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Abstract

Flash memory based solid state drives (SSDs) have

shown a great potential to change storage infrastructure

fundamentally through their high performance and low

power. Most recent studies have mainly focused on address-

ing the technical limitations caused by special requirements

for writes in flash memory. However, a unique merit of an

SSD is its rich internal parallelism, which allows us to offset

for the most part of the performance loss related to techni-

cal limitations by significantly increasing data processing

throughput.

In this work we present a comprehensive study of essen-

tial roles of internal parallelism of SSDs in high-speed data

processing. Besides substantially improving I/O bandwidth

(e.g. 7.2x), we show that by exploiting internal parallelism,

SSD performance is no longer highly sensitive to access

patterns, but rather to other factors, such as data access in-

terferences and physical data layout. Specifically, through

extensive experiments and thorough analysis, we obtain the

following new findings in the context of concurrent data pro-

cessing in SSDs. (1) Write performance is largely indepen-

dent of access patterns (regardless of being sequential or

random), and can even outperform reads, which is oppo-

site to the long-existing common understanding about slow

writes on SSDs. (2) One performance concern comes from

interference between concurrent reads and writes, which

causes substantial performance degradation. (3) Parallel

I/O performance is sensitive to physical data-layout map-

ping, which is largely not observed without parallelism. (4)

Existing application designs optimized for magnetic disks

can be suboptimal for running on SSDs with parallelism.

Our study is further supported by a group of case studies

in database systems as typical data-intensive applications.

With these critical findings, we give a set of recommen-

dations to application designers and system architects for

exploiting internal parallelism and maximizing the perfor-

mance potential of SSDs.

1 Introduction

The I/O performance of Hard Disk Drives (HDDs) has
been regarded as a major performance bottleneck for high-
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speed data processing, due to the excessively high latency

of HDDs for random data accesses and low throughput of
HDDs for handling multiple concurrent requests. Recently
Flash Memory based Solid State Drives (SSDs) have been
incorporated into storage systems. Unlike HDDs, an SSD
is built entirely of semiconductor chips with no moving
parts. Such an architectural difference provides a great po-
tential to address fundamentally the technical issues of ro-
tating media. In fact, researchers have made extensive ef-
forts to adopt this solid state storage technology in storage
systems and proposed solutions for performance optimiza-
tions (e.g. [8, 18, 27, 31]). Most of the work has focused
on leveraging the high random data access performance of
SSDs and addressing their technical limits (e.g. slow ran-
dom writes). Among these studies, however, an important
functionality of SSDs has not received sufficient attention
and is rarely discussed in the existing literature, which is
the internal parallelism, a unique and rich resource pro-
vided by SSDs. Parallelism has been reported earlier not
to be beneficial to performance [5]. A recent study [20] on
the advances of SSD technology reports that with the sup-
port of native command queuing (NCQ), the state-of-the-art
SSDs are capable of handling multiple I/O jobs simultane-
ously and achieving a high throughput. In this paper, we
will show that the impact of internal parallelism is far be-
yond the scope of the basic operations of SSDs. We be-
lieve that the use of internal parallelism can lead to a fun-
damental change in the current sequential-access-oriented
optimization model adopted in system and application de-
signs, which is particularly important for data-intensive ap-
plications.

1.1 Internal Parallelism in SSDs

There are two inherent architectural limitations in the de-
sign of SSDs. First, due to current technical constraints,
one single flash memory package can only provide limited
bandwidth (e.g. 32-40MB/sec [3]). Second, writes in flash
memory are often much slower than reads, and many criti-
cal operations, such as garbage collection and wear-leveling
[3, 6, 10], can incur latencies as high as milliseconds.

To address these limitations, SSD architects have built an
ingenious structure to provide internal parallelism – Most
SSDs are built on an array of flash memory packages, which
are connected through multiple (e.g. 2-10) channels to flash



memory controllers. SSDs provide logical block addresses
(LBA) as a logical interface to the host. Since logical blocks
can be striped over multiple flash memory packages, data
accesses can be conducted independently in parallel. Such
a highly parallelized design yields two benefits: (1) Trans-
ferring data from/to multiple flash memory packages in par-
allel can provide high bandwidth in aggregate. (2) High-
latency operations can be effectively hidden behind other
concurrent operations. Therefore, the internal parallelism,
in essence, is not only an inherent functionality but also a
basic requirement for SSDs to deliver high performance.

Exploiting I/O parallelism has been studied in conven-
tional HDD-based storage, such as RAID [24], a storage
based on multiple hard disks. However, there are two fun-
damental differences between the SSD and RAID architec-
tures, which demand thorough and new investigations: (1)
Different logical/physical mapping mechanisms – In RAID,
a logical block is statically mapped to a “fixed” physical
location, which is determined by its logical block number
(LBN) [24]. In SSD, a logical block can be dynamically

mapped to any physical location, which changes with writes
during runtime. This has called our particular attention to a
unique data layout problem in SSDs, and we will show that
an ill-mapped data layout can cause significant performance
degradation, while such a problem is unlikely to happen in
RAID. (2) Different physical natures – RAID is built on
magnetic disks, whose random access performance is often
one order of magnitude lower than sequential access, while
SSDs are built on flash memories, in which such a perfor-
mance gap is much smaller. The difference in physical na-
tures can strongly impact the existing sequentiality-based
application designs, because without any moving parts, par-
allelizing I/O operations on SSDs can make random ac-
cesses capable of performing comparably or even slightly
better than sequential accesses, while this is difficult to im-
plement in RAID. Therefore, a careful and insightful study
of the internal parallelism of this emerging storage technol-
ogy is highly desirable for storage architects, system de-
signers, and data-intensive application users.

1.2 Research and Technical Challenges

On one hand, the internal parallelism makes a single
SSD capable of handling multiple incoming I/O requests in
parallel and achieving a high bandwidth. On the other hand,
the internal parallelism cannot be effectively exploited un-
less we address the three following critical challenges.

• The performance gains from internal parallelism are

highly dependent on how the SSD internal structure
is insightfully understood and effectively utilized. In-
ternal parallelism is an architecture dependent resource.
For example, the mapping policy directly determines the
data layout across flash memory packages, which signifi-
cantly affects the efficiency of parallelizing data accesses.
In our experiments, we find that an ill-mapped data lay-
out can cause up to 4.2 times higher latency for parallel
accesses on an SSD. Without knowing the SSD internals,

the anticipated performance gains are difficult to achieve.
Meanwhile, uncovering such a low-level architectural in-
formation without changing the strictly defined interface
is very challenging. In this paper we will present a set of
simple yet effective experimental techniques to achieve
this goal.

• Parallel data accesses can compete for critical hard-

ware resources in SSDs, and such interference would

cause unexpected performance degradation. Increas-
ing parallelism is a double-edged sword. On one hand,
high concurrency would generally improve resource uti-
lization and increase I/O throughput. On the other hand,
sharing and competing for critical resources may cause
undesirable interference and performance loss. For ex-
ample, we find mixing reads and writes can cause a
throughput decrease as high as 4.5 times for writes. Only
by understanding both benefits and side effects of I/O
parallelism on an SSD can we effectively exploit its per-
formance potential while avoiding its negative effects.

• Exploiting internal parallelism in SSDs demands

fundamental changes to the existing program de-
sign and the sequential-access-oriented optimization

model adopted in software systems. Most existing ap-
plications, such as database systems, assume that the un-
derlying storage device is a hard disk drive. As a re-
sult, they mostly focus on how to sequentialize rather
than parallelize data accesses for improving storage per-
formance (e.g. [16]). Moreover, many optimization de-
cisions embedded in application designs are implicitly
based on such an assumption, which would unfortunately
be problematic when being applied to SSDs. In our case
studies on the PostgreSQL database system, we not only
show that speedups by up to a factor of 5 can be achieved
by parallelizing a query with multiple sub-queries, but
more importantly, we also show that with I/O parallelism,
the query optimizer, a key component in database sys-
tems, would make an incorrect decision when selecting
the optimal query plan, which should receive a particular
attention from application and system designers.

1.3 Critical Issues for Investigation

In this work, we strive to address the above three chal-
lenges by answering several critical questions related to
the internal parallelism of SSDs and revealing some untold
facts and unexpected dynamics in SSDs.

• Limited by the ‘thin’ interface between the storage device
and the host, how can we effectively uncover the key ar-
chitectural features of an SSD? Of the most interest, how
is the physical data layout determined in an SSD?

• The effectiveness of parallelizing data access depends on
many factors, such as workload access patterns, resource
redundancy, and others. Can we quantify the benefit of
I/O parallelism and its relationship to these factors?



• Reads and writes on SSDs both generate many asyn-
chronous background operations and thus may interfere
with each other. Can we quantitatively show such interac-
tive effects between parallel data accesses? Would such
interference impair the effectiveness of parallelism?

• Readahead improves read performance on SSDs but it is
sensitive to read patterns [6]. Would I/O parallelism af-
fect the readahead? How should we choose between in-
creasing parallelism and retaining effective readahead?

• The physical data layout on an SSD could change on the
fly. How does an ill-mapped data layout affect the effi-
ciency of I/O parallelism and the readahead?

• Applications can leverage internal parallelism to opti-
mize the data access performance. How much perfor-
mance benefit can we achieve in practice?

• Many optimizations in applications are specifically tai-
lored to the properties of hard disk drives and may be in-
effective for SSDs. Can we make a case that parallelism-
based optimizations would become a critical considera-
tion for maximizing data access performance on SSDs?

In this paper, we will answer these questions, and we
hope our experimental analysis and case studies will in-
fluence the system and application designers to rethink
carefully the current sequential-access-oriented optimiza-
tion model and treat parallelism as a top priority on SSDs.

The rest of this paper is organized as follows. Section 2
provides the background. Section 3 introduces our experi-
mental system and methodology. Section 4 presents how to
detect the SSD internals. Section 5 and 6 present our exper-
imental and case studies on SSDs. Section 7 discusses the
system implications of our findings. Related work is given
in Section 8. The last section concludes this paper.

2 Background of SSD Architecture

2.1 SSD Internals

A typical SSD includes four major components (Figure
1). A host interface logic connects to the host through an
interface connection (e.g. SATA or IDE bus). An SSD con-

trollermanages flash memory space, translates incoming re-
quests, and issues commands to flash memory packages via
a flash memory controller. Some SSDs have a dedicated
DRAM buffer to hold metadata or data, and some SSDs
only use a small integrated SRAM buffer to lower produc-
tion cost. In most SSDs, multiple (e.g. 2-10) channels are
used to connect the controller with flash memory packages.
Each channel may be shared by more than one package. Ac-
tual implementations may vary across different models, and
previous work [3, 10] gives detailed descriptions about the
architecture of SSDs.

By examining the internal architectures of SSDs, we can
find that parallelism is available at different levels, and op-
erations at each level can be parallelized or interleaved.

Figure 1. An illustration of SSD architecture [3].

• Channel-level Parallelism – In an SSD, flash memory
packages are connected to the controller throughmultiple
channels. Each channel can be operated independently
and simultaneously. Some SSDs adopt multiple Error
Correction Code (ECC) engines and flash controllers,
each for a channel, for performance purposes [23].

• Package-level Parallelism – In order to optimize re-
source utilization, a channel is usually shared by multiple
flash memory packages. Each flash memory package can
be operated independently. Operations on flash memory
packages attached to the same channel can be interleaved,
so the bus utilization can be optimized [3, 10].

• Die-level Parallelism – A flash memory package often
includes two or more dies (chips). Each die can be se-
lected individually and execute a command independent
of the others, which increases the throughput [28].

• Plane-level Parallelism – A flash memory chip is typi-
cally composed of two or more planes. Most flash mem-
ories (e.g. [2,28]) support performing the same operation
(e.g. read/write/erase) on multiple planes simultaneously.
Some flash memories (e.g. [2]) provide cache mode to
further parallelize medium access and bus transfer.

Such a highly parallelized structure provides rich oppor-
tunities for parallelism. In this paper we will present several
simple yet effective experimental techniques to uncover the
internal parallelism on various levels.

2.2 Native Command Queuing (NCQ)

Native command queuing (NCQ) is a feature introduced
by the SATA II standard [1]. With NCQ support, the device
can accept multiple incoming commands from the host and
schedule the jobs internally. NCQ is especially important
to SSDs, because the highly parallelized internal structure
of an SSD can be effectively utilized only when the SSD
is able to accept multiple concurrent I/O jobs from the host
(operating system). Early generations of SSDs do not sup-
port NCQ and thus cannot benefit from parallel I/O [5]. The
two SSDs used in our experiments can accept up to 32 jobs.

3 Measurement Environment

3.1 Experimental Systems

Our experiments have been conducted on a Dell™ Pre-
cision™ T3400. It features an Intel® Core™2Duo E7300
2.66GHz processor and 4GB main memory. A 250GB Sea-
gate 7200RPM hard disk drive is used to hold the OS and



home directories (/home). We use Fedora Core 9 with the
Linux Kernel 2.6.27 and Ext3 file system. The storage de-
vices are connected through the on-board SATA connectors.

SSD-M SSD-S

Capacity 80GB 32GB

NCQ 32 32

Flash memory MLC SLC

Page Size (KB) 4 4

Block Size (KB) 512 256

Read Latency (µs) 50 25

Write Latency (µs) 900 250

Erase Latency(µs) 3500 700

Table 1. Specification data of the SSDs.

We have selected two representative, state-of-the-art
SSDs fabricated by a well-known SSD manufacturer for our
studies. One is built on multi-level cell (MLC) flash mem-
ories and designed for the mass market, and the other is a
high-end product built on faster and more durable single-
level cell (SLC) flash memories. For commercial reasons,
we refer to the two SSDs as SSD-M and SSD-S, respectively.
Both SSDs deliver market-leading performance with full
support of NCQ. Their designs are consistent with general-
purpose SSD designs (e.g. [3, 10]) and representative in the
mainstream technical trend on the market. PCI-E based
flash devices (e.g. Fusion-io’s ioDrive [11]) are designed
for special-purpose systems with a different structure [17].
In this paper we focus on the SATA-based devices. Table 1
shows more details about the two SSDs.

Similar to our prior work [6], we use the CFQ (Com-
pletely Fair Queuing) scheduler, the default I/O scheduler
in the Linux kernel, for the hard disk. We use the noop (No-
optimization) scheduler for the SSDs to expose the internal
behavior of the SSDs for our analysis.

3.2 Experimental Tools and Workloads

To study the internal parallelism of SSDs, two tools are
used in our experiments. We use the Intel® Open Stor-
age Toolkit [21] to generate various types of I/O work-
loads with different configurations, such as read/write ratio,
random/sequential ratio, request size, and queue depth (the
number of concurrent I/O jobs), and others. It reports band-
width, IOPS, and latency. We also designed a tool, called
replayer, which accepts a pr-recorded trace file for input
and replays data accesses to a storage device. It facilitates
precisely repeating a workload directly at the block device
level. We use the two tools to generate three access patterns.

• Sequential - Sequential data accesses using specified re-
quest size, starting from sector 0.

• Random - Random data accesses using specified re-
quest size. Blocks are randomly selected from the first
1024MB of the storage space, unless otherwise noted.

• Stride - Strided data accesses using specified request
size, starting from sector 0 with a stride distance.

In our experiments, each workload runs for 30 seconds
in default to limit trace size while collecting sufficient data.
No partitions or file systems are created on the SSDs. Un-
like previous work [26], which was performed over an Ext3
file system, all workloads in our experiments directly access
the SSDs as raw block devices. All requests are issued to
the devices synchronously with no think time.

Similar to the methods in [6], before each experiment we
fill the storage space using sequential writes with a request
size of 256KB and pause for 5 seconds. This re-initializes
the SSD status and keeps the physical data layout largely
remain constant across experiments [6].

3.3 Trace Collection

To analyze I/O traffic in detail, we use blktrace [4] to
trace the I/O activities at the block device level. The trace
data are first collected in memory and then copied to the
hard disk drive to minimize the interference caused by trac-
ing. The collected data are processed using blkparse [4] and
our post-processing scripts and tools off line.

4 Uncovering SSD Internals

Before introducing our performance studies on the inter-
nal parallelism of SSDs, we first present a set of experimen-
tal techniques to uncover the SSD internals. Two reasons
have motivated us to detect SSD internal structures. First,
internal parallelism is an architecture-dependent resource.
Knowing the key architectural features of an SSD is re-
quired to study and understand the observed device behav-
ior. For example, our findings about the write-order based
mapping (see Section 4.4) motivate us to further study the
ill-mapped data layout issue, which has not been reported in
prior literature. Second, the information detected can also
be used for many other purposes in practice. For example,
knowing the number of channels in an SSD, we can set a
proper concurrency level and avoid over-parallelization.

On the other hand, obtaining such architectural infor-
mation is particularly challenging for several reasons. (1)
Architectural details about the SSD design are often re-
garded as critical intellectual property of manufacturers. To
the best of our knowledge, certain information, such as the
mapping policy, is not available in any datasheet or spec-
ification, though it is critical for us to understand and ex-
ploit the SSD performance potential. (2) Although SSD
manufacturers normally provide standard specification data
(e.g. peak bandwidth), much important information is ab-
sent or obsolete. In fact, across different product batches,
hardware/firmware change is common and often cannot be
timely reflected in public documents. (3) Most SSDs on
the market carefully follow a strictly defined host interface
standard (e.g. SATA [1]). Only limited information is al-
lowed to pass through such a ‘thin interface’. As a result, it
is difficult, if not impossible, to directly get detailed internal
information from the hardware. In this section, we present a
set of experimental approaches to expose the SSD internals.



4.1 A Generalized Model

Despite various implementations, most SSDs strive to
optimize performance essentially in a similar way – evenly
distributing data accesses to maximize resource usage. Such
a principle is applicable to the parallel structure of SSDs at
different levels. Without losing generality, we define an ab-
stract model to characterize such an organization based on
open documents (e.g. [3, 10]): A domain is a set of flash
memories that share a specific set of resources (e.g. chan-
nels). A domain can be further partitioned into sub-domains
(e.g. packages). A chunk is a unit of data that is continu-
ously allocated within one domain. Chunks are interleav-
ingly placed over a set of N domains by following a map-
ping policy. A set of chunks across each of N domains are
called a stripe. One may notice that this model is in prin-
ciple similar to RAID [24]. In fact, SSD architects often
adopt a RAID-0 like striping mechanism [3,10], some even
directly integrate a RAID controller inside an SSD [25].
However, as mentioned previously, the key difference is
that SSDs use dynamic mapping, which may cause an ill-
mapped data layout as we will see later.

In this work, we are particularly interested in examining
three key factors that are directly related to internal paral-
lelism. In our future work we will further extend the tech-
niques to uncover other architectural features.

• Chunk size – the size of the largest unit of data that is
continuously mapped within an individual domain.

• Interleaving degree – the number of domains at the
same level. The interleaving degree is essentially deter-
mined by the redundancy of the resources (e.g. channels).

• Mapping policy – the method that determines the do-
main to which a chunk of logical data is mapped. This
policy determines the physical data layout.

In the following, we will present a set of experimental
approaches to infer indirectly the three key factors. Basi-
cally, we treat an SSD as a ‘black box’ and we assume the
mapping follows some repeatable but unknown patterns. By
injecting I/O traffic with carefully designed patterns, we ob-
serve the ‘reactions’ of the SSD, measured in several key
metrics, e.g. latency and bandwidth. Based on this prob-
ing information, we can speculate the internal architectures
and policies adopted in the SSD. Our solution shares a simi-
lar principle on characterizing RAID [9], but characterizing
SSDs needs to explore their unique features (e.g. dynamic
mapping). We also note that due to the complexity and di-
versity of SSD implementations, the retrieved information
may not picture all the internal details, and our purpose
is not to reverse-engineer the SSD hardware. Instead, we
try to characterize the key architectural features of an SSD
from the outside in a simple yet effective way. We have
applied this technique to both SSDs and we found that it
works pleasantly well in serving our performance analysis
and optimization purposes. For brevity we only show the
results for SSD-S. SSD-M behaves similarly.

4.2 Chunk Size

Program 1 Pseudocode of uncovering SSD internals

init_SSD(): sequentially write SSD w/ 256KB req.

rand_pos(A): get a random offset aligned to A sect.

read(P, S): read S sectors at offset P sect.

stride_read(J,D): read 1 chunk with J jobs from

offset 0, each read skips over D chunks

plot(X,Y,C): plot a point at (X,Y) for curve C

M: an estimated max. possible chunk size

D: an estimated max. possible interleaving degree

(I) detecting chunk size:

init_SSD(); // initialize SSD space

for (n = 1 sector; n <= M; n *= 2): //req. size

for (k = 0 sector; k <= 2*M; k ++):// offset

for (i = 0, latency=0; i < 100000; i ++):

pos = rand_pos(M) + k;

latency += read (pos, n);

plot (k, latency/100000, n); //plot avg. lat.

(II) detecting interleaving degree:

init_SSD(); // initialize SSD space

for (j=2; j <=4; j*=2): // num. of jobs

for (d = 1 chunk; d < 4*D; d ++)://stride dist.
bw = stride_read (j, d);

plot (d, bw, j); //plot bandwidth

As a basic mapping unit, a chunk can be mapped in only
one domain, and two continuous chunks are mapped in two
separate domains. Suppose the chunk size is S. For any
read that is aligned to S with a request size no larger than
S, only one domain would be involved. With an offset of
S

2
from an aligned position, a read would split into two do-

mains equally. The latter case would be faster. Based on this
feature, we designed an experiment to identify the chunk
size. The pseudocode is shown in Program 1(I).

Figure 2 shows an example result on SSD-S. Each curve
represents a request size. For brevity, we only show results
for request sizes of 1-8 sectors with offsets increasing from
0 to 64 sectors. Except for the case of request size of one
sector, a dip periodically appears on the curves as the offset
increases. The chunk size is the interval between the bot-

toms of two consecutive valleys. In this case, the detected
chunk size is 8 sectors (4KB), the flash page size, but note
that a chunk can consist of multiple flash pages in some
implementations [10]. We see a flat curve for 1 sector (512
bytes), because the smallest read/write unit in the OS kernel
is one sector and cannot be mapped across two domains.

4.3 Interleaving Degree

In our model, chunks are organized into domains based
on resource redundancy. Parallel accesses to data in multi-
ple domains without resource sharing can achieve a higher
bandwidth than doing that congested in one domain. Based
on this feature, we designed an experiment to determine the
interleaving degree, as shown in Program 1(II).

Figure 3(I) and (II) show the experimental results with 2
jobs and 4 jobs on SSD-S, respectively. In Figure 3 (I), we
observe a periodically appearing dip. The interleaving de-

gree is the interval between the bottoms of two consecutive

valleys, in units of chunks. In this case, we observe 10 do-
mains, each of which actually corresponds to one channel.
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on SSD-S. Figure (I) and (II) represent two

test cases.

The rationale is as follows. Suppose the number of do-
mains is D and the data is interleavingly placed across the
domains. When the stride distance, d, is D × n− 1, where
n ≥ 1, every data access would exactly skip overD− 1 do-
mains from the previous position and fall into the same do-
main. Since we issue two I/O jobs simultaneously, the par-
allel data accesses would compete for the same resource and
the bandwidth is only around 33MB/sec. With other stride
distances, the two parallel jobs would be distributed across
two domains and thus could achieve a higher bandwidth
(around 40MB/sec). We can also observe 2 sub-domains
using a similar approach, as shown in Figure3 (II).

4.4 The Mapping Policy

The mapping policy determines the physical page to
which a logical page is mapped. According to open doc-
uments (e.g. [3, 10]), two mapping policies are widely used
in practice. (1) LBA-based mapping – for a given logical
block address (LBA) with an interleaving degree, D, the
block is mapped to a domain number (LBA mod D). (2)
Write-order-based mapping – for the ith write, the block
is assigned to a domain number (i mod D). We should
note here that write-order-based mapping is not the log-
structuredmapping policy [3], which appends data in a flash
block to optimize write performance. Considering the wide
adoption of the two mapping policies in SSD products, we
will focus on these two policies in our experiments.

To determine which mapping policy is adopted, we first
randomly overwrite the first 1024MB data with a request
size of 4KB, the chunk size. After such a randomization,
the blocks are relocated across the domains. If LBA-based
mapping is adopted, the mapping should not be affected by
such randomwrites. Thus, we repeat the experiment in Sec-
tion 4.3, and we find after randomization, the pattern (re-
peatedly appearing dips) disappears (see Figure 4(I)), which
means that the random overwrites have changed the block
mapping, and LBA-based mapping is not used.

We then conduct another experiment to confirm that
write-order-based mapping is adopted. We first randomly
overwrite the first 1024MB space, and each chunk is writ-
ten once and only once. Then we follow the same order in
which blocks are written to issue reads to the SSD and re-
peat the same experiments in Section 4.3. For example, for
the LBNs of random writes in the order of (91, 100, 23, 7,

...), we read data in the same order (91, 100, 23, 7, ...). If
write-order based mapping is used, the blocks should be in-
terleavingly allocated across domains in the order of writes
(e.g. blocks 91, 100, 23, 7 are mapped to domain 0, 1, 2,
3, respectively), and reading data in the same order would
repeat the same pattern (dips) we see before. Our exper-
imental results confirm this hypothesis (Figure 4(II)). The
physical data layout and the block mapping are strictly de-
termined by the order of writes. We have also conducted
experiments by mixing reads and writes, and we find that
the layout is only determined by writes.

5 Performance Studies

Prepared with the knowledge about the internal struc-
tures of SSDs, we are now in a position to investigate the
performance impact of internal parallelism. We strive to an-
swer several related questions on the performance benefits

of parallelism, the interference between parallel jobs, the
readahead mechanism with I/O parallelism, and the perfor-
mance impact of physical data layout.

5.1 What are the benefits of parallelism?

In order to quantify the potential benefits of I/O paral-
lelism in SSDs, we run four workloads with different access
patterns, namely sequential read, sequential write, random
read, and randomwrite. For each workload, we increase the
request size from 1KB to 256KB1, and we show the band-
widths with a queue depth increasing from 1 job to 32 jobs.
In order to compare workloads with different request sizes,
we use bandwidth (MB/sec), instead of IOPS (IO per sec-
ond), as the performance metric. Figure 5 shows the exper-
imental results for SSD-M and SSD-S. Since write-order-
based mapping is used, as we see previously, random and
sequential writes on both SSDs show similar patterns. For
brevity, we only show the results of sequential writes here.

Differing from prior work [5], our experiments show a
great performance improvement from parallelism on SSDs.
The significance of performance gains depends on several
factors, and we present several key observations here.

1Note that increasing request size would weaken the difference between
random and sequential workloads. However, in order to give a full picture,
we still show the experimental results of changing the request size from
1KB to 256KB for all the workloads here.
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(c) SSD-S (Sequential Write)
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(d) SSD-M (Sequential Read)
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Figure 5. Bandwidths of the SSDs with increasing queue depth (the number of concurrent I/O jobs).

(1)Workload access patterns determine the performance
gains from parallelism. In particular, small and random

reads yield the most significant performance gains. For ex-
ample, increasing queue depth from 1 to 32 jobs for random
reads on SSD-S with a request size 4KB achieves a 7.2-fold
bandwidth increase. A large request (e.g. 256KB) benefits
relatively less from parallelism, because the continuous log-
ical blocks are often striped across domains and it already
benefits from internal parallelism. This means that in or-
der to exploit effectively internal parallelism, we can either
increase request sizes or parallelize small requests.

(2) Highly parallelized small/random accesses can

achieve performance comparable to or even slightly better

than large/sequential accesses without parallelism. For ex-
ample, with only one job, the bandwidth of random reads
of 16KB on SSD-S is only 65.5MB/sec, which is 3.3 times
lower than that of sequential reads of 64KB (221.3MB/sec).
With 32 jobs, however, the same workload (16KB random
reads) can reach a bandwidth of 225.5MB/sec, which is
even slightly higher than the single-job sequential reads.
This indicates that SSDs provide us with an alternative ap-
proach for optimizing I/O performance, which is to paral-
lelize small and random accesses. Many new opportuni-
ties become possible. For example, database systems tra-
ditionally favor a large page size, because hard disk drives
perform well with large requests. On SSDs, which are less
sensitive to access patterns, a small page size can be a sound
choice for optimizing buffer pool usage [13, 20].

(3) The redundancy of available hardware resources

physically limits the performance potential of increasing

I/O parallelism. When the queue depth increases over 8-
10 jobs, further increasing parallelism receives diminishing
benefits. This actually reflects our finding made in Section

4 that the two SSDs have 10 domains, each of which corre-
sponds to a channel. When the queue depth exceeds 10, a
channel has to be shared by more than one job. Further par-
allelizing I/O jobs can bring additional but smaller benefits.

(4) Flash memory mediums (MLC/SLC) can provide dif-

ferent performance potential for parallel I/O jobs, espe-

cially for writes. Writes on SSD-M, the MLC-based lower-
end SSD, quickly reach the peak bandwidth (only about
80MB/sec) with a small request size at a low queue depth.
SSD-S, the SLC-based higher-end SSD, showsmuch higher
peak bandwidth (around 200MB/sec) and more headroom
for parallelizing small writes. In contrast, less difference
can be observed for reads on the two SSDs, since the main
performance bottleneck is transferring data across the serial
I/O bus rather than reading the flash medium [3].

(5) Write performance is insensitive to access patterns,

and parallel writes can perform faster than reads. The un-
coveredwrite-order-basedmapping policy indicates that the
SSDs actually handle incoming writes in the same way, re-
gardless of write patterns. This leads to the observed similar
patterns for sequential writes and random writes. Together
with the parallelized structure and the on-device buffer,
write performance is highly optimized and can even outper-
form reads in some cases. For example, writes of 4KB with
32 jobs on SSD-S can reach a bandwidth of 186.1MB/sec,
which is even 28.3% higher than reads (145MB/sec). This
surprising result is actually opposite to our long-existing
common understanding about slow writes on SSDs.

On both SSD-S (Figure 5(a)) and SSD-M (Figure 5(d)),
we can also observe a slight dip for sequential reads with
small request sizes at a low concurrency level (e.g. 4 jobs
with 4KB requests). This is related to interference in the
readahead, and we will give detailed analysis in Section 5.3.



5.2 How do parallel reads and writes in-
terfere with each other and cause per-
formance degradation?

Seq. Write Rnd Write None

Seq. Read 109.2 103.5 72.6

Rnd. read 32.8 33.2 21.3

None 61.4 59.4

Table 2. Bandwidths (MB/sec) of co-running Reads and Writes.

Reads and writes on SSDs can interfere with each other
for many reasons. (1) Both operations share many critical
resources, such as the ECC engines and the lock-protected
mapping table, etc. Parallel jobs accessing such resources
need to be serialized. (2) Both writes and reads can gener-
ate background operations internally, such as readahead and
asynchronous write-back [6]. (3) Mingled reads and writes
can foil certain internal optimizations. For example, flash
memory chips often provide a cache mode [2] to pipeline
a sequence of reads or writes. A flash memory plane has
two registers, data register and cache register. When han-
dling a sequence of reads or writes, data can be transferred
between the cache register and the controller, while concur-
rently moving another page between the flash medium and
the data register. However, such pipelined operations must
be performed in one direction, so mingling reads and writes
would interrupt the pipelining.

To show such an interference, similar to that in the pre-
vious section, we use the toolkit to generate a pair of con-
current workloads. The two workloads access data in two
separate 1024MB storage spaces. We choose four access
patterns, namely random reads, sequential reads, random
writes and sequential writes, and enumerate the combina-
tions of running two workloads simultaneously. Each work-
load uses request size of 4KB and one job. We show the ag-
gregate bandwidths (MB/sec) of two workloads co-running
on SSD-S in Table 2. Co-running with ‘none’ means run-
ning a workload individually.

We find that reads and writes have a strong interfer-

ence with each other, and the significance of this interfer-

ence highly depends on read access patterns. If we co-
run sequential reads and writes in parallel, the aggregate
bandwidth exceeds that of any workload running individu-
ally, which means parallelizing workloads obtains benefits,
although the aggregate bandwidths cannot reach the opti-
mal results, the sum of the bandwidths of individual work-
loads. However, when running random reads and writes
together, we see a strong negative impact. For example,
sequential writes can achieve a bandwidth of 61.4MB/sec
when running individually, however when running with
random reads, the bandwidth drops by a factor of 4.5 to
13.4MB/sec. Meanwhile, the bandwidth of random reads
also drops from 21.3MB/sec to 19.4MB/sec. Apparently
the co-running reads and writes strongly interfere with each
other. Although we cannot exactly identify which specific
reason causes such an effect, this case shows that we should
be careful about mixing reads and writes.

5.3 How does I/O parallelism impact the
effectiveness of readahead?

State-of-the-art SSDs implement a readahead mecha-
nism to detect sequential data accesses and prefetch data
into the on-device cache [6]. Parallelizing multiple sequen-
tial read streams would result in a sequence of mingled
reads, which can interfere with the sequential-pattern-based
readahead on SSDs. On the other hand, parallelizing reads
can improve bandwidths. So there is a tradeoff between in-
creasing parallelism and retaining effective readahead.
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Figure 6. Performance impact of parallelism on readahead.

In order to examine the impact of parallelism on reada-
head, we generate multiple jobs, each of which sequentially
reads an individual 1024MB space (i.e. the ith job reads the
ith 1024MB space) simultaneously. We increase the con-
currency from 1 to 32 jobs and vary the size from 4KB to
256KB. We compare the aggregate bandwidths of the co-
running jobs on SSD-S. SSD-M shows similar results.

Figure 6 shows that in nearly all curves, there exists a dip
when the queue depth is 2 jobs. For example, for request
size of 4KB, the bandwidth drops by 43% (from 65MB/sec
to 37MB/sec). At that point, readahead is strongly inhib-
ited due to mingled reads, and such a negative performance
impact cannot be offset at a low concurrency level (2 jobs).
When we further increase the concurrency level, the bene-
fits coming from parallelism quickly compensate for the im-
paired readahead. Similarly, increasing the request size can
alleviate the impact of interfered readahead by increasing
the aggregate bandwidth. This case indicates that reada-
head can be impaired by parallel sequential reads, espe-

cially at low concurrency levels and with small request

sizes. SSD architects can consider to include a more so-
phisticated sequential pattern detection mechanism to iden-
tify multiple sequential read streams to avoid this problem.

5.4 How does an ill-mapped data layout
impact I/O parallelism?

The write-order-based mapping in SSDs has two advan-
tages. First, high-latency writes can be evenly distributed
across domains. This not only guarantees load balance, but
also naturally balances available free flash blocks and evens
out wear across domains. Second, writes across domains
can be overlapped with each other, and the high latency of
writes can be effectively hidden behind parallel operations.

On the other hand, such a write-order-based mapping
may result in some negative effects. The largest one is that



since the data layout is completely determined by the order
in which blocks are written on the fly, logical blocks can
be mapped to only a subset of domains and result in an ill-

mapped data layout. In the worst case, if a set of blocks is
mapped into the same domain, data accesses would be con-
gested and have to compete for the shared resources, which
impairs the effectiveness of parallel data accesses.
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Figure 7. Performance impact of data layout.

To show quantitatively the impact of an ill-mapped phys-
ical data layout, we designed an experiment on SSD-S as
follows. We first sequentially overwrite the first 1024MB
of storage space to map the logical blocks evenly across do-
mains. Knowing the physical data layout, we can create a
trace of random reads with a request size of 4KB to access
the 10 domains in a round-robin manner. Similarly, we cre-
ate another trace of random reads to only one domain. Then
we use the replayer to replay the two traces and we measure
the average latencies for the two workloads. We vary the
queue depth from 1 job to 32 jobs and compare the average
latencies of parallel accesses to data that are concentrated
in one domain and that are distributed across 10 domains.
Figure 7 shows that when the queue depth is low, accessing
data in one domain is comparable to doing it in 10 domains.
However, as the I/O concurrency increases, the performance
gap quickly widens. In the worst case, with a queue depth of
32 jobs, accessing data in the same domain (3ms) incurs 4.2
times higher latency than doing that in 10 domains (0.7ms).
This case shows that an ill-mapped data layout can signifi-

cantly impair the effectiveness of I/O parallelism. It is also
worth mentioning here that we also find the ill-mapped data
layout can impair the effectiveness of readahead too.

In summary, our experimental results show that I/O par-
allelism can indeed provide significant performance im-
provement, but as the same time, we should also pay at-
tention to the surprising results that come from parallelism,
which provides us with a new understanding of SSDs.

6 Case Studies in Database Systems

In this section, we present a set of case studies in
database systems as typical data-intensive applications to
show the opportunities, challenges, and research issues
brought by I/O parallelism on SSDs. Our purpose is not to
present a set of well-designed solutions to address specific
problems. Rather, we hope that through these case studies,
we can show that exploiting the internal parallelism of SSDs
can not only yield significant performance improvement in

large data-processing systems, but more importantly, it also
provides many emerging challenges and new research op-
portunities.

6.1 Data Accesses in a Database System

Storage performance is crucial to query executions in
database management systems (DBMS). A key operation of
query execution is join between two relations (tables). Var-
ious operators (execution algorithms) of a join can result in
completely different data access patterns. For warehouse-
style queries, the focus of our case studies, the most impor-
tant two join operators are hash join and index join [12].
Hash join sequentially fetches each tuple (a line of record)
from the driving input relation and probes an in-memory
hash table. Index join fetches each tuple from the driving in-
put relation and starts index lookups on B+-trees of a large
relation. In general, hash join is dominated by sequential
data accesses on a huge fact table, while index join is dom-
inated by random accesses during index lookups.

Our case studies are performed on the PostgreSQL 8.3.4.
The working directory and the database are located on the
SSD-S. We select Star Schema Benchmark (SSB) queries
[22] (scale factor 5) as workloads. SSB workloads are con-
sidered to be more representative in simulating real ware-
house workloads than TPC-H workloads, and they have
been used in recent research work, e.g. [19].

6.2 Case 1: Parallelizing Query Execution

In this case, we study the effectiveness of parallelizing
query executions on SSDs. Our query-parallelizing ap-
proach is similar to prior work [31]. Via data partition-
ing, a query can be segmented to multiple sub-queries, each
of which contains joins on partitioned data sets and pre-
aggregation. The sub-queries can be executed in parallel.
The final result is obtained by applying a final aggregation
over the results of sub-queries.

We study two categories of SSB query executions. One
is using the index join operator and dominated by ran-
dom accesses, and the other is using the hash join operator
and dominated by sequential accesses. For index join, we
partition the dimension table for the first-level join in the
query plan tree. For hash join, we partition the fact table.
For index join, we selected query Q1.1, Q1.2, Q2.2, Q3.2,
and Q4.3. For hash join, besides Q1.1, Q1.2, Q2.2, Q4.1,
Q4.2, we also examined a simple query (Q0), which only
scans LINEORDER table with no join operation. Figure 8
shows the speedup (execution time normalized to the base-
line case) of parallelizing the SSB queries with sub-queries.

We have the following observations. (1) For index join,
which features intensive random data accesses, parallelizing
query executions can speed up an index join plan by up to a
factor of 5. We have also executed the same set of queries
on a hard disk drive and observed no speedup, which means
the factor of 5 speedup is not due to computational paral-
lelism. This case again shows the importance of paralleliz-
ing random accesses (e.g. B+-tree lookups) on an SSD.
In fact, when executing an index lookup dominated query,
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Figure 8. Execution speedups of parallelizing SSB queries with index and hash join plans.
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Figure 9. Index join vs. hash join.

the DBMS engine cannot fully utilize the SSD bandwidth,
since each access is small and random. Splitting a query
into multiple sub-queries effectively reduces the query ex-
ecution time. (2) For hash join, which features sequential
data accesses, parallelizing query executions can speed up
a hash join plan by up to a factor of 2. Though less sig-
nificant than that for index join plans, such a speedup is
still impressive. (3) Parallelizing query execution with lit-
tle computation receives relatively less benefits. For exam-
ple, parallelizing Q0 provides a speedup of a factor of 1.4,
which is lower than other queries. Since Q0 sequentially
scans a big table with little computation, the SSD is kept
busy and there is less room for overlapping I/O and com-
putation, which limits further speedup through parallelism.
This case clearly shows that in database systems, a typi-
cal data-processing application, I/O parallelism can provide
substantial performance improvement on SSDs, especially
for operations like index-tree lookups.

6.3 Case 2: Revisiting Query Optimizer

A critical component in DBMS is the query optimizer,
which decides the plan and operator used for executing a
query. Implicitly assuming the underlying storage device
is an HDD, the optimizer estimates the execution times of a
hash join plan and an index join plan, and selects an optimal
plan for each query. On an HDD, a hash join enjoys an
efficient sequential data access but needs to scan the whole
table file; an index join suffers random index lookups but
only needs to read a table partially. On an SSD, the situation
becomes more complicated, since parallelism weakens the
performance difference of various access patterns.

We select a standard Q2.2 and a variation of Q1.2 with
a new predicate (“d weeknuminyear=1”) in the DATE table
(denoted by Q1.2n). We execute them first with no paral-
lelism and then in a parallel way with sub-queries. Figure 9
shows the query execution times of the two plans with 1 to
16 sub-queries. One sub-query means no parallelism.

We find that SSD parallelism can greatly change the rel-
ative strengths of the two candidate plans. Without paral-
lelism, the hash join plan is more efficient than the index
join plan for both queries. For example, the index join for
Q2.2 is 1.9 times slower than the hash join. The optimizer
should choose the hash join plan. However, with paral-
lelized sub-queries, the index join outperforms the hash join
for both queries. For example, the index join for Q2.2 is 1.4

times faster than the hash join. This implies that the query
optimizer cannot make an optimal decision if it does not
take parallelism into account when estimating the execution
costs of candidate plans on SSDs.

This case strongly indicates that when switching to an
SSD-based storage, applications designed and optimized
for magnetic disks must be carefully reconsidered, other-
wise, the achieved performance can be suboptimal.

7 System Implications

Having presented our experimental and case studies, we
present several important implications to system and appli-
cation designers. We hope that our new findings can pro-
vide effective guidance and enhance our understanding of
the properties of SSDs in the context of I/O parallelism.
This section also summarizes our answers to the questions
raised at the beginning of this paper.

Benefits of parallelism on SSD: Parallelizing data ac-
cesses can provide substantial performance improvement,
and the significance of such benefits depends on workload
access patterns, resource redundancy, and flash memory
mediums. In particular, small random reads benefit the most
from parallelism. Large sequential reads achieve less sig-
nificant but still impressive improvement. Such a property
of SSDs provides many opportunities for performance opti-
mization in application designs. For example, many critical
database operations, such as index-tree search, feature in-
tensive random reads, which is exactly a best fit in SSDs.
Application designers can focus on parallelizing these op-
erations. In our experiments, we did not observe obvious
negative effects of over-parallelization, however setting the
concurrency level slightly over the number of channels is
a reasonable choice. Finally, for practitioners who want
to leverage the high parallel write performance, we highly
recommend adopting high-end SLC-based SSDs to provide
more headroom for serving workloadswith intensive writes.

Random reads: A surprising result is that with paral-
lelism, random reads can perform comparably and some-
times even slightly better than simply sequentializing reads
without parallelism. Such a counter-intuitive finding in-
dicates that we cannot continue to assume that sequential
reads are always better than random reads. Traditionally,
operating systems often make trade-offs for the purpose of
organizing large sequential reads. For example, the antic-
ipatory I/O scheduler [15] intentionally pauses issuing I/O



requests for a while and anticipates to organize a larger re-
quest in the future. In SSDs, such optimizationmay become
less effective and sometimes may be even harmful, because
of the unnecessarily introduced delays. On the other hand,
some application designs become more complicated. For
example, it becomes more difficult for the database query
optimizer to choose an optimal query plan, because sim-
ply counting the number of I/Os and using static config-
uration numbers can no longer satisfy the requirement for
accurately estimating the relative performance strengths of
different join operators with parallelism.

Random writes: Contrary to our common understand-
ing, parallelized random writes can achieve high perfor-
mance, sometimes even better than reads. Moreover, writes
are no longer highly sensitive to patterns (random or se-
quential) as commonly believed. The uncovered mapping
policy explains this surprising result from the architectural
level – the SSDs internally handle writes in the same way,
regardless of access patterns. The indication is two-fold.
On one hand, we can consider how to leverage the high
write performance through parallelizing writes, e.g. how to
commit synchronous transaction logging in a parallel man-
ner [8]. On the other hand, it means that optimizing random
writes specifically for SSDs may not continue to be as re-
warding as in early generations of SSDs, and trading off
read performance for writes would become a less attractive
option. But we should still note that in extreme conditions,
such as day-long writes [29] or under serious fragmenta-
tion [6], random writes are still a research issue.

Interference between reads and writes: Parallel reads
and writes on SSDs interfere strongly with each other and
can cause unpredictable performance variance. In OS ker-
nels, I/O schedulers should pay attention to this emerging
performance issue and avoid mingling reads and writes. A
related research issue is on how to maintain a high through-
put while avoiding such interference. At the application
level, we should also be careful of the way of generating and
scheduling reads and writes. An example is the hybrid-hash
joins in database systems, which have clear phases with
read-intensive and write-intensive accesses. When schedul-
ing multiple hybrid-hash joins, we can proactively avoid
scheduling operations with different patterns. A rule of
thumb here is to schedule random reads together and sep-
arate random reads and writes whenever possible.

Physical data layout: The physical data layout in SSDs
is dynamically determined by the order in which logi-
cal blocks are written. An ill-mapped data layout caused
by such a write-order-based mapping can significantly im-
pair the effectiveness of parallelism and readahead. In
server systems, handling multiple write streams is common.
Writes from the same stream can fall in a subset of domains,
which would be problematic. We can adopt a simple ran-
dom selection for scheduling writes to reduce the probabil-
ity of such a worst case. SSD manufacturers can also con-
sider adding a randomizer in the controller logic to avoid
this problem. On the other hand, this mapping policy also

provides us a powerful tool to manipulate data layout to our
needs. For example, we can intentionally isolate a set of
data in one domain to cap the usable I/O bandwidth.

Revisiting application designs: Many applications, es-
pecially data-processing applications, are often heavily tai-
lored to the properties of hard disk drives and are de-
signed with many implicit assumptions. Unfortunately,
these HDD-based optimizations can become sub-optimal on
SSDs. This calls our attention to revisiting carefully the ap-
plication designs to make them fit well in SSD-based stor-
age. On the other hand, the internal parallelism in SSDs also
enables many new opportunities. For example, tradition-
ally DBMS designers often assume an HDD-based storage
and favor large request sizes. SSDs can extend the scope
of using small blocks in DBMS design and bring many de-
sirable benefits, such as improved buffer pool usage, which
are highly beneficial in practice.

In essence, SSDs represent a fundamental change of stor-
age architecture, and I/O parallelism is the key to exploiting
the huge performance potential of such an emerging tech-
nology. More importantly, with I/O parallelism a low-end
personal computer with an SSD is able to deliver as high
an I/O performance as an expensive high-end system with
a large disk array. This means that parallelizing I/O oper-
ations should be carefully considered in not only high-end
systems but even in commodity systems. Such a paradigm
shift would greatly challenge the optimizations and assump-
tions made throughout the existing system and application
designs. We believe SSDs present not only challenges but
also countless new research opportunities.

8 Other Related Work

Flash memory based storage technology is an active re-
search area. In the research community, flash devices have
received strong interest and been extensively studied (e.g.
[3, 5–7, 10, 14, 27, 30]). Due to space constraints, here we
only present the work most related to internal parallelism
studied in this paper.

A detailed description about the hardware internals of
flash memory based SSD has been presented in [3] and [10].
An early work has compared the performance of SSDs and
HDDs [26]. We have presented experimental studies on
SSD performance by using non-parallel workloads, and the
main purpose is to reveal the internal behavior of SSDs [6].
This work focus on parallel workloads. A benchmark tool
called uFLIP is presented in [5] to assess the flash device
performance. This early study has reported that increasing
concurrency cannot improve performance on early gener-
ations of SSDs. Researchers have studied the advances of
SSDs and reported that with NCQ support, the recent gener-
ation of SSDs can achieve high throughput [20]. Our study
shows that parallelism is a critical element to improve I/O
performance and must be carefully considered in system
and application designs. A mechanism called FlashLog-

ging [8] adopts multiple low-cost flash drives to improve
log processing, and parallelizing writes is an important con-
sideration. Our study further shows that with parallelism,



manyDBMS components need to be revisited, and the disk-
based optimization model would become problematic and
even error-prone on SSDs.

9 Conclusions

We have presented a comprehensive study on essential
roles of exploiting internal parallelism in SSDs. We would
like to conclude the paper with the following three mes-
sages, based on our analysis and new findings. First, ef-
fectively exploiting internal parallelism indeed can signif-
icantly improve I/O performance and largely remove the
performance limitations of SSDs. This means that we must
treat I/O parallelism as a top priority for optimizing I/O per-
formance, even in commodity systems. Second, we must
also pay particular attention to some potential side effects
related to I/O parallelism on SSDs, such as the strong inter-
ference between reads and writes, and minimize their im-
pact. Third, and most importantly, in the scenario of I/O
parallelism, many of the existing optimizations specifically
tailored to the property of HDDs can become ineffective or
even harmful on SSDs, and we must revisit such designs.
We hope this work can provide insights into the internal
parallelism of SSD architecture and guide the application
and system designers to utilize this unique merit of SSDs
for achieving high-speed data processing.
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