
RCFile: A Fast and Space-efficient Data Placement
Structure in MapReduce-based Warehouse Systems
Yongqiang He #$1, Rubao Lee %2, Yin Huai %3, Zheng Shao #4, Namit Jain #5, Xiaodong Zhang %6, Zhiwei Xu $7

#Facebook Data Infrastructure Team
{1heyongqiang, 4zshao, 5njain}@fb.com

%Department of Computer Science and Engineering, The Ohio State University
{2liru, 3huai, 6zhang}@cse.ohio-state.edu

$Institute of Computing Technology, Chinese Academy of Sciences
7zxu@ict.ac.cn

Abstract—MapReduce-based data warehouse systems are
playing important roles of supporting big data analytics to un-
derstand quickly the dynamics of user behavior trends and their
needs in typical Web service providers and social network sites
(e.g., Facebook). In such a system, the data placement structure
is a critical factor that can affect the warehouse performance
in a fundamental way. Based on our observations and analysis
of Facebook production systems, we have characterized four
requirements for the data placement structure: (1) fast data
loading, (2) fast query processing, (3) highly efficient storage
space utilization, and (4) strong adaptivity to highly dynamic
workload patterns. We have examined three commonly accepted
data placement structures in conventional databases, namely row-
stores, column-stores, and hybrid-stores in the context of large
data analysis using MapReduce. We show that they are not very
suitable for big data processing in distributed systems. In this
paper, we present a big data placement structure called RCFile
(Record Columnar File) and its implementation in the Hadoop
system. With intensive experiments, we show the effectiveness
of RCFile in satisfying the four requirements. RCFile has been
chosen in Facebook data warehouse system as the default option.
It has also been adopted by Hive and Pig, the two most widely
used data analysis systems developed in Facebook and Yahoo!

I. INTRODUCTION
We have entered an era of data explosion, where many

data sets being processed and analyzed are called “big data”.
Big data not only requires a huge amount of storage, but
also demands new data management on large distributed
systems because conventional database systems have difficulty
to manage big data. One important and emerging application
of big data happens in social networks on the Internet, where
billions of people all over the world connect and the number
of users along with their various activities is growing rapidly.
For example, the number of registered users in Facebook, the
largest social network in the world has been over 500 million
[1]. One critical task in Facebook is to understand quickly the
dynamics of user behavior trends and user needs based on big
data sets recording busy user activities.
The MapReduce framework [2] and its open-source imple-

mentation Hadoop [3] provide a scalable and fault-tolerant
infrastructure for big data analysis on large clusters. Further-
more, MapReduce-based data warehouse systems have been
successfully built in major Web service providers and social

network Websites, and are playing critical roles for executing
various daily operations including Web click-stream analysis,
advertisement analysis, data mining applications, and many
others. Two widely used Hadoop-based warehouse systems
are Hive [4][5] in Facebook and Pig [6] in Yahoo!
These MapReduce-based warehouse systems cannot directly

control storage disks in clusters. Instead, they have to uti-
lize the cluster-level distributed file system (e.g. HDFS, the
Hadoop Distributed File System) to store a huge amount of
table data. Therefore, a serious challenge in building such a
system is to find an efficient data placement structure that
determines how to organize table data in the underlying HDFS.
Being a critical factor that can affect warehouse performance
in a fundamental way, such a data placement structure must be
well optimized to meet the big data processing requirements
and to efficiently leverage merits in a MapReduce environ-
ment.

A. Big Data Processing Requirements
Based on our analysis on Facebook systems and huge user

data sets, we have summarized the following four critical
requirements for a data placement structure in a MapReduce
environment.
1) Fast data loading. Loading data quickly is critical for
the Facebook production data warehouse. On average,
more than 20TB data are pushed into a Facebook data
warehouse every day. Thus, it is highly desirable to
reduce data loading time, since network and disk traffic
during data loading will interfere with normal query
executions.

2) Fast query processing. Many queries are response-time
critical in order to satisfy the requirements of both real-
time Website requests and heavy workloads of decision
supporting queries submitted by highly-concurrent users.
This requires that the underlying data placement struc-
ture retain the high speed for query processing as the
amount of queries rapidly increases.

3) Highly efficient storage space utilization. Rapidly grow-
ing user activities have constantly demanded scalable
storage capacity and computing power. Limited disk

978-1-4244-8958-9/11/$26.00 © 2011 IEEE ICDE Conference 20111199

space demands that data storage be well-managed, in
practice, to address the issues on how to place data in
disks so that space utilization is maximized.

4) Strong adaptivity to highly dynamic workload patterns.
Data sets are analyzed by different application users for
different purposes in many different ways [7]. Some
data analytics are routine processes that are executed
periodically in a static mode, while some are ad-hoc
queries issued from internal platforms. Most workloads
do not follow any regular patterns, which demand the
underlying system be highly adaptive to unexpected
dynamics in data processing with limited storage space,
instead of being specific to certain workload patterns.

B. Data Placement for MapReduce

A critical challenge in designing and implementing an
efficient data placement structure for a MapReduce-based
data warehouse system is to address the above four require-
ments considering unique features in a MapReduce computing
environment. In conventional database systems, three data
placement structures have been widely studied, which are:
1) horizontal row-store structure ([8]),
2) vertical column-store structure ([9][10][11][12]), and
3) hybrid PAX store structure ([13][14]).

Each of these structures has its advantages considering one
of the above requirements. However, simply porting these
database-oriented structures into a MapReduce-based data
warehouse system cannot fully satisfy all four requirements.
We here briefly summarize major limitations of these struc-

tures for big data, and will provide a detailed evaluation on the
three structures in Section II. First, row-store cannot support
fast query processing because it cannot skip unnecessary
column reads when a query only requires only a few columns
from a wide table with many columns [10]. Second, column-
store can often cause high record reconstruction overhead with
expensive network transfers in a cluster. This is because, with
column-store, HDFS cannot guarantee that all fields in the
same record are stored in the same cluster node. Although
pre-grouping multiple columns together can reduce the over-
head, it does not have a strong adaptivity to respond highly
dynamic workload patterns. Third, with the goal of optimizing
CPU cache performance, the hybrid PAX structure that uses
column-store inside each disk page cannot help improve the
I/O performance [15][12] for analytics of big data.
In this paper, we present our data placement structure, called

RCFile (Record Columnar File), and its implementation in
Hadoop. We highlight the RCFile structure as follows.
1) A table stored in RCFile is first horizontally partitioned
into multiple row groups. Then, each row group is
vertically partitioned so that each column is stored
independently.

2) RCFile utilizes a column-wise data compression within
each row group, and provides a lazy decompression
technique to avoid unnecessary column decompression
during query execution.

3) RCFile allows a flexible row group size. A default size
is given considering both data compression performance
and query execution performance. RCFile also allows
users to select the row group size for a given table.

We have implemented RCFile in Hadoop. As to be dis-
cussed and evaluated in this paper, RCFile can satisfy all the
above four requirements, since it not only retains the merits
of both the row-store and the column-store, and also has
added PAX’s missing role of I/O performance improvement.
After extensive evaluation in production systems, RCFile has
been chosen in the Facebook Hive data warehouse system as
the default option. Besides, RCFile has also been adopted
in the Yahoo Pig system, and is being considered in other
MapReduce-based data processing systems.
The rest of the paper is organized as follows. We present a

detailed analysis of existing three data placement structures in
Section II. We present the design, implementation, and several
critical issues of our solution RCFile in Section III. In Section
IV, we introduce the API of RCFile. Performance evaluation
is presented in Section V. We overview other related work in
Section VI, and conclude the paper in Section VII.

II. MERITS AND LIMITATIONS OF EXISTING DATA
PLACEMENT STRUCTURES

In this section, we will introduce three existing data place-
ment structures, and discuss why they may not be suitable to
a Hadoop-based data warehouse system.

A. Horizontal Row-store
The row-store structure dominates in conventional one-size-

fits-all database systems [16]. With this structure, relational
records are organized in an N-ary storage model [8]. All fields
of one record are padded one by one in the order of their
occurrences. Records are placed contiguously in a disk page.
Figure 1 gives an example to show how a table is placed by
the row-store structure in an HDFS block.
The major weaknesses of row-store for read-only data

warehouse systems have been intensively discussed. First, row-
store cannot provide fast query processing due to unnecessary
column reads if only a subset of columns in a table are needed
in a query. Second, it is not easy for row-store to achieve a
high data compression ratio (and thus a high storage space
utilization) due to mixed columns with different data domains

Fig. 1: An example of row-store in an HDFS block.

1200

[10][11]. Although prior work [17][18] has shown that row-
store with careful entropy coding and the utilization of column
correlations can have a better data compression ratio than
that of column-store, it can cause a high data decompression
overhead by complex data storage implementations.
The major advantage of row-store for a Hadoop-based sys-

tem is that it has fast data loading and strong adaptive ability
to dynamic workloads. This is because row-store guarantees
that all fields in the same record is located in the same cluster
node since they are in the same HDFS block.

B. Vertical Column-store
The vertical store scheme is based on a column-oriented

store model for read-optimized data warehouse systems. In
a vertical storage, a relation is vertically partitioned into
several sub-relations. Basically, there are two schemes of
vertical stores. One scheme is to put each column in one sub-
relation, such as the Decomposition Storage Model (DSM)
[9], MonetDB [19], and an experimental system in [15].
Another scheme is to organize all the columns of a rela-
tion into different column groups, and usually allow column
overlapping among multiple column groups, such as C-store
[10] and Yahoo Zebra [20]. In this paper, we call the first
scheme the column-store, and the second one the column-
group. Notice that, for column-group, how data is organized
(row-oriented or column-oriented) in a group is dependent on
system implementations. In C-store, a column group uses the
column-store model, i.e., each column is stored individually.
However, to accelerate a record reconstruction activity, all
columns in a column group must be ordered in the same way.
In Zebra used for the Pig System, a column group is actually
row-oriented to reduce the overhead of a record reconstruction
in a MapReduce environment.
Figure 2 shows an example on how a table is stored by

column-group on HDFS. In this example, column A and
column B are stored in the same column group, while column
C and columnD are stored in two independent column groups.
Column-store can avoid reading unnecessary columns dur-

ing a query execution, and can easily achieve a high com-
pression ratio by compressing each column within the same
data domain. However, it cannot provide fast query processing
in Hadoop-based systems due to high overhead of a tuple
reconstruction. Column-store cannot guarantee that all fields
in the same record are located in the same cluster node. For
instance, in the example in Figure 2, the four fields of a record
are stored in three HDFS blocks that can be located in different
nodes. Therefore, a record reconstruction will cause a large
amount of data transfers via networks among multiple cluster
nodes. As introduced in the original MapReduce paper [2],
excessive network transfers in a MapReduce cluster can always
be a bottleneck source, which should be avoided if possible.
Since a column group is equivalent to a materialized

view, it can avoid the overhead of a record reconstruction
[10]. However, it cannot satisfy the requirement of quickly
adapting dynamic workloads, unless all column groups have
been created with the pre-knowledge of possible queries.

Otherwise, for a query that needs a non-existing combination
of columns, a record reconstruction is still required to use
two or more existing column groups. Furthermore, column-
group can also create redundant column data storage due to
the column overlap among multiple groups. This would under-
utilize storage space.

C. Hybrid Store: PAX
PAX [13] and its improvement in Data Morphing [21] use

a hybrid placement structure aiming at improving CPU cache
performance. For a record with multiple fields from different
columns, instead of putting these fields into different disk
pages, PAX puts them in a single disk page to save additional
operations for record reconstructions. Within each disk page,
PAX uses a mini-page to store all fields belonging to each
column, and uses a page header to store pointers to mini-
pages.
Like row-store, PAX has a strong adaptive ability to various

dynamic query workloads. However, since it was mainly pro-
posed for performance improvement of CPU cache utilization
for data sets loaded in main memory, PAX cannot directly
satisfy the requirements of both high storage space utilization
and fast query processing speed on large distributed systems
for the following three reasons.
1) PAX is not associated with data compression, which is
not necessary for cache optimization, but very important
for large data processing systems. It does provide an
opportunity to do column-wise data compression [13].

2) PAX cannot improve I/O performance because it does
not change the actual content of a page [15][12]. This

Fig. 2: An example of column-group in an HDFS block. The four columns
are stored into three column groups, since column A and B are grouped in
the first column group.

1201

limitation would not help our goal of fast query pro-
cessing for a huge amount of disk scans on massively
growing data sets.

3) Limited by the page-level data manipulation inside a
traditional DBMS engine, PAX uses a fixed page as the
basic unit of data record organization. With such a fixed
size, PAX would not efficiently store data sets with a
highly-diverse range of data resource types of different
sizes in large data processing systems, such as the one
in Facebook.

III. THE DESIGN AND IMPLEMENTATION OF RCFILE

In this section, we present RCFile (Record Columnar File),
a data placement structure designed for MapReduce-based data
warehouse systems, such as Hive. RCFile applies the concept
of “first horizontally-partition, then vertically-partition” from
PAX. It combines the advantages of both row-store and
column-store. First, as row-store, RCFile guarantees that data
in the same row are located in the same node, thus it has
low cost of tuple reconstruction. Second, as column-store,
RCFile can exploit a column-wise data compression and skip
unnecessary column reads.

A. Data Layout and Compression
RCFile is designed and implemented on top of the Hadoop

Distributed File System (HDFS). As demonstrated in the
example shown in Figure 3, RCFile has the following data
layout to store a table:
1) According to the HDFS structure, a table can have
multiple HDFS blocks.

2) In each HDFS block, RCFile organizes records with
the basic unit of a row group. That is to say, all the
records stored in an HDFS block are partitioned into
row groups. For a table, all row groups have the same
size. Depending on the row group size and the HDFS
block size, an HDFS block can have only one or multiple
row groups.

Fig. 3: An example to demonstrate the data layout of RCFile in an HDFS
block.

3) A row group contains three sections. The first section is
a sync marker that is placed in the beginning of the row
group. The sync marker is mainly used to separate two
continuous row groups in an HDFS block. The second
section is a metadata header for the row group. The
metadata header stores the information items on how
many records are in this row group, how many bytes
are in each column, and how many bytes are in each
field in a column. The third section is the table data
section that is actually a column-store. In this section,
all the fields in the same column are stored continuously
together. For example, as shown in Figure 3, the section
first stores all fields in column A, and then all fields in
column B, and so on.

We now introduce how data is compressed in RCFile. In
each row group, the metadata header section and the table
data section are compressed independently as follows.

• First, for the whole metadata header section, RCFile uses
the RLE (Run Length Encoding) algorithm to compress
data. Since all the values of the field lengths in the same
column are continuously stored in this section, the RLE
algorithm can find long runs of repeated data values,
especially for fixed field lengths.

• Second, the table data section is not compressed as a
whole unit. Rather, each column is independently com-
pressed with the Gzip compression algorithm. RCFile
uses the heavy-weight Gzip algorithm in order to get
better compression ratios than other light-weight algo-
rithms. For example, the RLE algorithm is not used since
the column data is not already sorted. In addition, due
to the lazy decompression technology to be discussed
next, RCFile does not need to decompress all the columns
when processing a row group. Thus, the relatively high
decompression overhead of the Gzip algorithm can be
reduced.

Though currently RCFile uses the same algorithm for all
columns in the table data section, it allows us to use different
algorithms to compress different columns. One future work
related to the RCFile project is to automatically select the
best compression algorithm for each column according to its
data type and data distribution.

B. Data Appending
RCFile does not allow arbitrary data writing operations.

Only an appending interface is provided for data writing in
RCFile because the underlying HDFS currently only supports
data writes to the end of a file. The method of data appending
in RCFile is summarized as follows.
1) RCFile creates and maintains an in-memory column
holder for each column. When a record is appended,
all its fields will be scattered, and each field will
be appended into its corresponding column holder. In
addition, RCFile will record corresponding metadata of
each field in the metadata header.

2) RCFile provides two parameters to control how many
records can be buffered in memory before they are

1202

flushed into the disk. One parameter is the limit of the
number of records, and the other parameter is the limit
of the size of the memory buffer.

3) RCFile first compresses the metadata header and stores
it in the disk. Then it compresses each column holder
separately, and flushes compressed column holders into
one row group in the underlying file system.

C. Data Reads and Lazy Decompression
Under the MapReduce framework, a mapper is started for

an HDFS block. The mapper will sequentially process each
row group in the HDFS block.
When processing a row group, RCFile does not need to

fully read the whole content of the row group into memory.
Rather, it only reads the metadata header and the needed
columns in the row group for a given query. Thus, it can skip
unnecessary columns and gain the I/O advantages of column-
store. For instance, suppose we have a table with four columns
tbl(c1, c2, c3, c4), and we have a query “SELECT c1 FROM
tbl WHERE c4 = 1”. Then, in each row group, RCFile only
reads the content of column c1 and c4.
After the metadata header and data of needed columns have

been loaded into memory, they are all in the compressed
format and thus need to be decompressed. The metadata
header is always decompressed and held in memory until
RCFile processes the next row group. However, RCFile does
not decompress all the loaded columns. Instead, it uses a lazy
decompression technique.
Lazy decompression means that a column will not be

decompressed in memory until RCFile has determined that the
data in the column will be really useful for query execution.
Lazy decompression is extremely useful due to the existence
of various where conditions in a query. If a where condition
cannot be satisfied by all the records in a row group, then
RCFile does not decompress the columns that do not occur in
the where condition. For example, in the above query, column
c4 in any row group must be decompressed. However, for a
row group, if no field of column c4 in the group has the value
1, then it is unnecessary to decompress column c1 in the group.

D. Row Group Size
I/O performance is a major concern of RCFile. Therefore,

RCFile needs to use a large and flexible row group size. There
are two considerations to determine the row group size:
1) A large row group size can have better data compression
efficiency than that of a small one. However, according
to our observations of daily applications in Facebook,
when the row group size reaches a threshold, increasing
the row group size cannot further improve compression
ratio with the Gzip algorithm.

2) A large row group size may have lower read perfor-
mance than that of a small size because a large size can
decrease the performance benefits of lazy decompres-
sion. Furthermore, a large row group size would have
a higher memory usage than a small size, and would
affect executions of other co-running MapReduce jobs.

1) Compression efficiency: In order to demonstrate how
different row group sizes can affect the compression ratio, we
have conducted an experiment with a portion of data from a
table in Facebook. We examined the table sizes using different
row group sizes (from 16KB to 32MB), and the results are
shown in Figure 4.

Fig. 4: Data storage size with different row group sizes in RCFile.

We can see that a large row group size can certainly improve
the data compression efficiency and decrease the storage size.
Therefore, we could not use a small row group size with the
requirement of reducing storage space. However, as shown in
Figure 4, when the row group size are larger than 4MB, the
compressed data size in the storage almost becomes a constant.
2) The relationship between row group size and lazy decom-

pression: Though a large row group size helps decrease the
storage size for a table, it may hurt the data read performance,
since a small row group size is a better choice to gain the
performance advantage of lazy decompression than a large
row group size.
We present an example to demonstrate the relationship

between row group size and lazy decompression. Consider
a query “SELECT a,b,c,d FROM tbl WHERE e = 1”. We
assume that in an HDFS block, only one record of the table can
satisfy the condition of e = 1. We now consider an extreme
case where the row group size is as large as possible so that
the HDFS block contains only one row group. In this case,
RCFile will decompress column e first to check the where
condition, and find that the condition can be satisfied in this
row group. Therefore, RCFile will also decompress all the
other four columns (a, b, c, d) since they are needed by the
query.
However, since only one record in the HDFS block is

actually useful, i.e., the one with e = 1, it is not necessary to
decompress the other data items of columns (a, b, c, d) except
this record. If we use a small row group size, then there is only
one useful row group that contains the record with e = 1, and
all other row groups are useless for this query. Therefore, only
in the useful row group, all the five columns (a, b, c, d, e) need
to be decompressed. In other useless row groups, only column
e needs to be decompressed, and the other four columns will
not be decompressed, since the where condition cannot be
satisfied. Thus, the query execution time can be decreased.
Users should choose the row group size to consider both

1203

the storage space and query execution requirements. Currently,
RCFile adapted in Facebook uses 4MB as the default row
group size. The RCFile library provides a parameter to allow
users to select a size for their own table.

IV. THE API OF RCFILE
RCFile can be used in two ways. First, it can be used as the

input or output of a MapReduce program, since it implements
the standard interfaces of InputFormat, RecordReader
and OutputFormat. This is the way how RCFile is used in
Hive. Second, it can also be directly accessed through its inter-
faces exposed by RCFile.Reader and RCFile.Writer.

A. Usage in a MapReduce Program
The implementations of InputFormat, RecordReader

and OutputFormat in RCFile are RCFileInputFormat,
RCFileRecordReader, and RCFileOutputFormat,
respectively. When using RCFile in a MapReduce program
via these interfaces, there are two major configurations.
First, when using RCFile to read a table,

RCFileRecordReader needs to know which columns
of the table are needed. The following code example
demonstrates how to set such information. After the setting,
the configuration of hive.io.file.readcolumn.ids will be (2,3).

1 ArrayList<Integer> readCols = new ArrayList<Integer>();
2 readCols.add(Integer.valueOf(2));
3 readCols.add(Integer.valueOf(3));
4 ColumnProjectionUtils.setReadColumnIDs(conf, readCols);

Second, when using RCFile as output, the number of
columns needs to be specified in RCFileOutputFormat.
The following code example shows the methods to
set and get the number of columns. The call of
RCFileOutputFormat.setColumnNumber will set
the configuration value of hive.io.rcfile.column.number.conf.
RCFileOutputFormat.getColumnNumber can be
used to get the number of columns.

1 RCFileOutputFormat.setColumnNumber(conf,8);
2 RCFileOutputFormat.getColumnNumber(conf);

B. RCFile Reader and Writer
RCFile also provides Reader and Writer to allow applica-

tions to use RCFile in their own ways. RCFile Writer is simple
since it only supports data appending.
The interfaces of RCFile Reader are categorized into three

sets: common utilities, row-wise reading, and column-wise
reading. Table I summarizes these three categories. The fol-
lowing code example outlines how to use row-wise reading
methods of RCFile. Lines 1 to 6 define several critical vari-
ables. Lines 8 to 9 show the method to set needed columns.
In this example, columns 2 and 3 are used. Line 10 uses
method setReadColumnIDs to pass the information of
needed columns to RCFile. A RCFile Reader is created at

1 ArrayList<Integer> readCols;
2 LongWritable rowID;
3 BytesRefArrayWritable cols;
4 FileSystem fs;
5 Path file;
6 Configuration conf;
7
8 readCols.add(2);
9 readCols.add(3);
10 setReadColumnIDs(conf, readCols);
11
12 Reader reader = new Reader(fs, file, conf);
13
14 while (reader.next(rowID))
15 reader.getCurrentRow(cols);
16
17 reader.close();

line 12, and then the while loop (lines 14-15) is used to read
all the records one by one via the getCurrentRow method.
Notice that calling getCurrentRow does not mean that

all the fields in the row have been decompressed. Actually,
according to lazy decompression, a column will not be de-
compressed until one of its field is being deserialized. The
following code example shows the deserialization of a field
in column i. If this column has not been decompressed.
This procedure will trigger lazy decompression. In the code,
variable standardWritableData is the deserialized field.

1 row = serDe.deserialize(cols);
2 oi = serDe.getObjectInspector();
3 fieldRefs = oi.getAllStructFieldRefs();
4 fieldData = oi.getStructFieldData(row, fieldRefs.get(i));
5 standardWritableData =
6 ObjectInspectorUtils.copyToStandardObject(
7 fieldData,
8 fieldRefs.get(i).getFieldObjectInspector(),
9 ObjectInspectorCopyOption.WRITABLE);

TABLE I: Interfaces of RCFile.Reader

(a) Common Utilities

Method Action

Reader() Create RCFile reader
getPosition() Get the current byte offset from the beginning
close() Close the reader

(b) Row-wise reading

Method Action

next() Return if there is more data available. If
yes, advance the current reader pointer to
the next record

getCurrentRow() Return the current row

(c) Column-wise reading

Method Action

getColumn() Fetch an array of a specific column data of
the current row group

nextColumnsBatch() Return if there are more row groups avail-
able. If yes, discard all bytes of the current
row group and advance the current reader
pointer to the next row group

1204

V. PERFORMANCE EVALUATION
We have conducted experiments with RCFile and Hive at

Facebook to demonstrate the effectiveness of RCFile. The
experiments were done in a Facebook cluster with 40 nodes.
Most nodes are equipped with an Intel Xeon CPU with 8
cores, 32GB main memory, and 12 1TB disks. The operating
system is Linux (kernel version 2.6). In our experiments, we
have used the Hadoop 0.20.1, and the most recent version of
Hive.
We have conducted two groups of experiments. In the first

group, we have compared RCFile with row-store, column-
store, and column-group. In the second group, we have eval-
uated the performance of RCFile from the perspectives of
both storage space and query execution, by using different
row group sizes and different workloads.

A. RCFile versus Other Structures
In this group of experiments, we configured Hive to use

several different data placement structures. Row-store is im-
plemented as shown in Figure 1. For both column-store and
column-group, we have used the Zebra library [20], which
is widely used in the Pig system [6]. Zebra implements both
column-store and column-group. To conduct the experiments,
we have integrated the Zebra library into Hive with necessary
modifications.
Our goal in this group of experiments is to demonstrate the

effectiveness of RCFile in three aspects:
1) data storage space,
2) data loading time, and
3) query execution time.
Our workload is from the the benchmark proposed by Palvo

et al. [22]. This benchmark has been widely-used to evaluate
different large-scale data processing platforms [23].
1) Storage Space: We selected the USERVISITS table from

the benchmark, and generated the data set whose size is about
120GB. The generated data is all in plain text, and we loaded
it into Hive using different data placement structures. During
loading, data is compressed by the Gzip algorithm for each
structure.
The table has nine columns: sourceIP, destURL, visitDate,

adRevenue, userAgent, countryCode, languageCode, search-
Word, and duration. Most of them are of string type. By
column-group in Zebra, sourceIP and adRevenue are located
in the same column group, in order to optimize the queries in
the benchmark.
Figure 5 shows the storage space sizes required by the

raw data and by several data placement structures. We can
see that data compression can significantly reduce the storage
space, and different data placement structures show different
compression efficiencies as follows.

• Row-store has the worst compression efficiency compared
with column-store, column-group, and RCFile. This is
expected because that a column-wise data compression
is better than a row-wise data compression with mixed
data domains.

Fig. 5: Sizes (GB) of raw data and loaded tables with different data placement
structures in Hive.

• RCFile can reduce even more space than column-store
does. This is because the implementation of Zebra stores
column metadata and real column data together, so that it
cannot compress them separately. Recall the RCFile data
layout in Section III-A, RCFile uses two sections to store
the real data of each column and the metadata about this
column (mainly the length of each cell), and compress
the two sections independently. Thus, RCFile can have
better data compression efficiency than that of Zebra.

2) Data Loading Time: For a data placement structure, data
loading time (the time required by loading the raw data into the
data warehouse) is an important factor for daily operations in
Facebook. Reducing this time is critical since Facebook has to
load about 20TB data into the production warehouse everyday.
We have recorded the data loading times for the USERVIS-

ITS table in the above experiment. The results are shown in
Figure 6. We have the following observations:

• Among all cases, row-store always has the smallest
data loading time. This is because it has the minimum
overhead to re-organize records in the raw text file.

• Column-store and column-group have significantly long
loading times than both row-store and RCFile. This is
because each record in the raw data file will be written to
multiple HDFS blocks for different columns (or column
groups). Since these multiple blocks are not in the same
cluster node, data loading will cause much more network
overhead than using other structures.

• RCFile is slightly slower than row-store with a com-
parable performance in practice. This reflects the small
overhead of RCFile since it only needs to re-organize
records inside each row group whose size is significantly
smaller than the file size.

3) Query execution time: In this experiment, we executed
two queries on the RANKING table from the benchmark. The
table has three columns: pageRank, pageURL, and avgDura-
tion. Both of column pageRank and avgDuration are of integer
type, and pageURL is of string type. In Zebra, when using
column-group, we organized pageRank and pageURL in the

1205

Fig. 6: Data loading times.

same column group. When using column-store, each of the
three columns is stored independently. The queries are shown
as follows.

Q1: SELECT pagerank, pageurl FROM RANKING
WHERE pagerank > 400;

Q2: SELECT pagerank, pageurl FROM RANKING
WHERE pagerank < 400;

In order to evaluate the performance of lazy decompression
of RCFile, the two queries were designed to have different
selectivities according to their where conditions. It is about 5%
for (pagerank > 400), and about 95% for (pagerank < 400).
Figure 7a and 7b show the execution times of the two

queries with the four data placement structures. We have two
major observations.

• For Q1, RCFile outperforms the other three structures
significantly. This is because the lazy decompression
technique in RCFile can accelerate the query execution
with a low query selectivity.

• For Q2, column-group has the fastest query execution
speed since the high selectivity of this query makes lazy
decompression useless in this case. However, RCFile
still outperforms column-store. Note that the performance
advantage of column-group is not free. It highly relies
on pre-defined column combinations before query execu-
tions.

4) Summary: We have compared RCFile with other data
placement structures in three aspects of storage space, data
loading time and query execution time. We show that each
structure has its own merits for only one aspect. In contrast,
our solution RCFile, which adopts advantages of other struc-
tures, is the best choice in almost all the cases.

B. RCFile with Different Row Group Sizes
In this group of experiments, we have examined how the

row group size can affect data storage space and query execu-
tion time. We used two different workloads. The first workload

(a) Q1 (b) Q2

Fig. 7: Query execution times.

is the industry standard TPC-H benchmark for warehousing
system evaluations. The second workload is generated by daily
operations for advertisement business in Facebook.
1) TPC-H workload: We selected Q1 and Q6 from the

benchmark as our queries. Both the two queries execute aggre-
gations on the largest table LINEITEM. In our experiment, we
examined the storage space for this table and query execution
times with three different row group sizes (8KB, the default
4MB, and 16MB). The LINEITEM has 16 columns, and the
two queries only use a small number of columns, and never
touch the largest column l comments. In addition, we have also
tested row-store structure for performance comparisons.
Figure 8 (a) shows the storage space for different config-

urations. We can see that with a small 8KB row group size,
RCFile needs more storage space than row-store. However,
when increasing the row group size to 4MB and 16MB,
RCFile can significantly decrease storage space compared with
row-store. In addition, in this Figure, we cannot see a big
gap between the cases of 4MB and 16MB. This means that
increasing row group size after a threshold would not help
improve data compression efficiency significantly.
Figure 8 (b) and (c) show the query execution times of Q1

and Q6, respectively. We can see that RCFile, no matter with
what row group size, can significantly outperform row-store.
This reflects the advantage of RCFile over row-store, which
skips unnecessary columns as column-store structure does.
Among the three row group sizes, the middle value (4MB)

achieves the best performance. As shown in Figure 8 (a),
since the 4MB row group size can decrease table size much
more effectively than a small size of 8KB, it can significantly
reduce the amount of disk accesses and thus accelerate query
execution. It is also not surprisingly to find that the large
16MB row group size is slower than 4MB for both queries.
First, as shown in Figure 8 (a), the two sizes (16MB and
4MB) have almost the same compression efficiency. Thus, the
large row group size cannot gain further I/O space advantage.
Second, according to the current RCFile’s implementation,
it has more overhead to manage a large row group that
must be decompressed and held in memory. Furthermore,
a large row group can also decrease the advantage of lazy

1206

(a) Table Size (b) TPC-H Q1 (c) TPC-H Q6

Fig. 8: The TPC-H workloads.

(a) Table Size (b) Query A (c) Query B

Fig. 9: The Facebook workload.

decompression, and cause unnecessary data decompression as
we have discussed in Section III-D.
2) Facebook workload: We have further used a Facebook

workload to examine how the row group size can affect
RCFile’s performance. In this experiment, we examined dif-
ferent row group sizes (8KB, 1MB, 4MB, 16MB, and 64MB),
The experiment was conducted on the table to store the
advertisement click-stream in Facebook. The table (namely
adclicks) is very wide with 38 columns. In this experiment,
we used the trace collected in one day, and its size by row-
store with compression is about 1.3TB. We used two queries
as follows.

Query A: SELECT adid, userid FROM adclicks;

Query B: SELECT adid, userid FROM adclicks
WHERE userid="X";

Figure 9 (a) shows the table sizes. Figure 9 (b) and (c)
show the average mapper time of the MapReduce job for the
query execution of Query A and Query B. The mapper time
reflects the performance of the underlying RCFile structure.
From the viewpoints of both data compression and query
execution times, these results are consistent with the previously
presented TPC-H results. In summary, all these results show
that a range of from 4MB (the default value) to 16MB is an
effective selection as the row group size.
In addition, when comparing the query execution times of

Query A and Query B in Figure 9 (b) and (c), we can have two

distinct observations. First, for row-store, the average mapper
time of Query B is even longer than that of Query A. This
is expected since Query B has a where condition that causes
more computations. Second, however, for RCFile with the row
group size, the average mapper time of Query B is significantly
shorter than that of Query A. This reflects the performance
benefit of lazy decompression of RCFile. Due to the existence
of a where condition in Query B, a lazy decompression can
avoid to decompress unnecessary data and thus improve query
execution performance.

VI. OTHER RELATED WORK

We have introduced and evaluated the row-store, the
column-store/column-group, and the hybrid PAX store im-
plemented in conventional database systems in Section II.
Detailed comparison, analysis, and improvement of these three
structures in data compression and query performance can be
found in [17][15][24][18][12][11].
In the context of MapReduce-based data warehouse sys-

tems, Zebra [20] was the first effort to utilize the column-
store/column-group in the Yahoo Pig system on top of Hadoop.
As we have discussed in Section II and evaluated in Section
V, Zebra’s performance is highly dependent on how column
groups have been pre-defined. The most recently related work
to RCFile is a data storage component in the Cheetah system
[25]. Like RCFile, the Cheetah system also first horizontally
partitions a table into small units (each unit is called a cell),

1207

and then vertically stores and compresses each column inde-
pendently. However, Cheetah will further use Gzip to compress
the whole cell. Thus, during query execution, Cheetah has to
read from the storage and decompress the whole cell before
processing any data in a cell. Compared to Cheetah, RCFile
can skip unnecessary column reads by independent column
compression, and avoid unnecessary column decompression
by the lazy decompression technique.
Other related work includes the Google Bigtable sys-

tem [26] and its open-source implementation Hbase [27]
built on Hadoop. The major difference between RCFile and
Bigtable/Hbase is that RCFile serves as a storage struc-
ture for the almost read-only data warehouse system, while
Bigtable/Hbase is mainly a low-level key-value store for both
read- and write-intensive applications.

VII. CONCLUSION
A fast and space-efficient data placement structure is very

important to big data analytics in large-scale distributed
systems. According to our analysis on Facebook produc-
tion systems, big data analytics in a MapReduce-based data
warehouse has four critical requirements to the design and
implementation of a data placement structure, namely 1) fast
data loading, 2) fast query processing, 3) highly efficient
storage space utilization, and 4) strong adaptivity to highly
dynamic workload patterns. Our solution RCFile is designed
to meet all the four goals, and has been implemented on top
of Hadoop. First, RCFile has comparable data loading speed
and workload adaptivity with the row-store. Second, RCFile is
read-optimized by avoiding unnecessary column reads during
table scans. It outperforms the other structures in most of
cases. Third, RCFile uses column-wise compression and thus
provides efficient storage space utilization.
RCFile has been integrated into Hive, and plays an im-

portant role in daily Facebook operations. It is now used
as the default storage structure option for internal data pro-
cessing systems at Facebook. In order to improve storage
space utilization, all the recent data generated by various
Facebook applications since 2010 have been stored in the
RCFile structure, and the Facebook data infrastructure team
is currently working to transform existing data sets stored in
the row-store structure at Facebook into the RCFile format.
RCFile has been adopted in data processing systems be-

yond the scope of Facebook. An integration of RCFile to
Pig is being developed by Yahoo! RCFile is used in an-
other Hadoop-based data management system called Howl
(http://wiki.apache.org/pig/Howl). In addition, according to
communications in the Hive development community, RCFile
has been successfully integrated into other MapReduce-based
data analytics platforms. We believe that RCFile will continue
to play its important role as a data placement standard for big
data analytics in the MapReduce environment.

VIII. ACKNOWLEDGMENTS
We thank Joydeep Sen Sarma for his initial thought about

RCFile. We appreciate Bill Bynum for his careful reading of

the paper. We thank anonymous reviewers for their feedback to
improve the readability of the paper. This work is supported
in part by China Basic Research Program (2011CB302500,
2011CB302800), the Co-building Program of Beijing Mu-
nicipal Education Commission, and the US National Science
Foundation under grants CCF072380 and CCF0913050.

REFERENCES
[1] http://www.facebook.com/press/info.php?statistics.
[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters,” in OSDI, 2004, pp. 137–150.
[3] http://hadoop.apache.org/.
[4] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive - a warehousing solution over a Map-
Reduce framework,” PVLDB, vol. 2, no. 2, pp. 1626–1629, 2009.

[5] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Anthony, H. Liu, and R. Murthy, “Hive - a petabyte scale data
warehouse using hadoop,” in ICDE, 2010, pp. 996–1005.

[6] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava, “Building a highlevel dataflow
system on top of MapReduce: The Pig experience,” PVLDB, vol. 2, no. 2,
pp. 1414–1425, 2009.

[7] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S. Sarma,
R. Murthy, and H. Liu, “Data warehousing and analytics infrastructure
at facebook,” in SIGMOD Conference, 2010, pp. 1013–1020.

[8] R. Ramakrishnan and J. Gehrke, “Database management systems,”
McGraw-Hill, 2003.

[9] G. P. Copeland and S. Khoshafian, “A decomposition storage model,”
in SIGMOD Conference, 1985, pp. 268–279.

[10] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik, “C-store: A column-oriented dbms,”
in VLDB, 2005, pp. 553–564.

[11] D. J. Abadi, S. Madden, and N. Hachem, “Column-stores vs. row-stores:
how different are they really?” in SIGMOD Conference, 2008.

[12] A. L. Holloway and D. J. DeWitt, “Read-optimized databases, in depth,”
PVLDB, vol. 1, no. 1, pp. 502–513, 2008.

[13] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
relations for cache performance,” in VLDB, 2001, pp. 169–180.

[14] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener, and
G. Graefe, “Query processing techniques for solid state drives,” in
SIGMOD Conference, 2009, pp. 59–72.

[15] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden, “Performance
tradeoffs in read-optimized databases,” in VLDB, 2006, pp. 487–498.

[16] M. Stonebraker and U. Çetintemel, “One size fits all: An idea whose
time has come and gone (abstract),” in ICDE, 2005, pp. 2–11.

[17] V. Raman and G. Swart, “How to wring a table dry: Entropy compression
of relations and querying of compressed relations,” in VLDB, 2006.

[18] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann,
I. Narang, and R. Sidle, “Constant-time query processing,” in ICDE,
2008, pp. 60–69.

[19] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database architecture
optimized for the new bottleneck: Memory access,” in VLDB, 1999.

[20] http://wiki.apache.org/pig/zebra.
[21] R. A. Hankins and J. M. Patel, “Data morphing: An adaptive, cache-

conscious storage technique,” in VLDB, 2003, pp. 417–428.
[22] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in SIGMOD Conference, 2009, pp. 165–178.

[23] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Sil-
berschatz, “HadoopDB: An architectural hybrid of MapReduce and
DBMS technologies for analytical workloads,” PVLDB, vol. 2, no. 1,
pp. 922–933, 2009.

[24] A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt, “How to barter
bits for chronons: compression and bandwidth trade offs for database
scans,” in SIGMOD Conference, 2007, pp. 389–400.

[25] S. Chen, “Cheetah: A high performance, custom data warehouse on top
of mapreduce,” PVLDB, vol. 3, no. 2, pp. 1459–1468, 2010.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed
storage system for structured data,” in OSDI, 2006, pp. 205–218.

[27] http://hbase.apache.org.

1208

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
