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Abstract—Many algorithmic efforts have been made to address
technical issues in designing a streaming media caching proxy.
Typical of those are segment-based caching approaches that effi-
ciently cache large media objects in segments which reduces the
startup latency while ensuring continuous streaming. However,
few systems have been practically implemented and deployed.
The implementation and deployment efforts are hindered by
several factors: 1) streaming of media content in complicated data
formats is difficult; 2) typical streaming protocols such as RTP
often run on UDP; in practice, UDP traffic is likely to be blocked
by firewalls at the client side due to security considerations; and
3) coordination between caching discrete object segments and
streaming continuous media data is challenging. To address these
problems, we have designed and implemented a segment-based
streaming media proxy, called SProxy. This proxy system has
the following merits. First, SProxy leverages existing Internet
infrastructure to address the flash crowd. The content server is
now free of the streaming duty while hosting streaming content
through a regular Web server. Thus, UDP based streaming traffic
from SProxy suffers less dropping and no blocking. Second, SProxy
streams and caches media objects in small segments determined
by the object popularity, causing very low startup latency, and
significantly reducing network traffic. Finally, prefetching tech-
niques are used to pro-actively preload uncached segments that
are likely to be used soon, thus providing continuous streaming.
SProxy has been extensively tested and we show that it provides
high quality streaming delivery in both local area networks and
wide area networks (e.g., between Japan and the U.S.).

Index Terms—Content distribution, streaming, proxy caching,
segmentation.

1. BACKGROUND AND MOTIVATION

HE DEMAND of robust, cost-effective, and high-quality
TInternet streaming services keeps increasing. It has been
predicted that the amount of streaming media content will in-
crease rapidly in the next a few years [1], [2] and its traffic will
become a significant portion on the Internet. For example, com-
pared the workload of a 2002 study [3] with the workload of a
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1999 study [4] in a similar campus environment, the portion of
network bytes ascribed to audio and video increased by 300%
and 400% [5], respectively.

On the other hand, the delivery of diverse streaming media
contents on IP networks in a cost effective manner, while main-
taining high quality, is still very challenging. Thus, today most
of Internet media objects are still accessed via downloading or
pseudo streaming instead of streaming, which cause roughly
56% and 32% of wasted bandwidth according to study [6]. In a
web service environment, a continuous streaming session (often
with a duration of minutes or hours, compared to milliseconds
or seconds for traditional Web pages) keeps consuming network
bandwidth and disk bandwidth on the hosting server. Multiple
concurrent streaming sessions can easily exhaust the available
network bandwidth and overload the media content server [7].
Placing multimedia objects closer to clients is an effective solu-
tion that will relieve the network bottleneck and reduce the load
on the media content server.

Research efforts have been made to extend existing proxy
caching methods of static Web pages to the case of streaming
media objects. Streaming media objects have some features that
make caching promising: the objects are generally static and do
not change for a long time. Moreover, they show some degree
of locality of reference. However, proxy caching of multimedia
objects also poses several challenges.

1) The size of media objects is usually several orders of mag-

nitudes larger than traditional Web objects. For example, a
1-h movie encoded using MPEG4, at desktop resolution,
may require more than 1 GB storage space. This limits the
number of entire objects that can be stored on a caching
server. It also results in large startup latencies if the object
is not already cached.

2) Multimedia objects generally have very stringent demands
in terms of continuous and timely delivery. This is espe-
cially challenging on the current Internet, which only pro-
vides best-effort services.

3) Prior research has observed that most of the media objects
are only partially viewed [8], [9]. Using traditional, static
web caching techniques to cache these large objects thus
wastes storage and causes unnecessary network traffic.

To handle these problems, researchers have proposed various
streaming caching approaches to support cost-effective and ro-
bust Internet streaming, by caching media objects in a proxy
close to clients. Due to the large sizes of each media object and
client viewing patterns that most of objects are only partially
viewed [8], [9], partial proxy caching methods have been pro-
posed, which divide each media object into smaller units, more
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feasible for caching. There are two types of such methods. The
first divides objects in the time domain [10]-[12], which we call
segment-based approaches. The second is to divide objects in
the media quality domain [13]-[16].

Although some algorithmic solutions and prototypes are avail-
able, today the practical usage and deploymentof suchsystems are
rare. Mocha[17]and QBIX [18] are prototype systems thatdivide
media objects along the quality domain. Mocha is based on lay-
ered encoded streams, while QBIX tries to leverage MPEG4 and
MPEGT7 standards to do quality adaptation. However, they have
not been widely deployed since they require extensive support
from Internet Service Providers. For example, for Mocha, there
are almost no layered-encoded streams provided online today.
QBIX requires an online transcoding proxy, and does not work
for videos in formats other than MPEG4 and MPEG7. Moreover,
the quality of the media objects served in these systems is not con-
trolled by the client, but by the service provider. Thus, they may
not be client friendly.

When dividing media objects in the time domain (a segment-
based approach), the aforementioned problems do not exist. The
media with the original quality can always be served to the
client. However, there are a number of technical problems.

First, multimedia objects are stored in container files, such as
MP4 [19]. The file contains both audio and video tracks. In ad-
dition, it also contains indices to audio and video media packets,
and may contain hint tracks with meta information. The flexi-
bility of positioning these elements in the container file makes
media-aware segmentation difficult for the proxy.

Second, media content is usually streamed using the RTP pro-
tocol, running on top of UDP. In practice, UDP traffic is likely to
be blocked by firewalls at the client side due to security consid-
erations. Also, Internet wide UDP-based communication raises
reliability and fairness concerns. UDP packets are often subject
to dropping at intermediate routers and switches. On the other
hand, a large amount of unregulated UDP traffic unfairly throt-
tles TCP traffic [20]. These concerns make it difficult to deploy
the system based on UDP connecting the proxy and server [21].

Finally, after the object is segmented, the coordination be-
tween the caching of discrete object segments and the streaming
of continuous media data is challenging. For example, although
different online prefetching algorithms have been proposed
to provide continuous streaming to clients, few measurement
results in Internet streaming have been reported. Precise
prefetching techniques [22] can provide continuous streaming
with maximum resource utilization. However, system support
is needed to accurately estimate the available bandwidth of the
proxy—content-server link at runtime.

We have designed and implemented a segment-based proxy,
named SProxy, to address these technical problems. It leverages
existing Internet infrastructure and is able to serve and cache
media objects in time-domain segments. As shown in Fig. 1, the
deployment of SProxy does not require modifications on either
the server side or the client side. This design takes advantage
of the prevalence of HTTP, and eliminates most of the concerns
about UDP based communications (especially when the proxy
is placed inside the firewall).

The SProxy uses a segment-aware file I/O system that enables
automatic segmentation and intelligent prefetching techniques
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Fig. 1. Organization and protocols used in SProxy.

to guarantee continuous streaming. This allows SProxy to trans-
parently handle the complexity of media formats and to support
continuous delivery demands. It has the following merits.

1) The SProxy handles client requests for streaming media
objects via the standard RTSP [23] and RTP [24] proto-
cols. It communicates with the content-server using the
HTTP protocol. This design allows a regular Web server to
serve streaming content, as well as regular Web documents.
Thus, the existing Internet infrastructure is fully leveraged
to address the flash crowd.

2) A client request is processed and divided into multiple sub-
requests. Each subrequest asks for only a small part of
the whole media object. The sequence of subrequests is
stopped whenever the client terminates its session, which
subsequently terminates the data transfer. This design in-
troduces a low startup latency while providing efficient
bandwidth utilization.

3) Prefetching techniques are implemented to assist high
quality continuous streaming. Based on dynamically
detected available bandwidths of the proxy-server link,
active prefetching techniques are used to dynamically
prefetch the data likely to be accessed by the client.

4) The data contained in each segment is stored as a distinct
object. The existing popularity based replacement policy is
leveraged from the traditional Web proxy, and applied on
these segments. It is a global, segment-based replacement
policy instead of a media object-based one, which enables
better utilization of the cache space.

An actual implementation of the SProxy is evaluated under
various conditions. Our extensive experimental results show that
SProxy consistently provides high quality streaming delivery to
a medium number of concurrent clients, with reduced startup
latency and more efficient cache utilization.

Compared with the commercial expensive Content De-
livery/Distribution Networks (CDN) or Media Delivery
Networks (MDN), SProxy provides an effective alternative to
deliver high quality streaming media to end clients. Instead
of fully duplicating each object to all dedicated edge servers,
SProxy can easily leverage existing Internet proxies to deliver
streaming data to clients on demand based on segment, which
further reduces the bandwidth consumption. By enabling
content providers to host media on a common Web server,
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SProxy provides a novel infrastructure to facilitate the Internet
streaming.

The rest of this paper is organized as follows. We review re-
lated work in Section II. We present the design and implementa-
tion of the SProxy in Section III. We evaluate the system perfor-
mance through extensive experiments in Section IV. We make
concluding remarks in Section V.

II. RELATED WORK

The research on proxy caching of streaming media content
has received much attention lately. Early efforts, e.g., Mid-
dleman [25], which has studied cluster of proxies for streaming
media delivery, have considered little on one important feature
of streaming media accessing. It is found that continuous media
objects such as video or music clips are often partially ac-
cessed. Based on this observation, partial caching approaches
have been proposed to reduce the cache space requirement.
The basic strategy is to cache segments of objects that are
divided in the viewing time domain. Typical examples include
prefix caching [10], [26], [27], uniform segmentation [11], and
exponential segmentation [12]. Prefix caching always caches
the prefix of the objects to minimize the startup latency. In
uniform segmentation, objects are cached in uniform-size seg-
ments, while in the exponential case, the segment size doubles
along the viewing direction. Considering the limited resources
available from a single cache, the Rcache [28] has considered
the use of multiple proxies, focusing on the memory and disk
utilization. These strategies focus on protocol design or benefit
analysis based on synthetic workloads. Our work is based on
the uniform segmentation caching strategy with the focus on
real system implementations and evaluations of the system in
real network environments using real workloads.

The partial caching strategy can be extended to the quality
domain. Layered caching techniques [13], [14] have demon-
strated efficient utilization of cache space by considering dif-
ferent QoS characteristics of client device or connectivity. A
comparison with multiple version caching is studied in [15]
while a model of layer-encoded object distribution is studied in
[29]. In [30], the proposed approach attempts to select groups of
consecutive frames by the selective caching algorithm, while in
[31], the algorithm may select groups of non-consecutive frames
for caching in the proxy. A different idea is proposed in video
staging [32], in which a portion of bits from the video frames
whose size is larger than a predetermined threshold is cut off
and prefetched to the proxy a priori to reduce the bandwidth on
the server proxy channel. Most of the partial caching schemes in
the quality domain require layer-encoded objects or additional
support from the proxy or client. The work presented in this
paper does not have these requirements.

III. DESIGN AND IMPLEMENTATION OF SProxy

Fig. 2 shows the architecture of a SProxy, as well as its request
handling. The SProxy is composed of four main components:
a streaming engine that interfaces with the client, a segmenta-
tion-enabled cache engine that interfaces with content servers,
a Local Content Manager and Scheduler (LCMS) module that
coordinates the streaming engine and the cache engine, and a
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Fig.2. Internal design of SProxy : A client request is divided into n subrequests
with different ranges, R! to R™, requesting different content segments, D! to
D? . LCMS controls when to send the next subrequest. The cache engine returns
segment meta data (M} to M ™) to LCMS, and caches the segments D! to D™
on the disk.

high speed disk that provides a fast data-path via the local file
system.

A. Streaming Engine

The streaming engine is a multithreaded media server, re-
sponsible for providing an interface to the client. Its internal
structure is described in detail in [33]. As shown in Fig. 2, it
receives a client request for a RTSP URL and converts it to mul-
tiple segment requests, R. ... R", that are sent to LCMS. It uses
the meta-data information, M 51 ... M7, returned by the cache
engine through LCMS to access the raw data segments on the
disk.

As shown in Fig. 2, the streaming engine reads data segments,
D!...Dm, from the disk to serve clients. However, there is a
problem: a randomly chosen segment length breaks the object
into pieces, thus creating segments that are likely to include an
incomplete media packet. If this incomplete packet is sent to the
client, the client player would have to use error concealment or
it may crash. One solution to this problem is to always segment
the object on a packet boundary, which requires the SProxy to
have packet boundary knowledge before segmentation can be
done. This information could be obtained by parsing the com-
plete media file, or by using a hint track, if available. However,
the hint track data can be dispersed through the media file, so
in either case, the whole file may have to be downloaded. A
better solution is to allow random segment boundaries, but to
always feed a complete data packet to the client. In the SProxy,
a segment-aware file I/O system is implemented to support this
requirement. It automatically requests the appropriate segment
when reading or seeking beyond the boundaries of the current
segment. LCMS tries to ensure that the next segment is always
available in the cache.

B. Local Content Manager and Scheduler

Local Content Manager and Scheduler (LCMS) coordinates
the streaming engine and the segmentation-enabled cache
engine. It converts the subrequests, e.g., Rl ... R", to corre-
sponding HTTP requests (with Range headers) and forwards
them to the proxy. It returns the appropriate cache meta-data
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M} ... M" from the proxy replies to the streaming engine.
More importantly, LCMS schedules segment prefetching.
Prefetching is necessary because segment-based proxy caching
is a partial caching solution, in which only a part of the object
is cached in the proxy while a client may access an object to
a segment which is not cached in the system. To guarantee
continuous media delivery, each segment should be available
locally before the streaming engine tries to read and stream to
the client. Otherwise, the client can experience playback jitter.

Based on the available bandwidth, to prefetch the uncached
segment at a proper time can not only maintain the continuous
service, but also reduce resource waste since the client may ter-
minate any time without viewing all the prefetched data.

We have implemented multiple segment based caching modes
and provided analytical models in [22]. In the following con-
text, we briefly describe the four modes we implemented in
our streaming proxy, depending on when the request for a suc-
ceeding uncached segment is issued.

* OnDemand: In this mode, no prefetching is implemented.
The succeeding segment is fetched when it is needed by
the streaming engine. This mode is simple and works fine
when the available bandwidth of HTTP channel is large
enough. Otherwise, streaming can be interrupted due to the
delay in fetching the next segment from the server. Some of
these effects can be partially hidden by providing buffering
in the streaming engine.

*  Window: In this mode, the subrequest for the next uncached
segment is always issued when the client starts to access the
current one. Thus it provides aggressive prefetching with a
look-ahead window size of one segment.

* Half: Intuitively, the window size is adjustable. We also
implemented a Half mode, in which the subrequest for
the next uncached segment is issued after the server has
reached the middle of the current one. Thus, in this mode,
the window size is half of a segment length.

* Active: Active prefetching is implemented to dynamically
decide when to prefetch an uncached segment according
to the real-time bandwidth. It is the most precise online
prefetching technique according to [22] and is imple-
mented with the aid of Packet CAPture (PCAP) library
[34]. With the API provided by PCAP, we periodically
estimate the available network bandwidth between the
SProxy and the content-server. The prefetch schedule is
then computed using the media encoding rate extracted
from the header of the media file, which corresponds to
the desired data transmission rate between SProxy and the
client.

C. Segmentation-Enabled Cache Engine

The segmentation-enabled cache engine handles the subre-
quests from LCMS. In case of a cache MISS, the cache engine
gets the data for the subrequest from the content-server (or other
peering proxies). The cache stores data D7 (data for segment
n) on the disk, as well as constructing and sending a reply with
meta data M only to LCMS. The meta data includes the name
and the location of the file containing the data for this subrequest
on the local disk. In a case of a cache HIT, the cache directly
constructs and sends the M meta-data to LCMS.
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Currently, SProxy uses a modified version of Squid2.3
(STABLE4) as the cache engine. Segmentation support is
provided through the Range header in HTTP requests. Squid
identifies objects in its cache using the MD5 hash of the re-
quest URL. Hence, in the original version of Squid, different
ranges of a URL would have the same MDS5 keys, and HTTP
requests that include the Range header would be considered
non-cachable. To make these requests cachable, our segmenta-
tion-enabled version rewrites the URL internally to enable the
caching of different segments of a media object. The rewritten
URL is used internally in the proxy to identify different range
requests. If the corresponding segment is not cached, the re-
quest is forwarded to the content-server (or peering proxies) by
restoring back the URL and Range header.

Since the rewriting of the URL provides the opportunity to
cache the data for different segments of the same object, seg-
ment caching is enforced by saving partial data on disk without
violating the HTTP protocol. In the implementation, a HTTP
reply status of PARTTAL CONTENT (206) indicates the reply
corresponds to a range request.

Popularity based replacement policy has been found to be the
most efficient for multimedia object caching. SProxy leverages
the existing popularity based replacement policy in Squid. In our
system, it is not a pure popularity based replacement due to the
LOCK problem when streaming. We will discuss more about it
later.

Additionally, cooperative proxies have been used for caching
static Web objects. It is even more desirable for caching large
streaming media objects. SProxy also leverages the existing co-
operative functions in Squid. When requesting segments from
neighboring caches, the internally re-written URL is restored to
the original version, with the Range header added. This allows
SProxy interact with regular Web-proxies without streaming
capability, as well as other streaming-enabled Squid proxies.
The procedure is as follows: after a request gets a “miss” from
its local cache, its neighbor proxy cache is searched if any by
changing the internal request to the one as we showed before.
We omit the details here.

D. Fast Data Path

The shared local file-system provides a fast data path between
segmentation-enabled cache engine and the streaming engine.
Traditionally, Squid transfers incoming data to an HTTP client
over a network. For large media data files, it is more efficient
to directly share the part of file system used as a data cache by
Squid. In the SProxy system, a set of new methods, PREFETCH,
LOCATEFILE and LOCK, are added to Squid for this purpose.

1) PREFETCH is implemented as a nonblocking version of

the HTTP GET method. Whenever a segment is required, a
request with a PREFETCH method and the corresponding
Range header is sent to the proxy. The proxy checks if the
requested segment is cached or not. If it is cached, a HIT
is returned. Otherwise, a MISS is returned and the corre-
sponding request is re-written as a HTTP GET and for-
warded to the content-server or peer simultaneously. The
proxy will store the reply containing the requested segment
data on its local disk for future requests.
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2) LOCATEFILE is implemented as a blocking method.
LCMS only invokes this method after a PREFETCH
request returns a HIT. It returns the file location of the
requested segment in the cache file structure maintained
by Squid. It blocks until the entire data for a range request
has been written to disk.

3) LOCK is used before the streaming engine starts to stream
a segment to the client. Since the segment is cached and
the cache is managed by Squid, the replacement policy in
Squid automatically starts the replacement when the avail-
able cache space is below some threshold. It does not know
whether or not the to-be-replaced segment is being used
by the streaming engine. Thus, before reading the data of
a segment for streaming, LCMS issues a request with a
LOCK method. This ensures that the to-be-read file will not
be a candidate for eviction. After segment access is com-
plete, the lock is released.

The nonblocking PREFETCH method and the blocking LO-
CATEFILE method effectively split the original, blocking GET
method into a two-phase protocol. This is critical to the system
performance when the SProxy needs to handle a large number
of concurrent requests or when the segment size is large. Mul-
tiple PREFETCH methods for different segments can be issued
without locking up the LCMS. The design of LOCK provides a
tool to coordinate the streaming engine and cache engine.

IV. PERFORMANCE EVALUATION

In this section, we describe the test setup and evaluation met-
rics that we use in experiments. We then present detailed ex-
perimental results upon multiple concurrent requests, including
a full caching approach to provide baseline values. Four case
studies of SProxy are presented then.

A. Test Setup

We run tests in real network settings using actual implemen-
tation of the content-server, SProxy, and media clients. We use
Apache Web Server (version 2.0.45 with HTTP 1.1) as the con-
tent-server. It is hosted on an HP Netserver 1p1000r, with a
1-GHz Pentium III Linux PC platform. The SProxy system runs
on a HP workstation x4000 with two dual 2-GHz Pentium III
Xeon Linux PC, with 1-GB memory. The media client used for
the experiments is a dummy loader that logs incoming RTP and
RTSP packets.

For all tests, the network connection between SProxy and
the client machine is a switched 100-Mbps Ethernet. For net-
work conditions to the content-server, three setting are used,
namely local, remote and controlled environments. The local
environment is set up with both the content-server and the
SProxy system connected via a switched 100-Mbps Ethernet
within HP Labs (Palo Alto, CA USA). The remote environment
is constructed with the SProxy system and the content-server
at trans-Pacific sites (the U.S. and Japan, respectively). The
bottleneck bandwidth is approximately 10 Mbps. To study the
effectiveness of four prefetching methods in different network
settings, we also construct a controlled environment in which
the link capacity between the proxy and the content- server can
vary. We use traffic control support in the Linux kernel via the
tc(8) utility to the bottleneck bandwidths link.
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B. Evaluation Metrics

We evaluate two end-to-end statistics that are especially rel-
evant to streaming media delivery, client perceived startup la-
tency and client perceived jitter. Startup latency is measured as
the interval between the client sending a request for a media
stream (the RTSP DESCRIBE method), and the arrival of the
first media packet. The client jitter is the average of the values
in the Receiver Report RTCP messages, calculated based on the
algorithm in Appendix A.8 of RFC 1889 [24]. It represents the
statistical variance of the media packet inter-arrival time.

To better evaluate different prefetching methods, we also
record two statistics specific to SProxy. We instrument the
proxy system to measure time spent in handling each segment
request. It is measured as the interval between the time when a
segment is requested and the time the location of the segment
in the cache storage is returned to the proxy. Note that every
request for a segment results in a Squid handshake (to check
whether it is in cache), while an uncached segment causes
an HTTP transfer from the content-server. This measurement
reveals whether the proxy can fetch segments in time in the
middle of streaming sessions.

C. Experimental Results

We first perform experiments using a full object caching
approach. The results provide a basis for comparisons with
our segment-based approach. Furthermore, to study the per-
formance of our SProxy, we conduct experiments in four
different aspects. We first consider the effects of using different
segment sizes in the SProxy, when the number of concurrent
clients increases. Then we evaluate the performance difference
when the content-server sits at different network distances
from the SProxy. We further evaluate the effectiveness of each
prefetching method under different SProxy—content-server
link bandwidth capacities. For each of these experiments, the
cache size is set large enough to store all the fetched content,
and each client accesses a unique object. Moreover, the clients
play clips in their entirety. Since there is no segment re-use
across clients, this represents the worst case behavior for a
cache engine. We finally validate our results with a trace driven
simulation, using real enterprise access patterns. These traces
include multiple clients accessing the same clip, and clients
that do early termination.

1) Full Caching Approach: In the full caching approach,
media objects are not segmented, but fetched in their entirety.
In this experiment the client, SProxy and content- server are lo-
cated in the same local network. Experiments are performed on
different video clips of length 1, 2, 5, 10, 20, 40 min, encoded at
112 kbps. The cache size is set large enough so that there are no
capacity misses, hence no replacement is necessary. The results
are averaged over ten runs.

Fig. 3(a) shows that the startup latency perceived by the
client, as expected, increases linearly with the video size.
Similar trends are reflected in performance in terms of the
average time to handle a miss as shown in Fig. 3(b). Fig. 3(c)
shows that the handshake time in the proxy for the full caching
approach also increases linearly with the video size. Note that
it is substantially smaller than the corresponding miss process
time. In the full proxy caching approach, each media object
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is only fetched once from the content-server at the beginning,
after that all requests hit in the proxy, thus the client-perceived
jitter is very small, negligible in this situation.

2) Effect of Segment Size: In the previous section, where each
object is accessed and stored in entirety, we have learned that
the performance of the full caching approach depends on the
media object length and degrades almost linearly with the in-
crease of the object length. In SProxy, objects are segmented
and managed as smaller units. The next experiment tests the
effect of segment size on the SProxy performance. In this set
of experiments, an increasing number of concurrent clients re-
quest unique media objects. The media objects are all copies
of the same piece of content (a 2-min video clip) with different
names. This effectively disables the file buffer cache in the Oper-
ating System. Moreover, the media data served to each client is
identical, which allows us to present the data as averages across
each client session. The client request inter-arrival interval is .
The Squid cache file system is re-initialized before each experi-
ment. We evaluate the performance by running tests with SProxy
using different segment sizes for segment-based caching. These
experiments are carried out in the local environment using the
OnDemand mode. Thus, there is no explicit prefetching, so we
can isolate the effect of the segment size.

Fig. 4(a) shows the client perceived startup latency when the
segment size varies from 100 to 500 KB and when the segment
size is large enough to include the entire object. Clearly, the
startup latency increases when the base segment size increases
since SProxy waits until the first segment is fetched from the
content-server before starting streaming to the client. It is also
expected that the startup latency increases when the number
of concurrent clients increases, since this puts a load on the
streaming server. Compared to the startup latency when the
entire object is fetched as one segment, the startup latency
in SProxy is only about 30% to 60%. It is also found that
when the segment size increases beyond 300 KB, the client
perceived startup latency increases faster, while the effect is
less pronounced when the segment size varies in the range of
100 to 300 KB. The startup latency is proportionally larger for
clients in the remote environment, and not shown for brevity.

Fig. 4(b) shows the client perceived jitter. It is obvious that
jitter is the smallest when the segment size is large enough to in-
clude the entire object. Otherwise, additional jitter may be per-
ceived due to the on-demand nature of segment based fetching
by SProxy. We show in Fig. 4(c) and (d) that the average time

consumed for the proxy to handle a MISS and a Squid hand-
shake, respectively. It is clear that the average consumed time
to handle both a MISS and a handshake increases with the seg-
ment size. Comparing Fig. 4(a) and (c), we note that the client
perceived startup latency is usually larger than the time to handle
a cache MISS. This is because the startup latency includes the
time to setup the streaming session in addition to the time of
fetching the first segment.

This set of experiments shows that SProxy outperforms the
full caching approach in terms of the client perceived startup
latency and the average time to handle a miss, while it causes a
comparable amount of playback jitter even without prefetching
support.

3) Effect of Proximity: Another factor that affects the scala-
bility of SProxy is the proximity: the distance between the con-
tent-server and SProxy. We evaluate the performance by run-
ning tests with the content-server located in the local environ-
ment as well as in the remote environment. A segment size of
100 KB is used for this set of experiments. For fairness we run
the Local-Ondemand again with other segment sizes. Its results
slightly differ from those in the previous subsection.

Fig. 5(a) shows the startup latency for local accesses, while
Fig. 5(b) shows this metric for remote accesses. In the local
case, it varies from 96 to 169 ms, while for remote accesses,
the startup latency is much larger, with a much bigger dynamic
range, from 2 to 11 s. The startup latency in both environ-
ments shows only a small variation across different prefetching
methods. This is an intuitive result, since the value would be
dominated by the access time for the first segment accessed. It
is also seen that the startup latency generally increases when
there are more concurrent requests. These results indicate that
more concurrent requests can be served in local networks,
and that more concurrent requests can lead to a longer startup
latency in wide area networks. This figure also shows that our
design and implementation of SProxy can support the delivery
of media objects with reasonable startup latency in both intranet
and Internet environments.

Another important aspect of streaming media delivery is
whether the proxy can provide rigorous continuous streaming.
Fig. 6(a) and (b) show the average time that the proxy consumes
to process a cache MISS in each environment. The average time
to handle a MISS in the local testing environment is less than
23 ms. In a wide-area network, the average consumed time can
reach 6.5 s. The results justify that prefetching for content from
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remote content servers is necessary, since such a large delay
may potentially cause playback jitter at the client side.

Fig. 7(a) and (b) show the average time for the proxy to
handle a Squid handshake, whether a HIT or a MISS, for the
local and remote environment, respectively. A good prefetching
method will have a higher percentage of HIT cases, which leads
to a correspondingly smaller average time. Comparing Fig. 7
with Fig. 6, we can see that a handshake consumes much less
time than a MISS on average. Note that OnDemand does not
do any prefetching. It shows some HIT cases, since the file
format parser might request the same segment multiple times,
e.g., first for parsing the hint track, and then for reading media
data. As shown in the remote case of Fig. 7, OnDemand always
consumes more Squid handshake time and other prefetching
methods reduce the Squid handshake time somewhat. It seems
that a simple Window mode performs the best in this set of
tests. We have shown in [35] that Active should perform best
if an accurate real-time measurement of the proxy-server link

bandwidth is in place. Our current implementation of Active
may have been limited by PCAP’s capability.

Fig. 8(a) and (b) show the client perceived jitter in both
local and remote environments. In both cases, the absolute
client perceived jitter is small, which indicates that our SProxy
can successfully serve a large number of clients with rig-
orous continuous streaming demand. Note that the client
jitter tends to increase when more concurrent requests are
served, especially in the remote environment. This indicates
that accurate prefetching is very important especially when
the SProxy—content-server link bandwidth resource becomes
scarce. Active prefetching achieves better performance as
shown in the remote case.

4) Prefetching Effectiveness: The preceding experiments
have evaluated the system performance in local and remote
network settings. To further study the effectiveness of the dif-
ferent prefetching methods in different network settings, we
test the system in a controlled environment, as described in
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Section IV-A. For each bandwidth setting, a video clip with an
encoding rate of 75 Kbps is served from the content-server to the
client through SProxy. We collect the Squid handshake time and
client jitter statistics for each prefetching method. Please note
that in all prefetching methods, Active schedules prefetching
based on the detected available bandwidth, called bottleneck
bandwidth, which we use tc to control during the experiments.
As shown in Fig. 9(a) and (b), both the Squid handshake
time and the client perceived jitter decrease when the bottle-

neck bandwidth increases. Note that the Squid handshake time
here is generally much longer than the result in the proximity
study since the bottleneck link bandwidth is much smaller. The
Active prefetching can be seen to have the shortest Squid hand-
shake time, especially when the link bandwidth is low. The dif-
ferences in client-perceived jitter are less obvious although Ac-
tive and Window methods perform better with a low bottleneck
link bandwidth. A notable average client jitter increase happens
on Fig. 9(b) when the bottleneck bandwidth changes from 400
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to 500 Kbps. Our analysis of the raw data indicates that a much
smaller jitter value is captured when the bottleneck bandwidth
is set to 400 kbps by fc for the first time.

5) Cache Efficiency Study Using Real Workload: Even
though we use segmentation-enabled Squid as the cache engine
in our SProxy, it is important to evaluate its performance on
cache efficiency in conjunction with prefetching methods. To
this purpose, we use a trace extracted from real enterprise
media server logs to drive a 24-h run of the actual system in the
local environment. These traces include clients that access the
same clip, and clients that terminate a clip prematurely, or start
playing a clip from the middle. Thus we would expect better
caching behavior, but also wasted bandwidth due to segments
that are pre-fetched and never used.

The trace contains 16238 requests with the access duration
varies from 1 to 50 minutes. In these 16 238 requests, 92% of
them are demanding a same video clip, most of which are with
premature terminations. Thus, the caching performance is ex-
pected to be very high. We select such a workload because we
also want to test whether the system can survive a large number
of concurrent requests in a long time period. There is a total of
70.775 GB data accessed. The unique object size amounts to
5.358 GB. Based on the file length and streaming rate of the ob-
jects requested, we have created matching video clips in MP4
file format. A content pool is created as follows using the pa-
rameters as shown in Table I.

As shown in the table, video objects are created with six bit-
rate (28, 56, 112, 156, 180, 256 kbps) versions with a file length
of 1, 2, 5, 10, 20, 50, 100 min. The request duration of each
access is extracted from the trace.

Based on this real enterprise media access trace, we use a cache
simulator to evaluate both full- and segment-based caching strate-
gies. We also use the real system runs to verify the simulation-
based results of segment based caching strategies. We use simula-
tions since some metrics, such as false prefetch we shall see soon,
are very difficult to measure in the real runs. For segment-based
caching strategies, we also evaluate various prefetching methods
and different segment sizes.

Fig. 10(a) compares the total server traffic amount generated
by the full and various segment-based caching strategies based
on simulations. Note that segment-based caching generates
significantly less server traffic. Server traffic is very low even

TABLE I
CONTENT AND ACCESS PARAMETERS OF REAL WORKLOAD
Rate File length Max access
(Kbps) (minute) duration (minute)
28 1, 10, 20, 50 1
56 50 12
112 1,2,5,10,20,50 14
156 1,20,50 14
180 2,5,10,20,50,100 50
256 1,2,5,10,20,50,100 25

with a small cache space. We have validated this by driving
the same workload through actual runs using SProxy. Looking
into server traffic produced by segment-based caching with
different prefetching methods, Fig. 10(b) shows that OnDemand
generates the least server traffic since it does not do any prefetch;
Half and Window methods, with increased aggressiveness in
prefetching, generate more and more server traffic. This is a
small penalty SProxy pays to improve continuous streaming of
media content. Active prefetching is not simulated since it is
difficult to simulate a dynamic channel bandwidth between the
content-server and SProxy. The server traffic amount generated
by Active prefetching would depend on the time-varying nature
of the channel bandwidth. However, not all prefetched segments
will be used by the clients. We define false prefetch as the size of
the segments that are prefetched and cached but have never been
streamed to clients before they are evicted. Fig. 11 shows for
this trace, Half method produces about 50% of false prefetches
compared to Window. Thus, for real traces, the Window method
is too aggressive, since many clients terminate playing early (i.e.,
before accessing half of a segment). Also, since the prefetching
granularity is segment, smaller segment size produces less false
prefetch.

V. CONCLUSION

Recent years have seen a lot of streaming service un-avail-
ability due to flash crowds and a large amount of research work
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in segment-based proxy caching to deal with this issue. How-
ever, its implementation and deployment are hindered by sev-
eral factors. Additionally, system support is demanded to guar-
antee continuous streaming. Through our design, implementa-
tion, and testing of such a system, we conclude that it is possible
to push the streaming capability to the edge of the network and
couple it with a caching proxy to efficiently serve a large number
of clients. This design fundamentally frees the content provider
from serving constraints. Specifically, our contributions are the
following.

* We have designed and implemented a segment-based
caching proxy that can successfully shoulder the server’s
burden and support concurrent streaming of multimedia
content to a medium number of clients with rigorous
latency and continuity constraints.

e The design and implementation leverage the existing In-
ternet infrastructure. The content-server needs only to be
a simple Web server, yet its contents are served through
SProxy in a scalable and efficient fashion.

e We have thoroughly evaluated different prefetching
methods which are closely coupled with the segment-based
caching. We have shown that segment-based access in-
herently reduces the client perceived startup latency and
various prefetching methods can provide continuous
streaming in various network conditions.

We have tested the full system within real network condi-
tions and with a real workload. We believe this is the first
work of this kind.

Currently, the SProxy system is deployed at many sites of a

large
tests.

enterprise for practical usage and at a site for scalability
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