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ABSTRACT
GPGPUs are evolving from dedicated accelerators towards
mainstream commodity computing resources. During the
transition, the lack of system management of device memory
space on GPGPUs has become a major hurdle. In existing
GPGPU systems, device memory space is still managed ex-
plicitly by individual applications, which not only increases
the burden of programmers but can also cause application
crashes, hangs, or low performance.

In this paper, we present the design and implementation
of GDM, a fully functional GPGPU device memory man-
ager to address the above problems and unleash the com-
puting power of GPGPUs in general-purpose environments.
To effectively coordinate the device memory usage of dif-
ferent applications, GDM takes control over device memory
allocations and data transfers to and from device memory,
leveraging a buffer allocated in each application’s virtual
memory. GDM utilizes the unique features of GPGPU sys-
tems and relies on several effective optimization techniques
to guarantee the efficient usage of device memory space and
to achieve high performance.

We have evaluated GDM and compared it against state-
of-the-art GPGPU system software on a range of workloads.
The results show that GDM can prevent applications from
crashes, including those induced by device memory leaks,
and improve system performance by up to 43%.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems; D.4.8 [Operating Sys-
tems]: Performance—Memory management
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1. INTRODUCTION
General-purpose GPUs (Graphics Processing Units), a.k.a.

GPGPUs1, are quickly evolving from conventional, dedi-
cated accelerators towards mainstream commodity comput-
ing devices, which is driven by the demands for cost-effective
high performance from new application domains and sup-
ported by GPU hardware and system software advancement
[35, 37, 39, 16]. During the transition, system software plays
an increasingly important role on managing GPUs. Sys-
tem software relieves application developers from explicit
resource management in their programs. It must also coor-
dinate the utilization of GPU resources, ensuring that ap-
plications can make continuous progress and no application
can be deprived of resource usage indefinitely [22, 23].

Recent research and improvements on GPGPU resource
management have mainly focused on supporting GPU ab-
stractions [41], GPU file system [42], and the management of
GPU computing units [30, 26, 31]. These system enhance-
ments improve the usability and performance of GPGPU
computing. However, despite these improvements, with state-
of-the-art GPGPU system software an application still can
easily crash, hang, or lose performance (§2.3). The major
reason behind this problem is the lack of GPU device mem-
ory management at the operating system (OS) level, which
has become a major hurdle of GPGPUs as truly general-
purpose mainstream computing facilities. This paper iden-
tifies these problems and systematically studies the essen-
tiality and design of GPGPU device memory management.

1.1 Problems with Application-Level Device
Memory Management

Device memory is the primary onboard DRAM storage for
the computation performed on GPU. Unlike system mem-
ory where the OS controls space allocation and reclamation,
GPU device memory is still directly controlled by individual
applications in current systems, which complicates GPGPU
application design. In large applications, managing the us-
age of device memory space is a heavy burden for program-
mers. There have been numerous reports on application and
system crashes [1, 2, 3, 4, 5, 6] caused by application’s failure
to manage device memory correctly.

Managing device memory space at application level be-
comes even more difficult when there are multiple applica-

1We use GPU and GPGPU interchangeably, with the latter
emphasizing more on general-purpose computing.



tions or application components (e.g., multiple worker threads
in a server) with conflicting demands for device memory.
Due to the lack of an arbitrator to coordinate the conflicts,
applications can crash or hang on unexpected shortage of
device memory space. Even if an application may manage
to survive by using smaller device memory space or shifting
computation back to the CPU, its performance can suffer
dramatically.

For instance, in Matlab, each worker thread can offload
its computation tasks to GPUs for acceleration. However,
if their working sets cannot totally fit into the device mem-
ory, some workers can easily fail or encounter severe perfor-
mance degradation [1]. Device memory conflicts will become
increasingly common, when GPGPUs are more prevalently
adopted in large-scale applications (e.g., Matlab, AutoCAD,
relational databases, etc.), or in the cloud where resources
are shared by virtual machines [26].

We will discuss the problems with existing GPU system
design in more details in §2.3 and illustrate their conse-
quences in §6.

1.2 GDM: OS Device Memory Management
As a critical system resource, device memory space must

be managed by the OS to effectively coordinate conflict-
ing demands and to guarantee efficiency. In this paper, we
present the design and implementation of GDM(GPGPU
Device-memory Manager) in the OS. With experiments, we
show that such a device memory management component in
the OS is indispensable for unleashing the high computing
power of GPUs in general-purpose systems.

Without requiring modifications to existing APIs, GDM
transparently takes control over device memory allocations
and data transfers to and from device memory. Instead of
letting applications directly allocate device memory space
and exchange data with GPUs, GDM sits between applica-
tions and GPU devices, acting as an agent and coordinator
for carrying out these operations, leveraging a staging area
created in each application’s virtual memory space. It moni-
tors the utilization of device memory space allocated to each
application, and dynamically reclaims under-utilized space
by swapping out the content to staging areas. In this way,
GDM controls and coordinates the actual device memory
consumption of different applications, or different phases of
a single application, so as to achieve system-wide benefits
of performance and service quality. With support of GDM,
even multiple applications with conflicting memory require-
ments can efficiently share the same GPU and make progress
concurrently. As we will demonstrate in §6, GDM also en-
hances the capability of GPGPU systems to tolerate device
memory leaks and defend against malicious device memory
usage.

The above benefits, however, do not come without any
overhead, which is mainly from the extra data movements in-
curred by GDM management. Several unique characteristics
of the GPGPU system make it especially challenging to re-
duce the overhead. Firstly, GPGPU applications are usually
data-intensive. Thus, GDM must handle large sets of data
that potentially incur high cost. Secondly, the data-driven
nature of GPGPU computing involves synchronizations at
various stages, which hinder the overlapping between data
transfer and the computation over the data. This makes the
performance of GPGPU applications sensitive to the delay
caused by data movement. Finally, GPU devices may lack
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Figure 1: GPGPU system organization.

necessary hardware support for efficiently minimizing the
overhead, which makes the solution even more challenging.
To address these challenges, we have developed a series of
optimization techniques in GDM, such as object-level ac-
cess pattern inference, hashing-based dirty block detection,
and cost-aware data replacement policy. These techniques
can effectively reduce unnecessary data movement to achieve
high performance.

1.3 Contributions
This paper systematically studies the essentiality and de-

sign of GPGPU device memory management. It makes the
following main contributions: (1) We have identified and an-
alyzed the serious problems caused by the lack of OS man-
agement of device memory space on existing GPGPU sys-
tems. (2) We have explored the design space of managing
device memory at system level. (3) We have implemented
a prototype of GDM in an open-source GPGPU driver and
on commonly used hardware to best utilize device mem-
ory resource for general-purpose systems, including a set of
optimization techniques and principles that are crucial to
the performance of device memory management for GPUs.
(4) We have conducted extensive performance evaluation on
GPU systems with insights. The experiments show that
GDM can effectively prevent applications from crashing or
stalling due to unexpected shortage of free device memory
space. The experiments also show that the optimization
techniques can increase system throughput by up to 46%.

2. DEMAND FOR SYSTEM-LEVEL
DEVICE MEMORY MANAGEMENT

To deliver high performance, GPGPU computing not only
relies on vectorized GPU processors to process data in par-
allel but also requires high-speed memory to guarantee fast
data accesses. Thus, a common practice is to integrate GPU
processors with device memory on the same GPU board,
which is connected with the system bus to accept data-
parallel tasks. This section introduces the system organiza-
tion, which this paper mainly focuses on, and validates the
indispensability of efficient device memory management.

2.1 GPGPU Computing Architecture
GPUs are suitable for performing data-parallel computa-

tion. They are often used together with the CPUs to form
a hybrid computing system, as shown in Figure 1.

For high performance, a GPU usually has tens of hundreds
of stream processors (SPs). Each SP is a many-lane SIMD
(Single Instruction Multiple Data) engine. To satisfy data
accesses from such a large number of SPs, a wide and fast
memory interface must be employed. The device memory
designed for GPUs is therefore optimized for high bandwidth
and integrated close to the SPs.



Generally, the bandwidth of GPU device memory is sev-
eral times higher than the bandwidth of system memory
accessed by CPUs, which emphasizes more on low latency.
For example, a server-class NVIDIA Tesla K10 GPU pro-
vides over 300 GB/s device memory access. In contrast, the
maximum memory bandwidth of a similar-level Intel Xeon
E5-4650 CPU can only reach about 50 GB/s. Compared
with system memory, the capacity of device memory, how-
ever, is much more limited, due to the pincount and power
constraints suffered by the memory technology (e.g. GDDR)
used for GPUs [33]. For example, a high-end GPU card is
usually equipped with only a few gigabytes of device mem-
ory, while tens of gigabytes of system memory has been com-
mon on a modern server for years.

GPUs are connected to the system bus to accept data-
parallel tasks, which are often called GPGPU kernels (or
kernels for brevity), and the data to be processed. GPGPU
system software is responsible for task scheduling, initiat-
ing data transfers, and handling task exceptions. The op-
erations performed by system software are mostly control-
intensive, and thus can only be executed efficiently on CPUs.

In the paper, we mainly target the mainstream GPGPU
computing architecture described above, in which dedicated
device memory modules are used by GPUs to maximize
throughput. Another GPGPU architecture, represented by
AMD’s APU [7], fuses graphics units and CPU cores on
the same die and lets them share system memory. It can-
not provide the same high computing power as a GPU with
dedicated device memory does. Processors with the fused
architecture are mostly used in mobile and low-end desk-
top systems to handle graphics workload at a low cost. The
performance is bottlenecked by the number of graphics units
that can be integrated on the same CPU chip and by the
narrow system memory bandwidth contended by both CPU
and graphics cores. To alleviate memory bandwidth bottle-
neck, there are proposals to integrate fast memory modules
(e.g. stacked memory [18] or eDRAM [40]) into this archi-
tecture. These memory modules will play an important role
to improve the performance of computation on the graphics
cores. The principles and techniques developed in this paper
can be adapted to manage these memory modules and other
accelerators (e.g., DSP) with similar memory structures as
well.

2.2 Device Memory: A Critical Resource
Device memory provides a high-speed data storage for

GPGPU computing, and must be well managed in order to
achieve high performance. Despite its limited capacity, ap-
plications have high demands for device memory space. On
one hand, as applications become increasingly data-intensive,
the data sets handled by a GPGPU task also grows rapidly,
requiring larger device memory space. On the other hand,
GPGPU applications tend to keep their working sets on the
device memory for future reuses to minimize data transfers.

As an example, when GPUs are used to process database
queries in data warehousing applications, main accelerator
structures such as hash tables have to be loaded into device
memory [45]. These data structures can be very large, es-
pecially for big-data problems [19]. Meanwhile, these data
structures are usually used by different queries repeatedly.
Keeping them in the device memory helps improving appli-
cation performance. The small capacity and the high de-

mands from applications make GPU device memory a criti-
cal but limited system resource.

2.3 Issues with Existing System Designs
Despite the cruciality of device memory it has not been

well managed by the system. In a general-purpose comput-
ing environment, applications are still forced to manually
manage device memory on their own. Before a task can be
offloaded to GPU, the application must ensure that enough
space has been reserved on the device memory and the work-
ing set of the task has been transferred to the reserved space.
After the task finishes, it also has to decide whether the data
sets should continue staying on the device memory in case of
reuses by other tasks, or can be transferred back to the sys-
tem memory to make room for other data to be processed.

The above design used to be more or less acceptable in the
early era of GPGPU computing when GPUs were dedicated
to applications with clear, static demands for device memory
space. However, as both the scale and scope of GPGPU
applications expand, it has become an increasingly heavy
burden, or impossible, for programmers to correctly keep
track of the demands for device memory space and manage
the consumption accordingly.

For example, some applications consist of GPU-accelerated
modules developed by different groups of developers, or third-
party GPGPU libraries and runtimes (e.g., CULA [15], Py-
CUDA [8], and Theano [17]). It is difficult to monitor and
coordinate the device memory space consumption of differ-
ent components. Applications such as Matlab, Boinc, and
GPU databases may also launch multiple workers, whose
activities and demands for device memory space depend on
user requests and are affected by the OS scheduling. It is
laborious and inefficient to deal with such dynamics at the
programming stage. When GPGPUs are shared by multiple
applications (e.g. in the cloud), managing device memory
space inside each individual application also leads to unco-
ordinated contention for the space.

Due to the complexity of managing device memory, ap-
plications may frequently experience shortage of free de-
vice memory space. For example, one worker thread may
not be able to obtain enough device memory space if other
worker threads have occupied too much of it. The appli-
cation may crash or hang if it cannot handle the situation
correctly. There have been an increasing number of device
memory-related crash reports in both open-source and com-
mercial GPGPU software such as Matlab [1], Boinc [2], and
Theano [5]. An application may survive by reducing the
granularity of GPGPU tasks or shifting computation back
to the CPU dynamically. But either method can signifi-
cantly reduce application performance. Please note that the
shortage of free device memory may happen even when the
allocated device memory space is not being actively used,
which leads to resource underutilization.

The absence of system management of device memory
also causes other system issues. For instance, device mem-
ory leaks are a common type of software bugs that exist
in many real-world GPGPU systems, including key com-
putation libraries [9, 3], popular language runtimes [5, 6],
and widely-deployed applications [10, 11]. Without system
management, the leaked memory space cannot be reclaimed
until the leaking application crashes or is terminated. This
shrinks the device memory space available to applications
and significantly degrades system performance. Even worse,



without system management, a malicious program can re-
serve most device memory space without releasing it, caus-
ing the whole GPGPU system unusable.

2.4 Demand for System Management
The above issues cannot be effectively addressed at appli-

cation level due to the lack of system-wide information and
the authority required for managing a shared resource. For
example, a library that implements device memory manage-
ment functionalities can relieve the burden of application
programmers. However, a library can only provide local
management within each individual application or applica-
tion component adopting the library. The conflicting de-
mands between applications or application components still
cannot be addressed.

To address the above issues, GPGPU system software
must be enhanced to control device memory management.
This will not only relieve application developers from this
tedious obligation, but also present an arbitrator to coor-
dinate the contention for device memory space. With the
new improvements of GPU hardware and firmware, espe-
cially those to support multitasking [38, 25], the application
domains and environments of GPGPU computing will con-
tinue expanding. The demand for system management of
device memory space is also becoming more imperative.

The demand for system management of device memory is
analogous to that for the OS to manage the physical space
of system memory [21]. Before virtual memory was intro-
duced, the large efforts spent by programmers to incorporate
memory overlaying procedures into their programs proved
inefficient and unrealistic as applications became increas-
ingly complex. Nowadays, in almost all modern systems,
the physical space of system memory is managed by the OS;
applications just need to allocate and deallocate objects in
their virtual spaces to use system memory.

However, unlike system memory management, because of
the special characteristics of GPGPU systems and applica-
tions, the management of device memory must address a set
of unique challenges to achieve high performance. We will
introduce these challenges and the design of GDM in the
next two sections.

3. GDM OVERVIEW
The objective of GDM is to take over the control of device

memory space from applications without changing current
APIs for device memory operations. For this purpose, GDM
creates a Staging Area in each GPGPU application’s vir-
tual memory space. This staging area effectively serves as
the device memory extensions for the GPU kernels launched
in the application. Thus, device memory operations from
the application can be redirected to the corresponding stag-
ing area, while the actual control of device memory space is
released to GDM.

Figure 2 illustrates the positions of GDM and GDM stag-
ing areas in the system and how GDM interacts with other
system components. GDM is built as part of the GPGPU
driver in the OS. It intercepts and handles device memory re-
lated operations from GPGPU applications. GDM handles
an allocation operation (e.g., cuMemAlloc in CUDA [39]) by
allocating the required space in the staging area. Data to be
transferred to device memory is first copied to the staging
area, and is later transferred to the device memory when
the kernel accessing the data is launched. This is shown
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Figure 2: Overall Architecture of GDM.

with the arrows À and Á respectively. After the kernel fin-
ishes, the data may stay in the device memory. When the
device memory is short of free space, GDM transfers some
data back to the corresponding staging area and reclaims
the space, as shown by arrow Â. When an application calls
the function to copy some data (e.g. computation results)
from the device memory, GDM locates the latest version of
the data (either in the staging area or in the device mem-
ory) and copies the data to the user buffer designated by the
application. The arrows marked by Ã show the data trans-
fers. To handle a deallocation operation (e.g. cuMemFree in
CUDA), GDM frees and reclaims the corresponding space
in both the staging area and the device memory.

3.1 Minimizing Overhead: A Major Challenge
GDM relieves applications from the burden of directly

managing device memory space. While it avoids the prob-
lems due to uncoordinated usage of device memory space,
the benefit does not come without cost. The main overhead
of GDM is from the extra data copying (to and from staging
areas) and data transferring (to and from device memory).

Some unique features of the GPU hardware and GPGPU
application execution model make minimizing the overhead
particularly challenging. Firstly, kernels running on GPU
devices are usually data-intensive. Transferring large data
sets over system bus may incur high overhead2. As shown
from previous studies [41, 24] and our own measurement
(§6.1), data transfers already account for a considerable por-
tion of GPU operation time for many applications. If the
amount of data movement incurred by GDM cannot be ef-
fectively controlled, the benefits of device memory manage-
ment can be easily out-weighted by the potential high cost,
diminishing the usefulness of the whole system.

Secondly, the performance of GPGPU applications is sen-
sitive to the delays caused by bulky data transfers. The
data-driven nature of GPGPU computing requires synchro-
nizations at various stages. For example, a kernel cannot
be launched before the transfer of its input data to the de-
vice memory finishes. These synchronization barriers reduce

2Data transfer rate via system bus is about one order of
magnitude lower than device memory bandwidth.



the opportunities of overlapping operations before and after
the synchronization points, making application performance
sensitive to the delays on these operations. Among these op-
erations, most are related to data transfers between the CPU
and the device. Thus, the extra data transfers incurred by
GDM management may degrade application performance if
not handled properly. Meanwhile, system bus transactions
are usually non-preemptive. A data transfer through PCIe,
for example, cannot be interrupted once the DMA command
is sent to the GPU copy engine. This exacerbates the prob-
lem caused by GDM-initiated data movement.

Finally, some hardware facilities for minimizing the cost
have not been or cannot be efficiently implemented on GPUs.
For example, in current GPU designs, there is no support
for page reference bits to track fine-grained data access pat-
terns. This poses great challenges to identifying inactive
device memory areas. Hardware setting page dirty bits, a
convenient feature for detecting data modifications, is also
missing. On GPUs, page faults usually incur prohibitive
costs [36]. On some GPGPU systems, page faults even cause
application crashes. As far as we know, in the foreseeable
future, there have not been clear plans on improving these
facilities in GPU hardware.

To address these challenges, GDM minimizes the cost
following two directions. One is to minimize data move-
ments. This is achieved mainly through lazy copying, ex-
ploiting data locality, and careful classification of the data.
The other direction is to reduce the latency incurred by
data movements. GDM reduces the latency in two ways.
Without compromising the correctness of program execu-
tions, GDM implicitly makes the handling of some heavy
synchronous operations asynchronous to user programs, al-
lowing programs to proceed while the operation is delegated
to GDM for processing. GDM also internally breaks some
bulky synchronous operations into several smaller pieces so
that the processing of one piece can be overlapped with an-
other to reduce costs. This also practically makes a long,
bulky operation interruptible.

3.2 Guidelines for GDM Design
There are a few guidelines that have greatly influenced

the design of GDM. One important guideline regards the
choice between demand loading and anticipatory load-
ing. In the paper, we classify the methods of loading data
to memory into two categories, namely demand loading and
anticipatory loading. Demand loading refers to the method
in which data loading is triggered by data accesses. It is
usually achieved by hardware-supported exception mecha-
nisms. For example, in demand paging, page fault handler
is triggered automatically by hardware when a page being
accessed is not present in the memory. The page fault han-
dler loads the missing page from the disk and may prefetch
a few more pages that it predicts to be accessed soon.

Anticipatory loading refers to the method in which the
working set of a task is loaded into memory before the task
is scheduled to run. It is the mechanism used in current
GPGPU computing systems. An application reserves device
memory space and transfers the working set of a GPU kernel
to the device memory before it launches the kernel.

Demand loading is motivated by the high cost of loading
data into memory. It pays the cost of handling page faults
to load only the data that is demanded by the application
and minimize the cost incurred by loading extra data. An-

ticipatory loading is more advantageous when the data sets
handled by an application can be accurately determined be-
fore its execution. Though there are proposals to provide
hardware support for demand paging on GPUs [36, 32], we
argue that anticipatory loading will continue playing an im-
portant role in device memory management on future GPU
devices. This is based on the following two observations.

In contrast with the data sets handled by CPUs, the data
sets handled by GPUs are usually more predictable before
the kernel starts execution. For example, some data sets to
be referenced can be inferred from the data transfer APIs
(e.g. cuMemcpyHtoD in CUDA) before launching a kernel;
some are specified in the parameters of the GPU kernel. This
makes anticipatory loading a viable approach in practice.

Handling page faults on a GPU incurs much higher over-
head than doing so on a CPU, because it stalls a faster
processor for a longer time. A GPU kernel is usually exe-
cuted by hundreds of thousands of threads on a GPU, with
the running state of each thread maintained in large register
files, shared memory, and hardware caches which are often
virtually addressed [34]. Saving the state of a GPU kernel on
page faults, flushing caches, and restoring kernel state to re-
sume execution thus take much longer time than that on the
CPU. As the numbers of GPU cores and threads launched
by GPU kernels keep increasing on future GPUs, the cost of
handling page faults will also escalate significantly. More-
over, handling GPU page faults requires the involvement
of system software running on the CPU (e.g., to carry out
the corresponding memory management and re-scheduling
operations). The extra delays and operations on the critical
path of page fault handling further prolongs GPU stall time.
The large overhead associated with page fault handling on
a GPU thus may not be justified.

In GDM design, we use anticipatory loading for the data
sets that are predicted to be accessed. To minimize the
overhead incurred by handling page faults, demand loading
is only used to handle unexpected data accesses if the GPU
device supports page faults.

The second guideline regards the the granularities of
device memory management to match the data-parallel
nature of GPGPU computing. The granularities determine
the units in which data in the staging areas and device mem-
ory space should be managed. In system memory manage-
ment, memory page of a few kilobytes is a commonly used
granularity by the OS. But this granularity is too small for
GPGPU computing. The data-parallel feature of GPGPU
computing determines that the data sets handled in GPGPU
programs are usually very large (even the register file sizes
on GPUs are at least hundreds of kilobytes). Using small
granularities increases the overhead of managing metadata.
More importantly, data transfers to and from the device
memory in small units cannot amortize the start-up latency
of memory controller, incurring prohibitive costs.

Memory regions have been used in several studies. A de-
vice memory region is allocated by the user program through
the memory reservation API call, and can be as large as hun-
dreds of megabytes or even gigabytes. Thus, data transfers
in units of regions can cause high synchronization and data
movement overhead. Moreover, managing data at the region
level is incapable of capturing the distinct access patterns of
user data structures created within a single region, which are
important information for the management of device mem-
ory space.



Ideal granularities are those that can balance the latency
and throughput of data movement and can preserve program-
level data structure information to minimize overhead. GDM
manages device memory space with both block and object-
level information. We will introduce these concepts and how
GDM utilizes them for management in the next section.

The third guideline regards the generality of GDM de-
sign. We realize that GPU hardware design is still evolving
towards mature, general-purpose computing device. Thus,
in our design, we do not exclude possible new features in
future GPU hardware that may help with device memory
management. At the same time, we try to keep the GDM
design as general as possible. We explore the techniques that
can minimize its reliance on the uncertainties of future GPU
hardware features. This also helps it be adopted, starting
with current GPU hardware.

4. GDM DESIGN
This section presents the details of GDM, focusing on the

design tradeoffs and optimization techniques for minimizing
the overhead of device memory management.

4.1 Staging Areas
GDM creates a staging area for each GPGPU application

in its virtual memory space. Instead of using a large chunk
of space with continuous virtual addresses, a staging area
consists of a set of virtual memory areas. These areas are
dynamically allocated when GDM handles the requests from
applications for device memory reservations. Because these
areas are located in the application’s virtual memory space,
physical memory is not allocated until they are populated.

Staging areas first serve as a temporary storage for the
data to be transferred onto device memory. With stag-
ing areas, data transfers to the device memory can be ful-
filled asynchronously. Specifically, when an application calls
the API function to transfer some data from a user source
buffer to the device memory, this function returns after
GDM marks the source buffer copy-on-write. The data is
transferred to the device memory later from the source buffer
if it has not been changed (arrow Ä in Figure 2). Otherwise,
the data is copied to the staging area when it is about to
be changed in the source buffer, and is later transferred to
the device memory from the staging area. In many GPGPU
applications, a source buffer is often not modified before the
data transferred from it is used in a kernel. Thus, copy-
on-write can effectively reduce the memory consumption of
staging areas and the cost incurred by data copying.

Staging areas also serve as the swap space for the data
that can no longer stay on the device memory due to space
contentions. When an application needs more free device
memory space to launch kernels, GDM evicts some data
from device memory to the staging area and reclaims the
space for its own data sets. The data swapped to the staging
area may later be loaded back to the device memory when
the kernel referencing the data is to be issued.

Creating staging areas inside the virtual address spaces
of applications provides a few benefits. The low-level man-
agement of staging areas, from space allocation/deallocation
to data swapping between system memory and disks when
the system memory is under pressure, relies on the exist-
ing virtual memory manager in the operating system. This,
on one hand, simplifies the design of GDM. On the other
hand, it puts the system memory space occupied by stag-

cuMemAlloc(&region1, 800MB);
dest_buf_1 = region1;
cuMemcpyHtoD(dest_buf_1, src_buf_1, 400MB);
dest_buf_2 = dest_buf_1 + 400MB;
cuMemcpyHtoD(dest_buf_2, src_buf_2, 200MB);
dest_buf_3 = dest_buf_2 + 200MB;
cuMemcpyHtoD(dest_buf_3, src_buf_3, 10KB);

Figure 3: Device memory region and object.
ing areas under the unified management with other system
components and applications. This helps the operating sys-
tem balance system memory usage for the overall benefit of
system performance.

4.2 Device Memory Regions, Objects, Blocks
A fundamental design decision to make is the granularity

at which the device memory space should be managed. One
natural choice is device memory region. A device memory
region is allocated/deallocated by the user program through
the device memory reservation/release API calls. Applica-
tions may reserve different regions for different data sets to
be handled by GPU kernels. In these cases, data in the same
memory region may show good access uniformity; managing
data based on regions can thus be an efficient choice. Re-
gions have been used as the units of device memory man-
agement in some existing studies [31, 29].

However, in some important GPGPU applications [28, 44],
we do see cases in which a memory region includes multiple
data sets with distinct access patterns (e.g. data structures
with different read/write properties or being referenced by
different kernels). Data sets can also be shared among differ-
ent GPU contexts easily with a single IPC call, which makes
the program structure much clearer to maintain. For these
applications, managing data with regions fails to classify
fine-grained data access characteristics and increases both
space and data movement overhead.

GDM identifies this demand and adds an object-based
memory management layer below regions to differentiate
data sets with different access patterns in each memory re-
gion. In GDM, an object is a data set handled by a data
transfer operation. This is based on the observation that
programs usually invoke separate data transfer API calls to
pack multiple data sets into the same device memory re-
gion. The region area modified by each data transfer API
call corresponds to an object in GDM. For efficiency, GDM
merges small objects with their neighboring objects in the
same device memory region. As an example, based on the
pseudo code snippet in Figure 3, GDM creates one region
(i.e. region1) and three objects, one for dest buf 1, one for
dest buf 2 , and one for the rest part of the region.

Objects can still be very large and cumbersome to manage.
Meanwhile, object sizes usually vary widely in GPGPU pro-
grams, which introduces unnecessary complexity and over-
head in memory management. For example, transferring
large objects leads to high synchronization cost; evicting a
whole object lowers the utilization of device memory if the
required space is smaller than the object size. To address
these problems, GDM further breaks objects into fixed-size
blocks. Then, it allocates/reclaims device memory space
and transfers data in units of blocks. The block size is se-
lected to effectively amortize the start-up latency of data
transfers.

As will be explained in the following subsections, this hi-
erarchical layout of regions, objects, and blocks makes the
management of device memory space especially efficient.



4.3 Loading Data to Device Memory
For the correct and efficient execution of a kernel, GDM

must load the working set of the kernel onto device memory.
Basically, two key questions must be addressed: which data
sets should be loaded, and when should they be loaded.

To address the first question, GDM uses different tech-
niques for different types of GPU devices. If page faults are
correctly supported on the GPU device, GDM monitors and
analyzes the parameters used to launch a GPU kernel and
the data transfer API calls made before the kernel launch.
It extracts the objects involved in the parameters and API
calls. Usually these objects are the data sets to be han-
dled by the kernel. For these objects, GDM transfers the
data block by block into the device memory before the ker-
nel is issued (i.e. anticipatory loading). Other data sets, if
accessed, will be loaded on demand on page faults.

If page faults are not supported, GDM by default loads the
whole context to the device memory. To reduce data trans-
ferring, GDM provides interfaces for programs to specify ob-
jects needed by a kernel, with which advanced programmers
can direct GDM to only load the specified objects.

For anticipatory loading, another key question is what is
the good time to transfer the data sets to device memory. If
a data set is transferred to the device memory too early, it
may be evicted prematurely before the kernel referencing it
is issued. This incurs extra data transfers. If a data set is
transferred to the device memory too late, the execution of
the kernel will be delayed.

In a busy system, where kernels queue up waiting to be is-
sued, the system throughput depends on how quickly these
kernels can be issued. Thus, the most efficient way is to
transfer the data sets used by the kernels according to the
order of the kernels in the queue. When GDM finishes trans-
ferring the data sets used by a kernel, it can start to transfer
the data sets used by the next kernel in the queue. In this
way, GDM can overlap data transfers with GPU computa-
tion to a great extent and minimize the time that kernels
must wait for their working sets.

When all the launched kernels have been issued, if the de-
vice memory still has free space and the GPU copy engine is
idle, GDM will trace back recent application requests of data
transfers to the device memory for unfulfilled requests. As
explained in Section 4.1, with staging areas, GDM handles
data transfer requests to the device memory asynchronously.
Thus, there may be some data sets in staging areas that have
not been transferred to the device memory even the applica-
tions have requested to do so (e.g. by calling cuMemcpyH-
toD). GDM takes the opportunity and loads these data sets
onto device memory because they are more likely to be ac-
cessed in kernels soon. To prevent performance loss, GDM
stops loading the data when the device memory is filled.
GDM also stops loading the data when a kernel is launched,
so that the GPU copy engine can be quickly released to
transfer the data sets of the newly launched kernel.

4.4 Management of Device Memory Space
GDM makes every effort to satisfy the device memory

demand of the kernel to be issued. If the device memory is
short of free space, GDM must evict some data of finished
kernels and reclaim the space. Thus, a core issue with the
management of device memory space is data replacement,
i.e. the policy that determines which data sets should be
evicted when the free device memory space is insufficient.

Blocks with contents having been transferred to host  

Blocks with signatures to be computed   

Blocks that might be transferred to host   

Blocks that might be overwritten   

Cost 
Section 

LRU 
Section 

Figure 4: An LRU stack is structured for the LRU-
COST replacement policy.

A large number of replacement policies have been pro-
posed in previous studies of system memory and buffer man-
agement. The goal of these policies is mainly to maximize
hit ratios, i.e. reuses of data in the memory. Every time
when a replacement decision has to be made, these policies
try to select an item that is least possible to be reused in
the future.

However, conventional replacement policies are usually de-
signed for systems where small amounts of data (e.g. pages
or blocks) are loaded on demand. Directly adopting them
will lead to sub-optimal performance in GPGPU systems,
where usually a large amount of data (e.g. that can fill two
thirds of device memory capacity) must be loaded before
the corresponding kernel can start execution. Therefore,
in GDM, other than maximizing hit ratios, the design of a
replacement policy must achieve an additional goal — min-
imizing the time to spare the space for loading the data sets
of the incoming kernel. The latency of readying the required
space has direct impact on application performance.

GDM enhances the LRU replacement policy to maximize
data reuses in the device memory and to minimize the la-
tency of data eviction. The replacement policy with the
enhancement is named LRU-COST 3. LRU-COST uses a
stack to manage the data sets loaded into the device memory.
When a kernel is issued, all the data sets it will operate are
put on the top of the LRU stack, pushing existing data sets
in the stack down towards the bottom. As shown in Figure 4,
LRU-COST partitions the stack into two sections. The part
on the top is named LRU section, and the part at the bottom
is named COST section. The size of COST section is from
0 to selection factor × len stack, where selection factor
is an adjustable parameter with a default value of 0.2 and
len stack is the size of the whole stack. Data sets in the
COST section are classified and sorted to minimize the evic-
tion cost, as we will explain later. The data sets with the
lowest costs are put at the bottom. When more free space
is needed, LRU-COST selects the data sets at the bottom
of COST section to evict. When COST section is depleted,
it is refilled with the data sets in the LRU section that be-
long to the working sets of finished kernels. It preferentially
selects the data sets at the bottom of the LRU section until
it reaches its maximum size.

The cost of evicting a data set is determined by its status.
Evicting a clean data set incurs lower cost than evicting a

3While other replacement policies can also be enhanced with
similar approach, we select LRU because it is widely used
and easy to implement.



dirty one. A data set is clean if it has not been changed
since it is loaded to the device memory. Otherwise, the data
set is dirty. The cost of evicting a clean data set is minimal,
because there is a copy of the data set in the virtual memory
space of the application, either in the staging area or in the
corresponding source buffer. To evict a dirty data set, some
cost has to be paid to transfer the data back to the staging
area to preserve the changes.

In real-world applications, usually a considerable portion
of GPU data is read-only during kernel executions. For ex-
ample, based on our analysis of 16 benchmarks in the Ro-
dinia benchmark suite [20], on average, 61% of all the GPU
data referenced during kernel executions are not modified.
Thus, there is a good potential to improve performance by
preferentially evicting clean data sets.

In the future, the clean/dirty status of data sets may be
traced by hardware automatically. However, as mentioned
earlier, existing GPU hardware does not provide such sup-
port. Thus, after a kernel finishes execution, GDM has no
immediate information to determine whether a data set has
been modified. If GDM cannot find a way to differentiate
clean data from dirty data, it must write back the data sets
being evicted indiscriminately to the corresponding staging
areas. This may significantly increase wasteful system bus
traffic and cause delay of kernel execution.

To address this problem, GDM computes a signature for
each data block in the COST section, which is a set of MD5
hash values of the data in the block (please refer to §5.2
for details). When the COST section is refilled, GDM im-
mediately issues a maintenance kernel to compute the new
signatures for the data blocks in the section from bottom
to top. If the new signature of a block is different from its
previous signature or if its previous signature does not exist,
the block is marked dirty. For a 4MB block, its signature
can be kept with only 4KB and is transferred along with
the block. Computing the signature of a data block on a
GPU can be made over an order of magnitude faster than
transferring the data back to the staging area.

Although computing signatures can significantly reduce
the data traffic on system bus, it increases the workload
of GPU processors. When there are other application ker-
nels that have been issued on the device, the maintenance
kernel and the application kernels may compete for GPU
processors. This reduces system throughput (because the
execution of application kernels is delayed) and/or increase
the latency incurred by data eviction (because computing
signatures is delayed). To address the above problem, GDM
uses three heuristics to reduce the amount of computation.

Uniformity Heuristic: In the same object, if the first
data block, the data block in the middle of the object, and
the last data block are dirty blocks, GDM assumes that
other blocks are also dirty blocks. This is based on the
observation that kernels usually carry out similar operations
on the data in the same object, because of the data-parallel
nature of GPGPU computing. This is to reduce signature
computation for write-mostly data.

Overwrite Elimination: A data block in the device mem-
ory is invalidated and its space can be reclaimed when the
application overwrites its content via a data transfer API
call. This usually takes place when an application performs
computation on a data set larger than device memory capac-
ity. In a loop, the application repeatedly updates its data
in the device memory and launches a kernel to process each

partition of the data set. Thus, if GDM expects a block may
be invalidated based on its overwriting history, it gives a low
priority to computing its signature by putting it on the top
of the COST section (see Figure 4). This heuristic can be
used to reduce signature computation for both read-mostly
and write-mostly data.

Double-Transfer Avoidance: A data block becomes a
clean block if the application calls an API to copy its content
out from the device memory. Thus, if GDM expects that
a data block may be transferred to system memory upon
application requests, it gives a low priority to computing
its signature by putting it far away from the bottom of the
COST section (refer to Figure 4). When the content has
been transferred and the block is still in the COST section,
GDM moves the block to the bottom of the stack.

To apply the last two heuristics, GDM keeps track of the
blocks that changed status to “clean” or were overwritten,
and use the information as hints to predict whether the be-
haviors will repeat.

5. IMPLEMENTATION
We have implemented a prototype of GDM in the GPGPU

driver, Gdev [31], on Linux. We choose Gdev because it is
open-source and has been shown in previous research [31] to
perform comparably with the proprietary commercial CUDA
system. Our prototype system targets discrete GPU cards,
which are usually connected to the host CPU system through
PCIe bus. In this section, we highlight some of the imple-
mentation details that deserve articulation.

5.1 Regions, Blocks, and Objects
When an application reserves a device memory region,

GDM allocates two virtual memory areas for it: one from
the CPU program’s virtual memory space, which is used as
the region’s staging area; the other from the GPU context’s
virtual device address space, which is used by the GPU ker-
nels to access data in the region. The starting address of
the virtual device memory area is returned to the applica-
tion as the identifier of the data region allocated. We set
block size to 4MB in our prototype system, which is small
enough compared with common object sizes in GPGPU pro-
grams and meanwhile preserves over 98% of PCIe efficiency.
Nouveau [12], the GPU device driver Gdev relies on, cur-
rently does not allow users to allocate/deallocate virtual and
physical device memory areas separately, nor does it support
dynamic mapping/unmapping between them. We have thus
modified the source code of Nouveau (less than 400 lines of
changes) to expose such functionalities to GDM.

Objects are maintained by GDM to infer user data struc-
tures and improve data replacement efficiency. Initially, ev-
ery data region is a single object. A host-to-device data
transfer, if larger than block size, can split an object into
two or three smaller objects and/or merge several objects
into a larger one. In our implementation, objects are aligned
at the block boundary.

5.2 Signature Computing
By definition, computing the MD5 hash value of a given

data block is inherently sequential. A block has to be logi-
cally broken into 64-byte chunks. For each chunk, a 16-byte
hash value is computed based on the data in this chunk and
the hash value computed from the previous chunk. The hash
value computed for the last chunk is used as the MD5 hash
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Figure 5: The Computation of data signatures.

value of the whole data block. To enable efficient paral-
lelization on GPUs, GDM computes an array of MD5 hash
values, instead of a single one, for a data block, and uses
them together as the signature of the block.

This is illustrated in Figure 5. The data in a block are
equally partitioned among GPU threads; each thread com-
putes a MD5 hash value for the data assigned to it. Con-
secutive 4-byte words are allocated to different threads, so
that device memory accesses can be coalesced for maximal
kernel efficiency. Figure 5 shows how a data block is parti-
tioned and the MD5 computed by one thread in an n-thread
kernel. The signature of the data block comprises the MD5
values computed by all GPU threads. Optimal number of
threads for computing the signature of a data block is de-
termined by the block size and GPU hardware parameters.
In our implementation, we set the number of threads per
4MB data block to 256, which achieves very good perfor-
mance. To maximize GPU core utilization, GDM computes
the signatures of multiple blocks in one kernel, which further
improves performance.

6. EVALUATION
This section evaluates GDM under various workloads. Be-

fore presenting the results, we first introduce the setup and
methodology of our experiments.

6.1 Experiment Setup and Methodology
The experiments were carried out on a machine equipped

with a 2.80GHz Intel Core i7-860 CPU, 8GB system mem-
ory, and an NVIDIA GTX 480 GPU card4. The operat-
ing system is Red Hat Enterprise Linux 6 running 3.3 ker-
nel. The GPU device driver is Nouveau patched with our
code to enable separate allocation of virtual and physical
device memory areas and dynamic mapping between them.
The GPGPU drivers are Gdev (i.e. the stock Gdev) and
GDM (i.e. Gdev with GDM enhancement). The CUDA
compiler is NVIDIA nvcc 4.0. Excluding the space reserved
by Gdev and Nouveau, there is about 1400MB of device
memory space available to user applications.

The benchmarks used in our experiments, as listed be-
low, represent a variety of typical GPGPU applications and
systems, including scientific computing, databases, machine
learning, and image processing. Among them, four bench-
marks, backprop, hotspot, nn, and srad, were selected from
the Rodinia benchmark suite. Other benchmarks were ex-
tracted from real-world applications or existing open-source
projects.

4We choose a GPU with NVIDIA GF100 architecture be-
cause Gdev supports it most reliably. Other GPUs (e.g.
Kepler) are fundamentally the same with respect to mem-
ory management.

Name Size (MB)

backprop 668
hj 2114

hotspot 1316
kmeans 120

Name Size (MB)

mpe 658
nn 1138

srad 619
theano 4253

Table 1: Total size of device memory space allocated
in each benchmark.
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Figure 6: Decompositions of benchmark execution
times.

• backprop is an implementation of the backpropaga-
tion machine learning algorithm.
• hj performs a hash join operation over two database

table columns. The data types of the two columns are
both four-byte integers.
• hotspot solves a differential function extracted from

a popular thermal modeling tool called HotSpot.
• kmeans implements the k-means clustering algorithm

that partitions an array of multidimensional data ele-
ments into several clusters [13].
• mpe evaluates the value of expression A×B +C×D,

in which A, B, C, D are four large matrices.
• nn computes the k-nearest neighbors of a given target

within a large cloud of data points.
• srad is a diffusion method used mainly in ultrasonic

and radar imaging applications to remove speckles.
• theano reproduces a real-world device memory leak

bug in the Theano scientific Python library (the first
commit in [5]). This bug is caused by incorrect in-
crement of the reference counting value for a device
memory region.

These benchmarks are highly optimized to maximize the
utilization of GPU cores and have different demands for de-
vice memory space. The total size of device memory re-
gions allocated in each benchmark is listed in Table 1. Fig-
ure 6 shows the percentages of execution time spent on DMA
transfers, GPU kernels, and other operations (e.g., CPU
computations and disk accesses) when each benchmark ex-
ecutes alone with stock Gdev. theano is DMA-bound and
is not drawn because it crashes due to device memory leak
and cannot finish execution with stock Gdev. As shown in
Figure 6, all the benchmarks are GPGPU-intensive. At the
same time, they incur different amount of data movement
between the host and GPU device. Thus, the benchmarks
can stress the design of GDM and test its components to
minimize data movement overhead.

We evaluated GDM under two types of workloads: solo
runs and combo runs. In a solo run, a benchmark exe-
cutes alone. In a combo run, two benchmarks co-run with
each other, and the benchmarks run multiple times to en-
sure the full overlap of their executions. Since our imple-



(a) Performance of theano over time.

(b) Size of allocable device memory over time.

Figure 7: The impact of device memory leaks with
and without GDM management.

mentation of GDM is built into Gdev, we use the perfor-
mance with the stock Gdev as baseline. The metrics we
use to compare the performance are execution time for solo
runs and weighted speedup for combo-runs. The weighted
speedup of a combo run is the sum of the speedups of the
participating benchmarks over their solo executions, i.e.,Pn

i=1(solo timei/combo timei) [43]. For brevity, we call the
weighted speedup of a combo run its throughput.

6.2 Tolerating Device Memory Leaks
Leveraging host memory and, subsequently, disks as swap

space, GDM identifies and removes inactive blocks from the
device memory. This greatly postpones device memory ex-
haustion and increases the capability of the system to toler-
ate device memory leaks.

We use theano as a real-world example to demonstrate
this advantage. theano is a Python script written using the
Theano library. It invokes an in-place add operation for 100
times in a loop. In each iteration, the underlying Theano
runtime creates an array on the device memory and launches
a GPU kernel to update the elements in the array with an in-
cremental value. However, there is a bug in Theano and the
array is not released by Theano when the iteration finishes,
adding a memory leak delta of about 40MB.

Figure 7(a) shows the per-iteration execution times of
theano. Figure 7(b) illustrates the amount of allocable de-
vice memory (in logarithmic scale) after each iteration. With-
out GDM support, the leak quickly drains the device mem-
ory and causes theano to crash before one third of the iter-
ations can be finished. Gdev cannot deal with device mem-
ory leaks in this case because data swapping is not fully
supported.

In the experiment, we use the stock Gdev as a represen-
tative of exiting GPGPU systems without fully functional
device memory management. However, the problem demon-
strated with it is not limited to Gdev, but exists in similar
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(a) Throughput of workloads with device memory con-
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Figure 8: Performance of multitasking workloads
with and without GDM management.

systems too. For example, we have also run theano with the
commercial NVIDIA driver; it crashes after 36 iterations.

With GDM support, though the device memory may be
filled, the space occupied by leaked regions can be reclaimed
and is considered to be allocable. This allows theano to con-
tinue launching kernels and making progress continuously.
Thus, theano is able to complete execution correctly. Since
the leaked regions are modified during kernel executions,
GDM incurs a constant overhead on data swapping after
iteration 33. But, before GDM starts to swap out leaked re-
gions, it does not slow down theano, as shown in Figure 7(a).

6.3 Multitasking Performance
In this subsection, we study the performance of GDM un-

der multitasking workloads. We select all the possible combo
runs consisting of two of the benchmarks excluding theano.
We classify them into two groups based on their device mem-
ory demands. The first group have 14 combo runs with high
demands. In each combo run, the total demand exceeds
the device memory capacity, and the benchmarks contend
for device memory space during the execution. The second
group consists of the rest 7 combo runs. They have low de-
mands for device memory space, and the benchmarks can
share the device memory without contention. Before start-
ing the combo-run experiments, we first measured the solo
execution times of each benchmark with the stock Gdev and
GDM respectively. Due to management activities, GDM
performs slightly slower than the stock Gdev, but the differ-
ence is less than 2% on average.

Figure 8(a) shows the throughput of the combo runs in
the first group with Gdev and GDM. With GDM, all the
combo runs can finish their executions correctly. However,
with Gdev, only 3 combo runs can finish without failures.



Eleven combo runs suffer program crashes, which happen to
either one or both participating benchmarks. We have also
performed the same experiment with commercial NVIDIA
driver; all combo runs in the first group failed due to pro-
gram crashes.

Most combo runs fail without GDM support because state-
of-the-art approaches either do not support (e.g. CUDA)
or use only primitive memory management policies (e.g.
Gdev). For example, Gdev implements a simple data swap-
ping mechanism based on its shared device memory sup-
port. With Gdev, when a region A in application P is to
be loaded into the device memory short of free space, only
a single region whose size is larger than A can be selected
under the strict conditions that (1) it is not in application P,
and (2) it has never replaced or been replaced by any other
regions than A in P. If a region cannot be found to meet
these constraints, the program may be blocked or crash due
to insufficient device memory space for it to launch kernels.
Unlike Gdev, GDM provides fully functional device memory
management that allows the device memory space to be flex-
ibly shared by any regions. This guarantees the successful
executions of GPGPU applications on multitasking systems.

Figure 8(a) also shows that GDM can handle device mem-
ory contentions more efficiently than the stock Gdev. With
Gdev, even though a few combo runs successfully finish their
executions, they suffer substantial performance losses. For
example, for the combo run of backprop and nn, the through-
put achieved with the stock Gdev is only 70% of that with
GDM. Due to the lack of necessary mechanisms and poli-
cies to reduce data movement, Gdev cannot support data
swapping with low overhead. The optimization techniques
in GDM can effectively minimize the overhead. Thus, GDM
can improve the performance of these workloads by 20% on
average (up to 43%).

Figure 8(b) compares the performance of GDM and the
stock Gdev under the workloads in the second group. For
all the workloads except the co-running of backprop and
kmeans, the performance difference between GDM and Gdev
is barely observable. When backprop co-runs with kmeans,
the throughput with GDM is slightly lower (by 4%) than
that with Gdev. This shows the low overhead of GDM for
multitasking workloads without device memory contentions.

6.4 Validation of Design Optimizations
Throughout the design of GDM, optimization techniques

are adopted to minimize data transfers and the associated
cost. In this subsection, we validate the effectiveness of these
optimization techniques through experiments. We compare
the performance of the full-fledged GDM with a simplified
version of GDM, named GDM-Base, which only provides
basic management over device memory to guarantee the cor-
rect executions of the combo-run workloads.

Specifically, GDM-Base handles host-to-device data trans-
fer eagerly. It carries out data transfers immediately upon
application’s requests (e.g. cuMemcpyHtoD). When the de-
vice memory is short of free space, traditional LRU algo-
rithm is used to select a victim data set to replace. The vic-
tim data set is transferred back to the corresponding staging
area. When a kernel is to be launched, GDM-Base examines
the data sets in the context, and loads the data sets that are
not resident in the device memory.

Since the overhead of device memory management is mainly
incurred when device memory space is under pressure, we
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Figure 9: Effectiveness of GDM optimizations.

select the combo runs in the first group and compare the per-
formance of GDM and GDM-Base under these workloads.
As shown in Figure 9(a), with optimizations, GDM is able
to consistently improve the throughput of the workloads by
21% on average and up to 46% (relative to GDM-Base).

To further understand how the optimization techniques
improve performance, we have collected the work efficiency
of GPU, which is defined as the percentage of total GPU
time spent on kernel executions and effective data move-
ment. A data movement is effective if it is carried out when
the benchmark runs alone. For example, in a combo-run
workload of program A and program B, x repetitions of pro-
gram A fully overlap with y repetitions of program B. Dur-
ing the co-running of the programs, the total time spent by
the GPU to execute kernels and move data is c. If the time
used for kernel execution and data movement is a for pro-
gram A and b for program B when each of program A and B
executes alone, the GPU work efficiency for this combo run
is (ax + by)/c. Work efficiency reflects the amount of over-
head incurred by device memory management, with high
efficiency indicating low overhead. Though the overhead is
mainly from extra data transfers incurred by device memory
management, kernel execution time is included in work effi-
ciency measurement because we want to correlate overhead
reduction with throughput increase.

Figure 9(b) shows that the optimization techniques im-
prove GPU work efficiency by 14% on average and up to
37%. This explains the throughput improvement observed
in Figure 9(a). Meanwhile, it also explains the varying de-
grees of performance enhancement for different combo runs.
For example, the throughput of the co-running of backprop
and hj only rises by 4%. This is because the GPU has al-
ready been working at almost full efficiency before and after
optimizations are applied (97% vs. 98%), as shown by the
first two bars in Figure 9(b).

For most workloads, with the optimization techniques in
GDM, the GPU work efficiency is close to 100%. This shows
that the optimization techniques work effectively on control-



ling the overhead. However, we notice that there are a few
workloads with GPU work efficiency below 90%. This in-
dicates that there is still potential to further improve the
performance of GDM in future work.

6.5 Defending against DoS Attacks
GDM makes the system capable of thwarting denial-of-

service (DoS) attacks that deplete the device memory space
available to GPGPU applications. To demonstrate this ca-
pability of GDM, we have designed a malicious program
which reserves a device memory region with the same size
as the usable device memory capacity. The program repeat-
edly issues a GPU kernel that updates the data content in
the reserved region so as to cause the largest performance
degradation to GDM management.

We co-run each of the benchmarks (except theano) with
the malicious program, and measure its execution time5.
With GDM, all benchmarks successfully finish executions in
spite of the presence of the malicious program. The per-
formance of the benchmarks is lowered by the malicious
program compared to their solo executions, but kept at an
acceptable level (69% on average). The highest slowdown
happens with srad (284%) because it launches kernels fre-
quently and each kernel accesses a moderately large work-
ing set, causing more data evictions than other benchmarks.
The lowest slowdown is observed with kmeans (9%) because
it has the least demand on device memory space.

7. RELATED WORK
We are not the first to realize the problems caused by hav-

ing GPU programmers directly and explicitly manage the
device memory. Gdev [31] provides a data sharing mecha-
nism for inter-process communication (IPC) and shows that
this mechanism can be used to support device memory swap-
ping. However, because it is based on an IPC mechanism
and lacks generality, this proof-of-concept workaround barely
works in practice and suffers serious performance issues as
have been shown with our experiments. RSVM [29] provides
an application-level device memory manager in a library. It
relieves programmers from explicitly managing device mem-
ory, but programs must call the functions it provides to gain
the benefits. Meanwhile, it suffers from the problems with
application-level management. For example, it cannot ad-
dress the contention between applications and does not allow
an application to use other libraries that call CUDA APIs
to allocate device memory or transfer data. Compared with
these studies, GDM identifies the critical issues of device
memory management at system level and provides a general
and non-intrusive solution.

System management of GPGPU resources other than de-
vice memory has received attention in several recent studies.
Pegasus [26] is a computation scheduling facility for virtu-
alized, accelerator-based multiprocessor systems. It makes
GPU a schedulable entity in the hypervisor and supports
both high-throughput and low-latency scheduling among mul-

5On existing systems, a malicious program can also attack
the system by issuing a non-terminating kernel (e.g. an in-
finite loop) or a large number of kernels. Thus, a thorough
solution requires enhancements on GPU kernel scheduling,
which is beyond the scope of the paper. This paper only fo-
cuses on the attacks through device memory space, and lets
the system schedule GPU kernels in a round-robin manner
in the experiment.

tiple guest OSes. TimeGraph [30] is a GPU command sched-
uler to support fair sharing of GPU computing resource for
real-time, multitasking GPU applications. PTask [41] pro-
vides an OS abstraction for GPU computing resource and
data transfer management. It presents a dataflow program-
ming model that exposes information for OS kernel to pro-
vide performance isolation and to coordinate data movement
between collaborative processes. GPUfs [42] proposes file
system support for GPGPUs to allow a GPU program to
access host files directly.

Some research projects in architecture and compiler areas
improve the usability of GPUs as main-stream computing
devices. iGPU [36] is a GPGPU architecture to support ex-
ceptions and speculative executions with compiler support.
ADSM [24] is a data-centric programming model for hetero-
geneous computing that maintains an asymmetric shared
memory space to achieve low cost. CGCM [27] is an auto-
matic management and optimization system to reduce pro-
grammer’s efforts for CPU-GPU data transfer. There are
plans to provide unified and shared virtual spaces for CPU
and GPU to access [14]. They do not provide or have not
provided a solution to manage the physical space in the de-
vice memory. Instead, they pose a higher demand for oper-
ating system managing the device memory space, which is
targeted by the research in this paper.

8. CONCLUSION AND FUTURE WORK
This paper identifies a crucial problem with existing GPG-

PU system software design. Namely, the lack of sophisti-
cated device memory management causes application crashes,
hangs, and inefficient utilization of GPGPU resources. This
problem can seriously hinder the adoption of GPGPUs as
mainstream computing devices in general-purpose systems.

The paper presents GDM, a fully functional device mem-
ory manager, to effectively address the problem. The de-
sign fully considers the unique features of GPGPU com-
puting and GPGPU devices from the perspectives of both
challenging problems and optimization opportunities. GDM
manages device memory with both block and object-level in-
formation, and employs various optimization techniques to
ensure system performance. Experiments verify the capa-
bilities of GDM to tolerate device memory leaks, prevent
program crashes, defend against malicious programs, and
achieve high performance.

As future work, we plan to improve the management over
GPU device memory following two directions. First, it is
possible to further reduce the overhead by leveraging the
information from compilers or applications. Through static
analysis of kernel source code, the compiler can infer some
information that may otherwise need to be obtained with
extra cost. In many applications such as databases and
in-memory big data engines, similar information can also
be easily inferred from application-level semantics. Second,
we also plan to investigate the collaboration between device
memory manager and GPU kernel scheduler for more op-
timization opportunities. For example, when there is not
enough free space in the device memory for the execution
of a selected kernel, the system should balance the bene-
fit of launching the kernel and the potential overhead. It
may also decide whether to schedule another kernel with a
smaller working set, or to wait for an issued kernel to finish
execution and free up the space.
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