, the
NVIDIA Tesla K40c GPU used by Mega-KV contains 2880
cores with a maximum power consumption of 215 W; there-
fore, each core only consumes at most 0.075 W. With our
proposed energy-saving technique, a GPU core consumes
0.054 W for workloads with data sets a, b, and c. For work-
loads with data set d, the power consumption of a GPU core
is further reduced to 0.011 W. Second, we carefully parti-
tion the query processing among CPUs and GPUs, where
both CPUs and GPUs are working on tasks they are good at.
This significantly enhances the overall system efficiency as
the index operations handled by GPUs have sufficient par-
allelism, while the rest operations that have fewer random
memory accesses and more branches in the execution path
are fit for CPU processing.

9 Related work

GPU-based key-value store Concurrent with our previous
work [58], MemcachedGPU [24] also uses GPUs to accel-
erate in-memory key-value stores. In contrast to Mega-KV,
MemcachedGPU adopts the GPUDirect feature to directly
DMA transfer packets to the GPU memory. Correspond-
ingly, MemcachedGPU performs the network processing in
the GPU. Due to the limitedGPUmemory space, bothMega-
KV and MemcachedGPU store the key-value objects in host
memory; thus, reading the objects is performed by CPUs.

The coupled CPU–GPU architecture integrates a CPU
and a GPU in the same chip, which are able to share
the host memory with recent hardware advancement. Dif-
ferent with discrete CPU–GPU architectures, the coupled
architectures not only eliminate the overhead of trans-

ferring data between the CPU and the GPU, but also
reduce the synchronization overhead significantly. By uti-
lizing the architecture, DIDO [56] dynamically changes its
pipeline partition between the CPU and the GPU according
to the workload. DIDO significantly improves the overall
IMKV system efficiency on coupled CPU–GPU architec-
tures. Hetherington et al. [23] port the existing Memcached
implementation to an OpenCL version, but the implemen-
tation does not explore APUs’ hardware characteristics for
higher performance. As the compute capability of coupled
CPU–GPU architectures is still much weaker than dis-
crete architectures, the throughput of IMKVs on coupled
architectures is generally lower than that on discrete archi-
tectures.

CPU-based key-value store CPU-based in-memory key-
value stores [14,39–41] have been focusing on designing
efficient index data structure and optimizing network pro-
cessing to achieve higher performance. MICA [36] has
compared itself with RAMCloud [43], MemC3 [14], Mem-
cached [3], and Masstree [39] in its paper and shown an at
least four times higher throughput than the next best system.
That is why we choose MICA for performance comparison.
Systems such as Chronos [28], Pilaf [41], and RAMCloud
focus on low latency processing, which achieve latencies of
less than 100µs. Specifically, by taking advantage of Infini-
band, RAMCloud and Pilaf achieve average latencies of as
low as 5 and 11.3µs, respectively.

There have been previous studies that improve the data
locality in index operations by batching requests [59]. How-
ever, they are not applicable to CPU-based key-value stores
for the following main reasons. First, as batching itself may
add additional overhead to degrade the overall performance,
the system [59] needs to wait for seconds to batch large
number of operations in improving the overall performance.
Consequently, the latency of Search operations can be higher
than 3 seconds [59]. As in-memory key-value stores demand
fast response, the processing latency of key-value queries
should be controlled within 1000 microseconds. Therefore,
the approach of batching request is unable tomeet the latency
requirement of IMKVs. Second, the technique is designed
for trees, while in-memory key-value store systems gener-
ally adopt hash tables as their index data structures. This
is because frequent Insert and Delete operations in a tree
will lead to the imbalance of the tree, while re-balancing
the tree has an extremely high cost. This is unacceptable
for key-value store systems where latency-sensitive queries
are arriving continuously. Moreover, the time complexity
of a lookup in trees is O(log n), where n is the number
of keys in the IMKV, instead of O(1) in hash tables. This
makes trees unsuitable for read-intensive workloads in most
in-memory key-value store systems. Third, the technique is
hard to be applied to hash tables. Trees are different from
hash tables, where different queries can have common paths
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on the top levels of the tree. Instead, the access pattern to
hash tables is random. Considering that the object indexes
are distributed in different parts of a hash table that con-
tains millions of items, requests are unlikely to be effectively
batched to improve the data locality. Therefore, there is little
chance to achieve performance gain from batching hash table
operations.

Distributed key-value store system There are lots of
research conducted on distributed key-value store systems,
including providing new functionality and improving the dis-
tributed software architecture. Comet [16] allows each key-
value object to take dynamic, application-specific actions
to customize its behavior. Its application handlers are writ-
ten in a sandboxed extension language, providing properties
of safety and isolation. Besides retrieving key-value objects
with the primary keys, HyperDex [13] is a distributed key-
value store that provides a search primitive to enable queries
on secondary attributes. RAMCloud [43] is a distributed in-
memory key-value store that keeps all the data in DRAM,
disk relegated to a backup/archival role. Besides being used
as a cache, RAMCloud offers a high level of durability and
available via data replication.

Energy efficient key-value store Key-value stores
include FAWN [6], TSSP [37], Mercury [18], and Tilera
and FPGA-based Memcached [8,9,30] are built to be energy
efficient. These designs address the inefficiency of general-
purpose CPU in key-value store implementation and propose
to use specific and low-power hardware. Mega-KV achieves
high energy efficiencywith general-purposeCPUs andGPUs
for two main reasons. First, the massive number of cores and
high memory bandwidth of GPUs make it a better candi-
date for key-value query processing. Second, our frequency
scaling technique helps Mega-KV to further reduce energy
consumption.

Energy efficiency of GPUs Lots of research are con-
ducted on improving the energy efficiency of GPUs, includ-
ing power models and energy management frameworks.
GPUWattch [32] proposes a configurable power model to
enable energy optimizations in GPUs, while Hong et al. [25]
proposes an integrated power and performance prediction
model for a GPU architecture to predict the optimal number
of active processors for an application. Lee et al. [31] demon-
strate that, under a power constraint, reducing the frequency
of the GPU cores allows the GPU to utilize more cores.
The technique is able to improve the throughput of appli-
cations with the same energy consumption. GreenGPU [38]
develops a two-tier energy management framework for
CPU–GPU heterogeneous systems. It first splits and dis-
tributes workloads among the CPU and the GPU; then,
a lightweight machine learning algorithm is developed to
adjust the frequencies of the GPU. GreenGPU is a general
framework for applications with run-to-completion model,
but Mega-KV adopts a pipelined CPU–GPU model where

the workload for the GPU is fixed to performing index oper-
ations. Another our work DIDO [56] builds an in-memory
key-value store system on coupled CPU–GPU architecture,
which shows improved energy efficiency over discrete archi-
tectures.

Themethod of adjusting both the voltage and frequency in
the paper of Price et al. [47] is an interesting approach. As the
method needs to modify the GPU firmware to set the voltage,
it cannot be applied at runtime. With dynamically changing
workloads, the goal of our energy management scheme is
to adjust the energy consumption accordingly at runtime.
Therefore, this existing approach cannot be applied in key-
value store systems.

GPU-based database system There are already a set
of research papers on adopting GPUs in database sys-
tems [20–22,27,45,46,52–55]. The techniqueswedeveloped
in Mega-KV can also be utilized to accelerate the relational
database query processing. For example, cuckoo hash table is
adopted in implementing GPU-based hash join [54]. There-
fore, Mega-KV’s GPU-optimized cuckoo hash table with its
corresponding operations is a good candidate for accelerating
the hash join operation.

This paper extends our previous conference paper [58],
where Mega-KV is implemented and evaluated on a single
node. This paper builds Mega-KV as a distributed sys-
tem and evaluates its scalability, performance, and energy
efficiency in a cluster setting. Our energy management
scheme further enhances the energy efficiency of Mega-
KV. By adjusting the frequencies of the CPU and the
GPU at runtime, Mega-KV effectively reduces its energy
consumption and achieves an efficiency of up to 299
KOPS/W.

10 Conclusion

Having conducted thorough experiments and analyses, we
have identified the bottleneck of IMKV running onmulticore
processors, which is a mismatch between the unique prop-
erties IMKV for increasingly large data processing and the
CPU-based architecture.We have designed and implemented
a distributed IMKV system, Mega-KV, where GPUs serve as
special-purpose devices to address the bottleneck that multi-
core architectures cannot break. Our evaluation results show
that the Mega-KV cluster significantly boosts its through-
put to 623 MOPS with excellent scalability and achieves an
efficiency of up to 299 KOPS/W.
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